Robotics 1 January 13, 2025 [students with midterm]

Exercise 1

For the PRR planar robot in Fig. 1, consider first the task vector r made by the position $p \in \mathbb{R}^2$ of the end-effector and by its angle $\phi \in \mathbb{R}$ with respect to the x_w axis. Compute the corresponding Jacobian $J_r(q)$ and find all its singularities. With the robot in a generic singular configuration q_s : a) provide the expression of all joint velocities \dot{q} that produce no task velocity \dot{r} ;

b) determine all task velocities \dot{r} that cannot be instantaneously realized.

Next, consider only the two-dimensional task vector r = p for the same robot and find all singularities of the corresponding Jacobian $J_p(q)$. When the robot is in a configuration q_s with all strictly positive joint values and such that the matrix $J_p(q_s)$ loses rank:

c) provide the expression of all forces $f \in \mathbb{R}^2$ applied to the end-effector that need no joint force/torque $\boldsymbol{\tau} \in \mathbb{R}^3$ to be balanced;

d) determine the τ that statically balances a force $\mathbf{f} = \begin{pmatrix} 3 & 1 \end{pmatrix}^T$ [N] applied to the end-effector.

Figure 1: A PRR planar robot with the last two links of length l_2 and $l_3 \neq l_2$.

Exercise 2

A cylindrical robot has the direct kinematics of its end-effector position expressed by

$$oldsymbol{p}(oldsymbol{q}) = \left(egin{array}{c} q_3 \cos q_2 \ q_3 \sin q_2 \ q_1 \end{array}
ight).$$

When the desired position is $\boldsymbol{p}_d = \begin{pmatrix} 1 & -1 & 3 \end{pmatrix}^T$ [m], provide the first few iterations of a Newton algorithm for the numerical solution of the inverse kinematics problem in the following two cases:

a) starting from the initial guess $\boldsymbol{q}_{a}^{[0]} = \begin{pmatrix} -2 & 0.7\pi & \sqrt{2} \end{pmatrix}^{T}$ [m,rad,m]; b) starting from the initial guess $\boldsymbol{q}_{b}^{[0]} = \begin{pmatrix} 2 & \pi/4 & \sqrt{2} \end{pmatrix}^{T}$ [m,rad,m].

In case of convergence, the algorithm should stop as soon as $\|\boldsymbol{e}^{[k]}\| = \|\boldsymbol{p}_d - \boldsymbol{p}(\boldsymbol{q}^{[k]})\| \le \epsilon = 0.1 \text{ mm.}$

Exercise 3

A 2R planar robot with link lengths $l_1 = 1.2$, $l_2 = 0.8$ [m] is at rest at t = 0 in the configuration $q_0 = 0$ (stretched along the x_0 axis). A pointwise target moves at constant speed v = 1.5 m/s on a straight line with an angle $\delta = 15^{\circ}$ from the \boldsymbol{x}_0 axis, being in $\boldsymbol{p}_0 = \begin{pmatrix} -2 & 1 \end{pmatrix}^T$ [m] at t = 0 and entering after in the robot workspace. Solve the following rendez-vous problem:

a) define a trajectory that will bring the robot end-effector on the target when the latter crosses the y_0 axis; the end-effector should have then the same velocity $v_t \in \mathbb{R}^2$ of the target;

b) provide the rendez-vous time $t_{rv} > 0$ and the expression of the command $\dot{q}(t) \in \mathbb{R}^2$, $t \in [0, t_{rv}]$. How would you modify the velocity command $\dot{q}(t)$ as a function of q(t) so as to reach the target at the rendez-vous position if the robot starts from a configuration close but different from q_0 ?

[180 minutes (3 hours); open books]