
Robotics 1

September 19, 2024

Exercise 1

Figure 1 is taken from the data sheet of the Kawasaki RS010N, a robot with 6 revolute joints and
a spherical wrist. Assign the link frames to this robot and fill in the associated table of parameters
according to the Denavit–Hartenberg (DH) convention (use the attached sheet). Frame 0 is placed
on the ground and frame 6 at the end of the final flange. Provide the numerical values of all
parameters, including those of the joint variables θi, i = 1, . . . , 6, in the configuration shown.1
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RS010N, RA010N

Model Vertically articulated robot
Degree of Freedom

ofMotion 6

MotionRange and
Maximum
Speed

JT MotionRange Max. Speed
1 !180° 250°/s
2 +145° to -105° 250°/s
3 +150° to -163° 215°/s
4 !270° 365°/s
5 !145° 380°/s
6 !360° 700°/s

Max. Payload 10 kg

Wrist Load
Capacity

JT Torque Moment of Inertia
4 22N"m 0.7 kg"m2
5 22N"m 0.7kg"m2
6 10N"m 0.2 kg"m2

Repeated Positional
Accuracy !0.03mm

Mass 150kg
Acoustic noise <80dB (A)*1

*1 Measurement conditions
・Robot tightly fixed to a flat floor
surface
・Point 2,700mm from the JT1 axis
center

Noise level varies
situationally.

Motionrange
ofpointP

PointP

Figure 1: From the data sheet of the Kawasaki RS010N robot. Lengths are in [mm].

1Motion ranges in the data sheet do not necessarily correspond to the values assumed by the DH joint variables.
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Exercise 2

With reference to the configuration shown in Fig. 1 for the Kawasaki robot, taking into account
the (symmetric) limits of joint velocities given in the data sheet, compute numerically the following
quantities (expressed in the base frame of the robot).

[a] The velocity vP of Point P (the center of the spherical wrist) when q̇1, q̇2, and q̇3 assume their
maximum absolute values and their signs are chosen so to have the largest possible norm ‖vP ‖.

[b] The angular velocity ω
[b]
6 of the last DH frame when choosing the joint velocities as in [a] and

with the wrist joints frozen.

[c] The angular velocity ω
[c]
6 of the last DH frame when the first three joints are frozen and q̇4,

q̇5, and q̇6 assume their maximum positive values, according to the direction of the zi axes
(i = 3, 4, 5) in the chosen DH assignment.

Exercise 3

Joints 2 and 3 of the robot in Fig. 1 should move from rest to rest, in minimum time, and in
a coordinated way, starting from the lower limit and reaching the upper limit of their respective
motion ranges. Assuming that the maximum absolute accelerations of the two joints are

Amax,2 = 5.5 Amax,3 = 7 [rad/s2],

determine the minimum feasible time Tmin for the coordinated joint motion. Draw the profiles of
the planned velocity and acceleration of the two joints (using radians and not degrees!).

Exercise 4

Assume that the robot in Fig. 1 mounts two optical encoders of the incremental type on the motor
axes of joint 2 and 3, respectively with N2 = 4000 and N3 = 2600 pulses per turn (after electronic
quadrature), while the reduction ratios of the corresponding transmission gears are nr2 = 40
and nr3 = 20. When the robot is in the shown configuration, an instantaneous displacement is
commanded to Point P in the upward vertical direction z0. What is the minimum displacement
∆z of Point P in this direction that can be measured by the encoders?

[180 minutes (3 hours); open books]
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Solution
September 19, 2024

Exercise 1

A possible assignment of DH frames for the Kawasaki RS010N robot is shown in Fig. 2, with Tab. 1
containing the corresponding constant parameters, as well as the values of the joint variables θ in
the configuration shown. In the figure, the xi axes are shown in blue, the yi axes in green, and the
zi axes in red. Off-plane axes are not indicated, but they complete as usual a right-handed frame.
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Figure 2: A possible assignment of DH frames for the Kawasaki RS010N robot.
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i αi ai di θi

1 π/2 100 430 0

2 0 650 0 π/2

3 π/2 0 0 0

4 −π/2 0 700 0

5 π/2 0 0 0

6 0 0 88 0

Table 1: DH parameters tor the frame assignment in Fig. 2 (units in [rad] or [mm]).

Exercise 2

For all three cases, we need to compute the 6× 6 geometric Jacobian of the robot which, in view
of the presence of a spherical wrist, takes the form

J(q) =

(
JL(q)

JA(q)

)
=

(
JL,P (qb) O

JA,b(qb) JA,w(q)

)
,

where we qb = (q1, q2, q3) is the vector of the first three (base) joints. Accordingly, qw = (q4, q5, q6)
will be the vector of the last three (wrist) joints.

[a] For the velocity of Point P, only the first three joints matter. Moreover, to compute vP one can
equivalently use the 3× 3 analytic Jacobian obtained by differentiation of the direct kinematics of
Point P, which coincides with the origin of frame 4 in the DH convention. Using the parameters
in Tab. 1, one has

pP,hom(q) =

(
pP (q)

1

)
= 0A1(q1) 1A2(q2) 2A3(q3) 3A4(q4)

(
0

1

)

= 0A1(q1) 1A2(q2) 2A3(q3)


0
0
d4
1

 =


c1(a1 + a2c2 + d4s23)
s1(a1 + a2c2 + d4s23)
d1 + a2s2 − d4c23

1

 .

Thus, we obtain

JL,P (qb) =
∂pP
∂qb

=

 −s1(a1 + a2c2 + d4s23) c1(d4c23 − a2s2) d4c1c23
c1(a1 + a2c2 + d4s23) s1(d4c23 − a2s2) d4s1c23

0 a2c2 + d4s23 d4s23

 . (1)

When evaluated using the numerical DH parameters (with length expressed in [m]) and in the
configuration shown in Fig. 2, we have

JL,P =

 0 −0.65 0
0.8 0 0
0 0.7 0.7

 .

The maximum velocity in norm of Point P is obtained when taking the velocities of joints 2 and 3 at
their limit value and with the same (positive or negative) sign, independently of the velocity of joint
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1 (which can be as well positive or negative in the solution). Taking into account the conversion
from [◦/s] to [rad/s], one has for example with all positive (and maximum) joint velocities

vP = JL,P

 q̇max,1

q̇max,2

q̇max,3

 = JL,P

 250 ◦/s
250 ◦/s
215 ◦/s

· π

180◦
=

 −2.8362
3.4907
5.6810

 [m/s] ⇒ ‖vP ‖ = 7.2459,

while flipping for instance the sign of the second joint velocity one obtains

vP = JL,P

 q̇max,1

−q̇max,2

q̇max,3

 =

 2.8362
3.4907
−0.4276

 [m/s] ⇒ ‖vP ‖ = 4.5179,

namely, a lower norm for the velocity of point P.

[b] The 3× 6 angular part JA of the geometric Jacobian is computed using the zi axes of the DH
frames, for i = 0, 1, . . . , 5:

z0 =

 0
0
1

 z1 = 0R1(q1)z0 . . . z5 = 0R1(q1) 1R2(q2) . . . 4R5(q5)z0,

where the rotation matrices are extracted from the DH homogeneous transformation matrices
i−1Ai, for i = 1, . . . , 5. We obtain

JA,b(qb) =
(
z0 z1 z2

)
=

 0 s1 s1
0 −c1 −c1
1 0 0


and

JA,w(q) =
(
z3 z4 z5

)
=

 c1s23 s1c4 − c1s4c23 s5(s1s4 + c1c4c23) + c5c1s23
s1s23 −c1c4 − s1s4c23 c5s1s23 − s5(c1s4 − c4s1c23)

−c23 −s23s4 s23c4s5 − c23c5

 .

Evaluating these matrices as before in the configuration shown in Fig. 2, we have

JA,b =

 0 0 0
0 −1 −1
1 0 0

 JA,w =

 1 0 1
0 −1 0
0 0 0

 .

As a result, when q̇b is chosen as in the solution used in [a] and q̇w = 0, one has

ω
[b]
6 = JA,b

 q̇max,1

q̇max,2

q̇max,3

 =

 0
−8.1158
4.3633

 [rad/s].

[c] Conversely, when q̇b = 0 and q̇w has its components at their maximum positive values (i.e.,
rotating counterclockwise around the joint axes zi of the wrist), one obtains

ω
[c]
6 = JA,w

 q̇max,4

q̇max,5

q̇max,6

 =

 18.5878
−6.6323

0

 [rad/s].
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Exercise 3

This trajectory planning problem is tackled first separately for each of the two joints. The rest-to-
rest minimum time problem under bounds on velocity and acceleration is solved using a trapezoidal
velocity profile (bang-coast-bang in acceleration), which may also collapse into a triangular velocity
profile (without the coast phase) if the required displacement L is too short with respect to the
given bounds (i.e., if L ≤ V 2

max/Amax). However, this is not the case here. Once expressed in
radians, the required displacements (from the lower to the upper limit of the motion range) are

L2 = Qmax,2 −Qmin,2 = (145◦ − (−105◦)) · π

180◦
= 4.36 rad

L3 = Qmax,3 −Qmin,3 = (150◦ − (−163◦)) · π

180◦
= 5.46 rad,

and the check for the existence of a coast phase with constant (maximum) cruising velocity, with
Vmax,2 = 4.36 and Vmax,3 = 3.75 [rad/s] (converted from the values in [◦/s] of the data sheet)

L2 = 4.36 > 3.46 =
V 2
max,2

Amax,2
L3 = 5.46 > 2.01 =

V 2
max,3

Amax,3

are satisfied in both cases. Therefore, the minimum time for the desired motion of the two joints
when considered separately are

Tmin,2 =
L2

Vmax,2
+
Vmax,2

Amax,2
= 1.79 s Tmin,3 =

L3

Vmax,3
+
Vmax,3

Amax,3
= 1.99 s,

with associated rising times Ts,2 = Vmax,2/Amax,2 = 0.79, Ts,3 = Vmax,3/Amax,3 = 0.54 [s].
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Figure 3: The coordinated minimum-time trajectory for the two joints 2 and 3.
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At this stage, since a coordinated joint motion is required, the minimum coordinated motion time
will be

Tmin = max{Tmin,2, Tmin,3} = 1.99 s,

and the fastest joint, namely joint 2, must be slowed down. While joint 3 will keep the same
trapezoidal profile computed independently, with cruise speed Vmax,3 = 3.75 rad/s, acceleration
Amax,3 = 7 rad/s2 and rising time Ts,3 = 0.53 s, the trajectory of joint 2 will be uniformly scaled
in time by a factor

k =
Tmin

Tmin,2
=

1.99

1.79
= 1.11 > 1,

thus specifying scaled rising time T2 > Ts,2, cruise speed V2 < Vmax,2 and acceleration A2 < Amax,2

as

T2 = k Ts,2 = 0.88 s V2 =
Vmax,2

k
= 3.92 rad/s A2 =

Amax.2

k2
= 4, 46 rad/s2.

The resulting coordinated motion trajectories of the two joints are shown in Fig. 3, together with
their trapezoidal velocity and bang-coast-bang acceleration profiles.

Exercise 4

The resolutions of the two encoders on the motor side are

rm2 =
2π

N2
= 157.08 · 10−5 rad rm3 =

2π

N3
= 241.66 · 10−5 rad,

while on the link side of the gears we have

r2 =
rm2

nr2
= 3.93 · 10−5 rad r3 =

rm3

nr3
= 12.08 · 10−5 rad.

The part of the Jacobian JL,P (qb) in eq. (1) that is involved in the assignment of a vertical velocity
to Point P is given by the 2 × 2 matrix made by the first and third rows (respectively, along the
x0 and z0 directions) and the second and third columns (corresponding to q̇2 and q̇3), namely

J̄P (qb) =

(
c1(d4c23 − a2s2) d4c1c23
a2c2 + d4s23 d4s23

)
.

Evaluating this matrix in the configuration shown in Fig. 1 gives

J̄P =

(
−0.64 0

0.7 0.7

)
.

Thus, a desired instantaneous displacement ∆pP =
(

0 ∆z
)T

m of Point P along the upward
vertical direction will be realized by the joint displacement

∆q̄ =

(
∆q2
∆q3

)
= J̄

−1
P

(
0

∆z

)
=

(
0

10∆z/7

)
[rad].

From this relation, it follows that the desired displacement ∆pP will not require any motion of
joint 2 (so, no motion will be measured instantaneously by the encoder at this joint). On the other
hand, the encoder at joint 3 will detect a Cartesian displacement of Point P along the z0 direction
as long as this is larger or equal than its resolution beyond the transmission gear, or

10∆z

7
≥ r3 ⇒ ∆z ≥ 0.7 · 12.08 · 10−5 m = 8.45 · 10−5 m = 0.0845 mm.

∗ ∗ ∗ ∗ ∗
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