SISTEMI DIGITALI DI CONTROLLO

Prof. Alessandro De Luca

DIS, Università di Roma "La Sapienza" deluca@dis.uniroma1.it

Lucidi tratti dal libro

C. Bonivento, C. Melchiorri, R. Zanasi: "Sistemi di Controllo Digitale"

Capitolo 8: Progetto nel piano w

Si ringraziano gli autori

Principi di progetto nel piano w

- Uso dei diagrammi di Bode, di Nyquist e di Nichols nel piano w (funzioni razionali)
- Definizione di regolatori con struttura molto semplice (reti di correzione attenuatrici, anticipatrici, o a sella)
- Trasformazione bilineare

$$z = \frac{1 + wT/2}{1 - wT/2}$$

e sua antitrasformazione nel piano z

$$w = \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}} = \frac{2}{T} \frac{z - 1}{z + 1}$$

- Si conserva l'uguaglianza degli errori a regime e delle relative costanti di errore

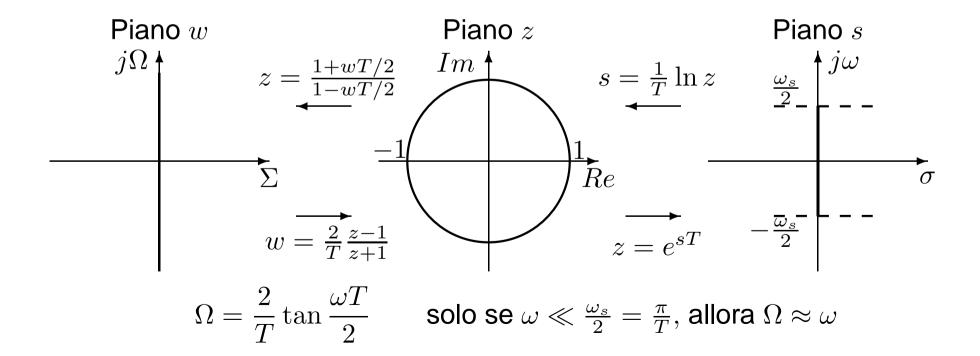
$$k_p = \lim_{z \to 1} G(z) = \lim_{w \to 0} G(w)$$

$$k_v = \lim_{z \to 1} \frac{(1 - z^{-1})G(z)}{T} = \lim_{w \to 0} wG(w)$$

$$k_a = \lim_{z \to 1} \frac{(1 - z^{-1})^2 G(z)}{T^2} = \lim_{w \to 0} w^2 G(w)$$

Passi logici del progetto nel piano w

- 1. fissare un periodo di campionamento T
- 2. ricavare la funzione di trasferimento del processo G(z) nel dominio Z
- 3. trasformare la G(z) così ottenuta in una G(w)
- 4. applicare, utilizzando la G(w), una delle tecniche di sintesi frequenziale note
- 5. antitrasformare la D(w) così ottenuta nella D(z)
- 6. verificare le prestazioni ottenute



Uso dei diagrammi di Bode nel piano w – 1

Si consideri per esempio il filtro passa basso

$$G_c(s) = \frac{100}{s + 100}$$

Il corrispondente filtro discreto con $T=0.01\ s$ e con un ricostruttore di ordine 0 è

$$G_d(z) = \mathcal{Z}\left[\frac{1 - e^{-sT}}{s} \frac{100}{s + 100}\right] = (1 - z^{-1})\mathcal{Z}\left[\frac{100}{s(s + 100)}\right] = \frac{0.6321}{z - 0.3679}$$

Passando al piano w

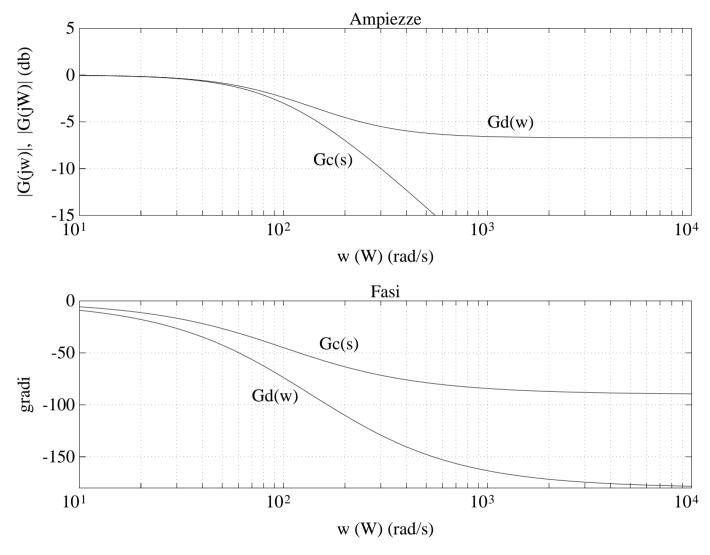
$$G_d(w) = G_d(z)\Big|_{z=\frac{1+0.005 \, w}{1-0.005 \, w}} = -0.4621 \, \frac{w - 200}{w + 92.4234}$$

quindi nel dominio frequenziale ($s=j\omega$ per $G_c(s)$ e $w=j\Omega$ per $G_d(w)$)

$$\lim_{\omega \to 0} |G_c(j\omega)| = \lim_{\omega \to 0} \left| \frac{100}{j\omega + 100} \right| = 1 = \lim_{\Omega \to 0} |G_d(j\Omega)|$$

$$\lim_{\omega \to \infty} |G_c(j\omega)| = 0 \neq \lim_{\Omega \to \infty} |G_d(j\Omega)| = 0.4621 = -6.7 \, \mathrm{db}$$

Uso dei diagrammi di Bode nel piano w – 2



Si noti che con la trasformazione bilineare possono in generale essere introdotti, come in questo caso, zeri a parte reale positiva (fase non minima)

Reti di correzione nel dominio w

Progetto di regolatori costituiti da una coppia polo/zero e guadagno

$$D(z) = k_d \frac{z - z_0}{z - z_p}$$

che vengono trasformati nella forma generica

$$D(w) = \frac{1 + w\,\tau_0}{1 + w\,\tau_p}$$

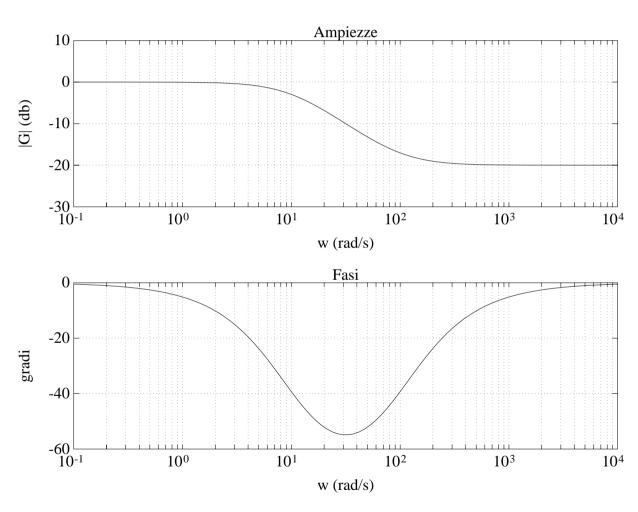
Si noti infatti che
$$D(z)=\left.\frac{1+w\,\tau_0}{1+w\,\tau_p}\right|_{w=\frac{2(z-1)}{T(z+1)}}$$
 e quindi

$$D(z) = \frac{T + 2\tau_0}{T + 2\tau_p} \frac{z + \frac{T - 2\tau_0}{T + 2\tau_0}}{z + \frac{T - 2\tau_p}{T + 2\tau_p}}$$

$$k_d = \frac{T + 2\tau_0}{T + 2\tau_p}$$
 $z_0 = \frac{2\tau_0 - T}{2\tau_0 + T}$ $z_p = \frac{2\tau_p - T}{2\tau_p + T}$

Rete attenuatrice (ritardatrice) – 1

$$D(w) = \frac{1 + w \tau_0}{1 + w \tau_p} \qquad \frac{1}{\tau_p} < \frac{1}{\tau_0} \quad \text{(in frequenza, il polo precede lo zero)}$$



qui con
$$\tau_0 = 0.01 \text{ s}, \ \tau_p = 0.1 \text{ s}$$

Rete attenuatrice – 2

Alle alte frequenze, il valore del guadagno è dato da

$$\alpha = \frac{\tau_0}{\tau_p} < 1$$

Lo sfasamento massimo (ritardo) è dato da

$$\Phi_m = -\arcsin\frac{1-\alpha}{1+\alpha}$$

e si ottiene alla pulsazione

$$\Omega_m = \frac{1}{\sqrt{\tau_0 \tau_p}} = \frac{1}{\tau_p \sqrt{\alpha}}$$

- riduzione di ω_t di attraversamento e attenuazione in alta frequenza (effetti positivi)
- introduzione di un ritardo di fase (effetto negativo)

Progetto con rete attenuatrice

Il progetto si articola nei seguenti passi

1. Dai diagrammi di Bode del sistema G(w), con guadagno modificato per soddisfare eventuali specifiche sull'errore a regime, si calcola la pulsazione Ω^* a cui corrisponde un margine di fase pari a quello desiderato (m_f) aumentato di $\approx 5^\circ$ per compensare le approssimazioni introdotte nel procedimento

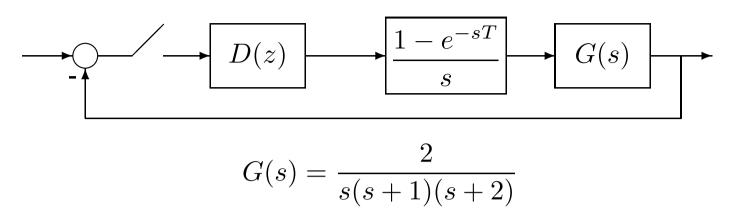
$$\Omega^*: Arg[G(j\Omega^*)] = -180^{\circ} + m_f + 5^{\circ}$$

2. Poichè la rete deve far sì che a questa pulsazione il guadagno di anello diventi unitario, si impone che il fattore di attenuazione introdotto dalla rete corretrice sia

$$\frac{\tau_0}{\tau_p} = \alpha = \frac{1}{|G(j\Omega^*)|}$$

- 3. Si fissa $1/\tau_0=0.1\,\Omega^*$ (una decade prima) al fine di assicurare che l'effetto di ritardo della rete non influisca in modo apprezzabile in corrispondenza alla nuova pulsazione di attraversamento fissata
- 4. Si ricava $au_p = \frac{ au_0}{lpha}$

Esempio di progetto con rete attenuatrice nel piano w



Progettare una rete digitale attenuatrice D(z) che garantisca al sistema in retroazione un margine di fase $m_f=55^\circ$

Si sceglie $T=0.1~\mathrm{s}$ (la costante di tempo più veloce del processo è infatti $0.5~\mathrm{s}$)

Effettuando la discretizzazione della G(s), si ottiene

$$G(z) = \mathcal{Z}\left[\frac{1 - e^{-sT}}{s} \frac{2}{s(s+1)(s+2)}\right] = \frac{3.094 \cdot 10^{-4}(z+0.2484)(z+3.4651)}{(z-1)(z-0.9048)(z-0.8187)}$$

e applicando la trasformazione bilineare z = (1 + 0.05 w)/(1 - 0.05 w) si ha

$$G(w) = \frac{8.28 \cdot 10^{-5}(w - 20)(w + 33.22)(w - 36.23)}{w(w + 0.999)(w + 1.993)}$$

Esempio di progetto con rete attenuatrice nel piano w (cont)

Diagrammi di Bode: (a) G(w), (b) D(w), (c) funzione di anello D(w)G(w)



 $@\Omega^* \approx 0.35 \text{ rad/s} \Rightarrow Arg[G(j\Omega^*)] \approx -180^\circ + 55^\circ + 5^\circ = -120^\circ, |G(j\Omega^*)| \approx 8 \text{ db}$

Esempio di progetto con rete attenuatrice nel piano w (cont)

Con calcolo più preciso, dal valore di pulsazione $\Omega^* \approx 0.3446$ rad/s, cui corrisponde la fase di -120° , e dal relativo guadagno

$$\frac{1}{\alpha} = 2.7039 = 8.64 \text{ db}$$

si pone

$$\tau_0 = \frac{1}{0.1\,\Omega^*} = \frac{1}{0.03446} = 29.0191\,\mathrm{s} \qquad (\Omega_0 = \frac{1}{\tau_0} = 0.03446\,\mathrm{rad/s})$$

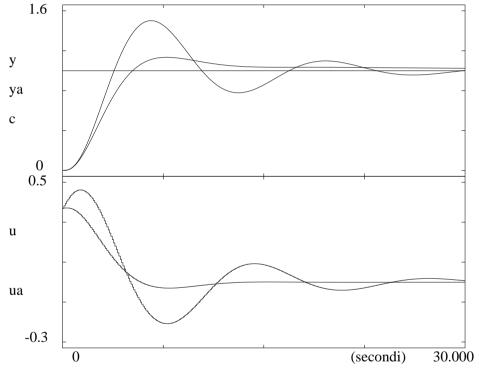
$$\tau_p = \frac{1}{\alpha}\,\tau_0 = 2.7039 \cdot 29.0191 = 78.4649 \, \mathrm{s} \qquad (\Omega_p = \frac{1}{\tau_p} = 0.01274 \, \mathrm{rad/s})$$

Effettuando l'antitrasformata, usando le espressioni generali di $k_d,\,z_0$ e z_p , si ha

$$D(z) = 0.37023 \frac{z - 0.99656}{z - 0.99873} = \frac{0.37023 z - 0.36896}{z - 0.99873}$$

Esempio di progetto con rete attenuatrice nel piano w (fine)

Risposta a gradino del processo in retroazione e relative variabili di controllo senza (grafici più smorzati) e con troncamento numerico a 3 cifre dei parametri del regolatore (grafici più oscillanti)

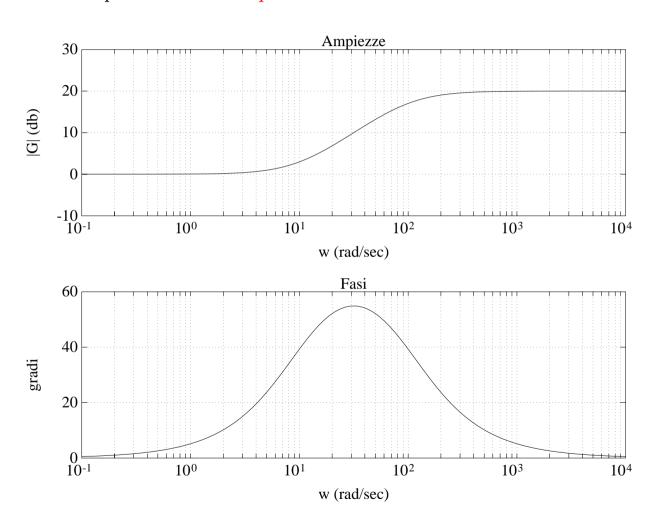


Il polo e lo zero della rete attenuatrice sono molto prossimi tra loro e a z=1+j0 Tale fenomeno, generale per le reti attenuatrici (posizionate in bassa frequenza), è peraltro accentuato per T piccolo

⇒ Il regolatore digitale deve essere realizzato con una notevole precisione numerica!

Rete anticipatrice – 1

$$D(w) = \frac{1 + w \tau_0}{1 + w \tau_p}$$
 $\frac{1}{\tau_0} < \frac{1}{\tau_p}$ (in frequenza, lo zero precede il polo)



qui con
$$au_p=0.01~\mathrm{s},\; au_0=0.1~\mathrm{s}$$

Rete anticipatrice – 2

Alle alte frequenze, il valore del guadagno è dato da

$$\frac{1}{\alpha} = \frac{\tau_0}{\tau_p} > 1$$

Lo sfasamento massimo (anticipo) è

$$\Phi_m = \arcsin \frac{1 - \alpha}{1 + \alpha}$$

e si ottiene alla pulsazione

$$\Omega_m = \frac{1}{\sqrt{\tau_0 \tau_p}} = \frac{1}{\tau_0 \sqrt{\alpha}}$$

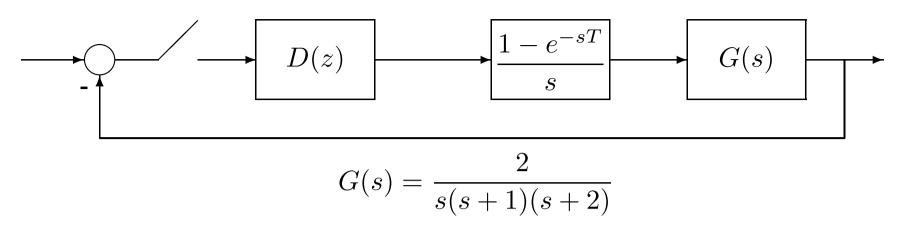
- anticipo di fase, con possibile miglioramento del margine m_f (effetto positivo)
- amplificazione del guadagno in alta frequenza (effetto negativo)

Progetto con rete anticipatrice

Il progetto si articola nei seguenti passi

- 1. Dai diagrammi di Bode del sistema G(w), con guadagno modificato per soddisfare eventuali specifiche sull'errore a regime, si individua il margine di fase (e relativa pulsazione Ω_1)
- 2. Si calcola l'anticipo di fase Φ_m necessario per avere un margine di fase pari a quello m_f desiderato, maggiorato di $5^\circ\div 10^\circ$ per compensare le approssimazioni nel procedimento
- 3. Una volta noto Φ_m , si calcola $\alpha=\frac{1-\sin\Phi_m}{1+\sin\Phi_m}$ e si determina la pulsazione Ω^* per la quale l'ampiezza di G(w) vale $\alpha/2$
- 4. Poichè la rete aumenta il guadagno del sistema alle alte frequenze, si fa corrispondere la nuova pulsazione $\Omega^* > \Omega_1$ alla Ω_m della rete anticipatrice
- 5. Dalle relazioni $\alpha=\frac{\tau_p}{\tau_0},~\Omega^*=\Omega_m=\frac{1}{\tau_0\sqrt{\alpha}}$ si ricavano le costanti di tempo τ_0,τ_p
- 6. Se le prestazioni risultanti non sono quelle desiderate, si ripete il procedimento con una Φ_m di valore superiore; può poi risultare conveniente considerare come valore di "centraggio" Ω_m della rete una pulsazione (in genere) superiore a Ω^*

Esempio di progetto con rete anticipatrice nel piano w



Progettare una rete digitale anticipatrice D(z) che garantisca al sistema in retroazione un margine di fase $m_f=55^\circ$

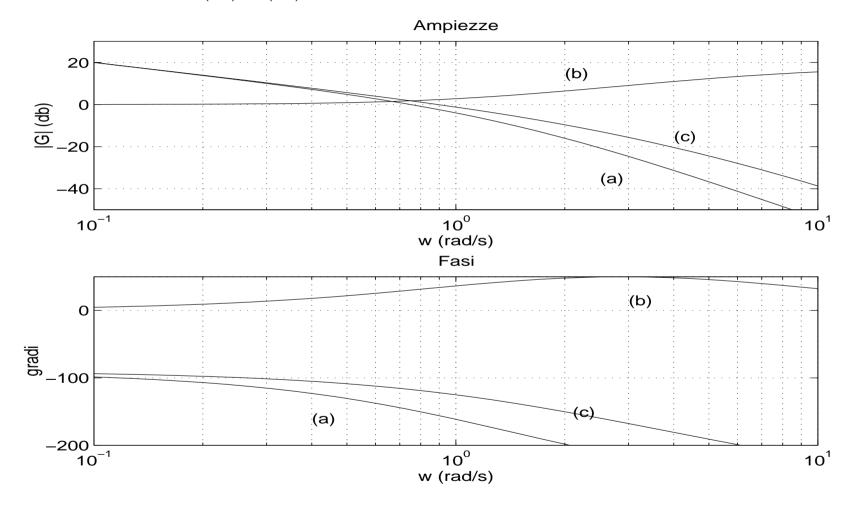
Ponendo come prima T=0.1 s, dalla risposta armonica di G(w) (vedi lucido 11) si ha un margine di fase pari a circa 30° alla pulsazione di attraversamento $\Omega_1=0.75$ rad/s In un primo tentativo, si progetta una rete che introduce un anticipo (massimo) $\Phi_m=35^\circ$ ottenendo

$$\alpha = 0.271 \ \Rightarrow \ @\Omega^*|_{|G(j\Omega^*)| = \frac{\alpha}{2} = -17.36\,db} = 2.16\,\mathrm{rad/s} \quad \Rightarrow \quad \tau_p = 0.241\,\mathrm{s}, \ \tau_0 = 0.8893\,\mathrm{s}$$

Il margine di fase ottenuto per D(w)G(w) è pari a 45° , ancora insufficiente; anche variando il centraggio di Ω_m (ad esempio portandolo a $2\Omega^*$), non si riesce a rispettare la specifica di fase

Esempio di progetto con rete anticipatrice nel piano w (cont)

Diagrammi di Bode: (a) G(w), (b) D(w) a progetto completato, con conseguente (c) funzione di anello D(w)G(w)



Esempio di progetto con rete anticipatrice nel piano w (cont)

Si ricomincia con un secondo tentativo, utilizzando una rete anticipatrice "più forte" che fornisce un anticipo massimo pari a $\Phi_m=45^\circ$

Si ha

$$\alpha = 0.1715 \Rightarrow @\Omega^*|_{|G(j\Omega^*)| = \frac{\alpha}{2} = -21.33\,db} = 2.61\,\mathrm{rad/s} \quad \Rightarrow \quad \tau_p = 0.1587\,\mathrm{s}, \ \tau_0 = 0.9252\,\mathrm{s}$$

con un margine di fase complessivo di 53°

Spostando leggermente il punto di lavoro della rete a $\Omega_m = 2.2$ rad/s si ottiene infine

$$D(w) = \frac{1 + 1.0973 \, w}{1 + 0.1883 \, w}$$

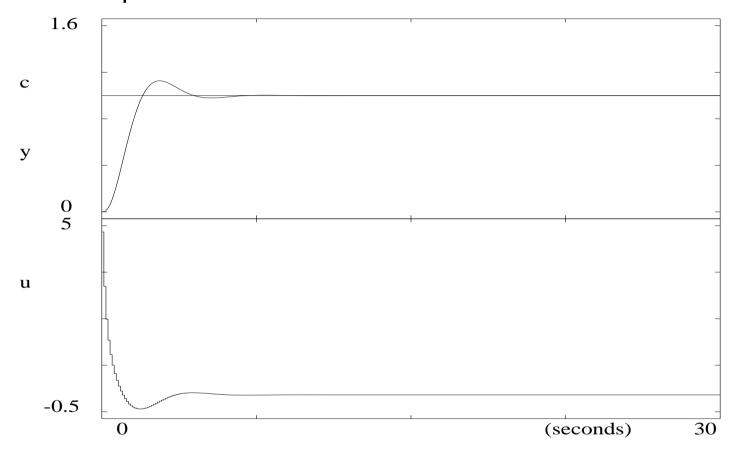
che fornisce il margine prescritto $m_f=55^\circ$

Antitrasformando la D(w) si ha pertanto

$$D(z) = 4.8146 \, \frac{z - 0.9129}{z - 0.5803}$$

Esempio di progetto con rete anticipatrice nel piano w (fine)

Risposta a gradino del processo in retroazione e relativa variabile di controllo



Da notare che la risposta è più pronta del caso di sintesi con rete attenuatrice, a spese di un maggiore sforzo di controllo (iniziale)

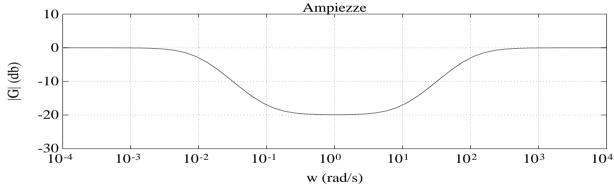
Inoltre, nel caso della rete anticipatrice non ci sono problemi numerici sulla precisione dei parametri del controllore digitale

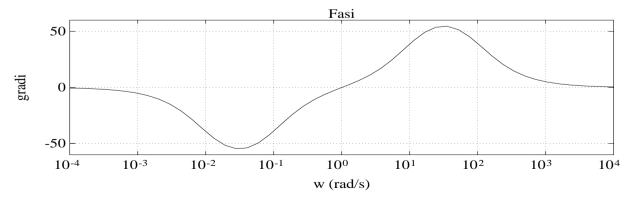
Rete a sella (attenuatrice-anticipatrice)

Rete con due zeri e due poli reali (interagenti, ossia attenuatrice e anticipatrice sufficientemente vicine)

$$D(w) = \frac{(1 + \tau_1 w)(1 + \tau_2 w)}{(1 + \alpha \tau_1 w)(1 + (\tau_2/\alpha)w)} \qquad \alpha < 1$$

Per
$$\Omega_m=rac{1}{\sqrt{ au_1 au_2}}$$
 si ha sfasamento nullo e attenuazione $|D(j\Omega_m)|=rac{ au_1+ au_2}{(au_2/lpha+lpha au_1)}$





qui con
$$\tau_1 = 0.1 \text{ s}, \ \tau_2 = 10 \text{ s}, \ \alpha = 0.1$$

Progetto con rete a sella – 1

Progetto con specifica sul margine di ampiezza m_a

1. Si individua la pulsazione Ω^* alla quale il sistema presenta una fase di $-\pi,$ e si pone

$$\Omega_m = \frac{1}{\sqrt{\tau_1 \tau_2}} = \Omega^*$$

2. Si impone che l'attenuazione introdotta dalla rete produca il margine di ampiezza m_a desiderato

$$|G(j\Omega^*)| \frac{\tau_1 + \tau_2}{(\tau_2/\alpha + \alpha \tau_1)} = \frac{1}{m_a}$$

3. Si ricavano i valori di τ_1 e τ_2 in funzione del terzo parametro α , il quale è fissato in base ad ulteriori specifiche

Progetto con rete a sella – 2

Progetto con specifica sul margine di fase m_f

- 1. Si cerca la pulsazione Ω^+ per la quale il sistema non compensato presenta il margine di fase desiderato m_f
- 2. Si calcola l'attenuazione che occorre introdurre affinchè Ω^+ diventi la pulsazione di attraversamento per il sistema compensato
- 3. Si impone quindi

$$\Omega_m = \frac{1}{\sqrt{\tau_1 \tau_2}} = \Omega^+$$

$$\frac{\tau_1 + \tau_2}{(\tau_2/\alpha + \alpha \tau_1)} = \frac{1}{|G(j\Omega^+)|}$$

4. Il grado di libertà residuo viene fissato come prima sulla base di ulteriori specifiche

Progetto con rete a sella – 3

In entrambi i metodi progettuali, si pone

$$\frac{1}{\sqrt{\tau_1 \tau_2}} = \Omega_m \qquad \frac{\tau_1 + \tau_2}{(\tau_2 / \alpha + \alpha \tau_1)} = k$$

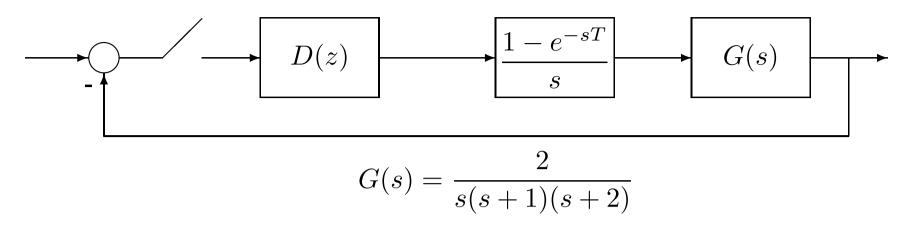
e si ricavano

$$\tau_2 = \frac{1}{\Omega_m} \sqrt{\frac{\alpha - \alpha^2 k}{k - \alpha}} \qquad \tau_1 = \frac{1}{\Omega_m^2 \tau_2}$$

in funzione del terzo parametro α

In genere, con l'uso di una rete a sella si ottiene un compromesso tra prontezza di risposta (elevata, tipica di una rete anticipatrice) e sforzo di controllo (ridotto, tipico di una rete attenuatrice)

Esempio di progetto con rete a sella nel piano w



Progettare una rete digitale a sella D(z) che garantisca al sistema in retroazione un margine di fase $m_f=55^\circ$, avendo come prima posto $T=0.1~{\rm s}$

Dalle

$$\Omega^+ = 0.41 \ \text{rad/s} \qquad Arg[G(j\Omega^+)] = -125^\circ \qquad |G(j\Omega^+)| = 2.216 = 6.91 \ \text{db}$$

si ottiene (con $\alpha = 0.1$)

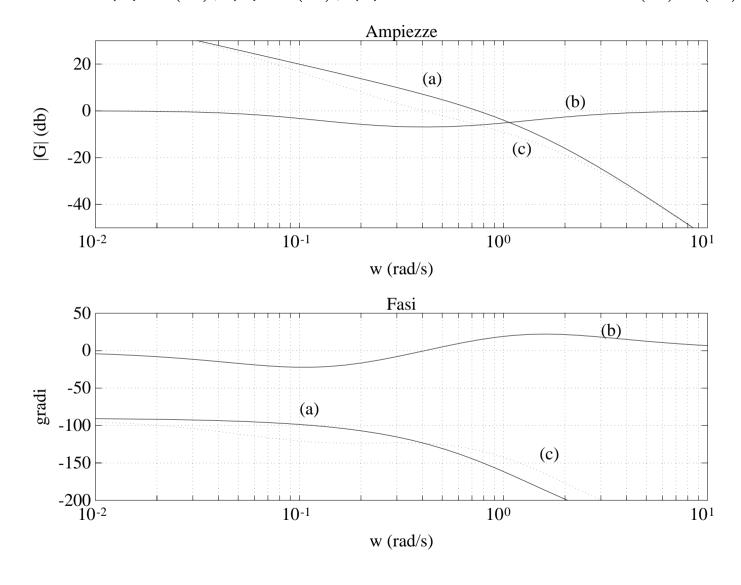
$$D(w) = \frac{(1+4.6779 \, w)(1+1.27167 \, w)}{(1+0.46779 \, w)(1+12.7167 \, w)}$$

e mediante la trasformazione bilineare

$$D(z) = 0.94527 \frac{(z - 0.97884)(z - 0.92433)}{(z - 0.80687)(z - 0.99216)}$$

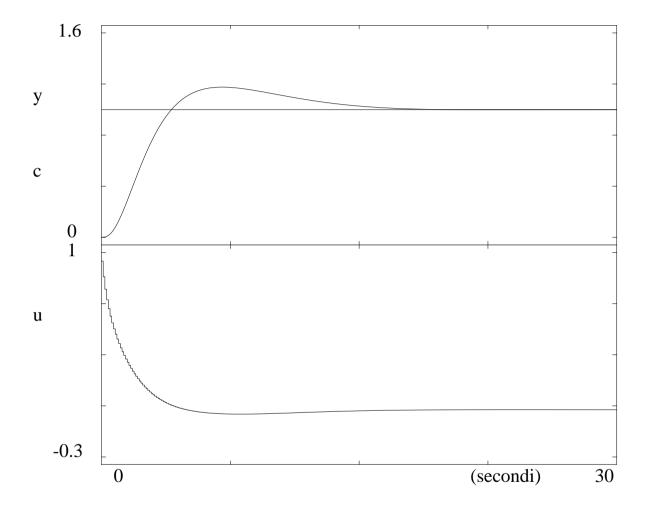
Esempio di progetto con rete a sella nel piano w (cont)

Diagrammi di Bode: (a) G(w), (b) D(w), (c) funzione di anello D(w)G(w)



Esempio di progetto con rete a sella nel piano w (cont)

Risposta a gradino del processo in retroazione e relativa variabile di controllo



Esempio di progetto con rete a sella nel piano w (fine)

Confronto delle risposte al gradino con la rete di correzione attenuatrice, anticipatrice o a sella, e relative variabili di controllo

