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Exercise 1

Table 1 contains the Denavit-Hartenberg parameters of a robot with three revolute joints.

i αi ai di θi

1 π/2 0 0 θ1

2 0 a2 > 0 0 θ2

3 0 a3 > 0 0 θ3

Table 1: Denavit-Hartenberg parameters of a 3R robot

Use the recursive algorithm based on moving frames to compute the kinetic energy of this robot,
making reasonable assumptions to simplify the inertial properties of the links, e.g., assume that
each link has a cylindric body with uniformly distributed mass and center of mass on the kinematic
axis of the link. Provide at the end the robot inertia matrix M(q) and determine a minimal linear
parametrization of the inertial term M(q)q̈.

Exercise 2

y0

x0

Figure 1: A 4R planar robot.

Consider the 4R planar robot in Fig. 1, having links with unit length. The primary task for the
end-effector is to point at a moving target in the plane (x0, y0). The available extra degrees of
freedom of the robot are used to keep the joints close to the middle of their ranges, which are
defined, using D-H variables, as

q1 ∈
[
−π

2
,
π

2

]
q2 ∈

[
0,
π

2

]
qi ∈

[
−π

4
,
π

4

]
, i = 3, 4. (1)

Define the primary task Jacobian J(q) and determine the joint velocity command q̇ ∈ R4 that
realizes at best the desired robot behavior. Provide the numerical value of q̇ when the robot is
at q = (0, π/2, 0,−π/4), while the target is being correctly pointed at and has an instantaneous
velocity ṗt = (−1,−1) [m/s]. How would you modify the joint velocity command if the target was
placed at pt = (0, 2.5) [m] and had the same previous velocity ṗt? Provide the new numerical
value of the command q̇ with your modified control strategy.
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Exercise 3

The dynamics of a robot with n elastic joints moving in the absence of gravity is described by the
2n second-order differential equations

M(q)q̈ + c(q, q̇) +K (q − θ) = 0 (2)

Bm θ̈ +K (θ − q) = u, (3)

where (2) are the n link equations and (3) are the n motor equations, with link positions q ∈ Rn
and motor positions θ ∈ Rn as generalized coordinates. K is the diagonal, positive definite stiffness
matrix of the joints, while Bm is the diagonal, positive definite inertia matrix of the motors.

For the input torque u ∈ Rn, consider the PD control law on the motor variables

u = KP (θd − θ)−KD θ̇, (4)

where KP and KD are diagonal and positive definite gain matrices, and θd ∈ Rn is a desired
constant motor position. Prove that

(q,θ, q̇, θ̇) = (θd,θd,0,0)

is the unique, globally asymptotically stable equilibrium state for the closed-loop system made by
eqs. (2) and (3) under the control law (4).

Exercise 4

The PR robot in Fig. 2 may be subject to a generic unknown fault uf1 on the force produced by
first actuator. Based on the symbolic terms of the dynamic model of this robot, design a scalar
residual function r1(t) such that r1(t) ≡ 0 in the absence of a fault of this actuator, while it evolves
otherwise as ṙ1(t) = k1 (uf1(t)− r1(t)), for a given k1 > 0. If the unknown fault consists in a
constant force uf1 = 2 N being subtracted to the commanded force u1 at the first joint starting
from the instant t0 = 0, what will be the evolution of r1(t) for t ≥ t0 and its value at steady state?

z0

m1

⊕

q2

q1

m2,Ic2
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u1

⊕

u2

g0

x0

x1

x2

Figure 2: A PR planar robot under gravity.

[240 minutes (4 hours); open books]
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Solution
June 12, 2024

Exercise 1

From the Denavit-Hartenberg table of parameters (Tab. 1), we prepare the vectors and matrices
needed in each step of the recursive algorithm with moving frames for computing the kinetic energy.

Rotation matrix

0R1(q1) =

 c1 0 s1
s1 0 −c1
0 1 0

 1R2(q2) =

 c2 −s2 0
s2 c2 0
0 0 1

 2R3(q3) =

 c3 −s3 0
s3 c3 0
0 0 1

 .

Position vector between origins in previous frame

0r01 =

 0
0
0

 1r12(q2) =

 a2c2
a2s2

0

 2r23(q3) =

 a3c3
a3s3

0

 .

Position vector between origins in moving frame

1r01 =

 0
0
0

 2r12 =

 a2
0
0

 3r23 =

 a3
0
0

 .

Based on the given assumptions on mass distribution of the links, we have also:

Position of link CoM in moving frame

1rc1 =

 0
dc1
0

 2rc2 =

 dc2 − a2
0
0

 3rc3 =

 dc3 − a3
0
0

 ,

being dci the distance from the origin Oi−1 to the center of mass (CoM) of link i along the xi axis.

Link inertia matrix in moving frame

1Ic1 =

 Ic1,x 0 0
0 Ic1,y 0
0 0 Ic1,x

 2Ic2 =

 Ic2,x 0 0
0 Ic2,z 0
0 0 Ic2,z

 3Ic3 =

 Ic3,x 0 0
0 Ic3,z 0
0 0 Ic3,z

 ,

where we used the symmetry of the cylindrical links with respect to the two minor axes that are
transversal to their major axis (which are, respectively, y1, x2 and x3).

With the above structures, the algorithm is initialized with 0ω0 = 0, 0v0 = 0 and yields:

Step 1

1ω1 =

 0
q̇1
0

 1v1 = 0 1vc1 = 0

Kinetic energy of link 1

T1 =
1

2
Ic1,y q̇

2
1 .
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Step 2

2ω2 =

 s2q̇1
c2q̇1
q̇2

 2v2 =

 0
a2q̇2
−a2c2q̇1

 2vc2 =

 0
dc2q̇2
−dc2c2q̇1


Kinetic energy of link 2

T2 =
1

2

(
Ic2,x s

2
2 + (Ic2,z +m2d

2
c2) c22

)
q̇21 +

1

2

(
Ic2,z +m2d

2
c2

)
q̇22 .

Step 3

3ω3 =

 s23q̇1
c23q̇1
q̇2 + q̇3

 3v3 =

 a2s3q̇2
a2c3q̇2 + a3 (q̇2 + q̇3)
− (a2c2 + a3c23) q̇1

 3vc3 =

 a2s3q̇2
a2c3q̇2 + dc3 (q̇2 + q̇3)
− (a2c2 + dc3c23) q̇1


Kinetic energy of link 3

T3 =
1

2

(
Ic3,x s

2
23 + Ic3,z c

2
23 +m3 (a2c2 + dc3c23)2

)
q̇21 +

1

2
m3a

2
2q̇

2
2

+
1

2

(
Ic3,z +m3d

2
c3

)
(q̇2 + q̇3)

2
+

1

2
(2m3a2dc3c3 q̇2 (q̇2 + q̇3)) .

Thus, the kinetic energy of the 3R robot is

T = T1 + T2 + T3 =
1

2
q̇TM(q)q̇.

In the expressions of the elements of the inertia matrix M(q), one can eliminate all appearances
of square roots of the sine functions by setting

s23 = 1− c23 s223 = 1− c223.

With these substitutions, one recognizes the presence of six independent dynamic coefficients ρi in
the inertia matrix:

M(q) =

 ρ1 + ρ2 c
2
2 + ρ3 c

2
23 + 2ρ5 c2c23 0 0

0 ρ4 + 2ρ5 c3 ρ6 + ρ5 c3
0 ρ6 + ρ5 c3 ρ6

 ,

where
ρ1 = Ic1,y + Ic2,x + Ic3,x

ρ2 = Ic2,z +m2d
2
c2 − Ic2,x +m3a

2
2

ρ3 = Ic3,z +m3d
2
c3 − Ic3,x

ρ4 = Ic2,z +m2d
2
c2 + Ic3,z +m3

(
a22 + d2c3

)
ρ5 = m3a2dc3

ρ6 = Ic3,z +m3d
2
c3.

Note that other parametrizations with the same number of coefficients can be defined, but the
minimum number of parameters (six in the present case) is unique.

4



As a result, the inertial terms in the dynamic model can be linearly parametrized by

ρ =
(
ρ1 ρ2 ρ3 ρ4 ρ5 ρ6

)T
as

M(q) q̈ = Y (q, q̈)ρ,

where the 3× 6 regressor matrix Y is

Y (q, q̈) =

 q̈1 c22 q̈1 c223 q̈1 0 2c2c23 q̈1 0

0 0 0 q̈2 c3 (2q̈2 + q̈3) q̈3

0 0 0 0 c2 q̈2 q̈2 + q̈3

 .

Exercise 2

The variables r ∈ Rm that are used to define a robot task are always functions of the configuration
q ∈ Rn, i.e., r = f(q). On the other hand, the desired behavior of the task variables (which needs
to be imposed by the control law) is usually expressed by an exogenous, time-varying signal rd(t)
(a constant rd for regulation tasks). However, the desired behavior of the primary task assigned to
the robot in Fig. 1, i.e., pointing with the end effector to a (moving) target, has the peculiarity of
depending also on the current robot configuration q(t), or rd(t, q(t)). This requires some caution
in the definition of the task control problem at a differential level.

The task assigned to the 4R planar robot (n = 4) involves the orientation angle α of the last link

α = fα(q) = q1 + q2 + q3 + q4,

as well as the position of the end effector

p =

(
px
py

)
=

(
c1 + c12 + c123 + c1234
s1 + s12 + s123 + s1234

)
= fp(q).

Accordingly, we have at the differential level

α̇ =
∂fα
∂q

q̇ =
(

1 1 1 1
)
q̇ = Jα q̇ (5)

and

ṗ =
∂fp
∂q

q̇ = Jp(q) q̇, (6)

with

Jp(q) =

(
− (s1 + s12 + s123 + s1234) − (s12 + s123 + s1234) − (s123 + s1234) −s1234
c1 + c12 + c123 + c1234 c12 + c123 + c1234 c123 + c1234 c1234

)
.

The two Jacobians Jα and Jp will be needed in the following.

With reference to Fig. 3, the pointing task has dimension m = 1 and the desired behavior for the
task variable r = α is expressed as

αd(t, q(t)) = atan2 {pty(t)− py(q(t)), ptx(t)− px(q(t))} ,

where pd(t) = (ptx(t), pty(t)) is the current position of the target. It is apparent that this scalar
function depends both on the target motion (which is the exogenous part) and on the robot
configuration q. We need then to define the differential mapping between q̇ and α̇d.
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Figure 3: The task variable α and its desired value αd at a given instant.

For this, remember that for a generic scalar function g(z)

d

dz
arctan g(z) =

1

1 + g2(z)

dg(z)

dz

and note that the two functions atan2{y, x} and arctan(y/x) behave in the same way at the
differential level. After some lengthy but straightforward computations, we obtain

α̇d =
(ṗty − ṗy)(ptx − px)− (ṗtx − ṗx)(pty − py)

(ptx − px)2 + (pty − py)2
.

This can be reorganized as

α̇d =

(
pty − py

(ptx − px)2 + (pty − py)2
− ptx − px

(ptx − px)2 + (pty − py)2

)(
ṗx − ṗtx
ṗy − ṗty

)
= Jαd

(q) (ṗ− ṗt) = Jαd
(q)Jp(q)q̇ − Jαd

(q)ṗt,

(7)

where we used the Jacobian in (6). Note that in order to evaluate the 1×2 Jacobian Jαd
, we need

to know in general also the current position pt of the target.

The task equation corresponding to the desired condition (i.e., with the robot end effector always
pointing at the target) is then α(t) = αd(t), for all t ≥ 0. In the nominal case, this equality holds
true at the initial time t = 0 and thus it can be replaced by the identity α̇(t) = α̇d(t) at the
differential level or, using also the Jacobian in (5),

Jα q̇ = Jαd
(q)Jp(q)q̇ − Jαd

(q) ṗt,

which can be reorganized as

Jαd
(q) ṗt = (Jαd

(q)Jp(q)− Jα) q̇ = Jr(q)q̇ (8)

with the 1× 4 task matrix Jr. This relation also shows that if the target is not moving (ṗt = 0),
any robot velocity q̇ that keeps task satisfaction would have to be in the null space of Jr (and not
necessarily also in the null space of Jp, i.e., without a change of the end effector position!).

The minimum norm solution to (8) is given by

q̇0 = J#
r (q)Jαd

(q) ṗt,
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whereas the simultaneous minimization of an objective function H(q) leads to the PG method

q̇H = J#
r (q)Jαd

(q) ṗt −
(
I − J#

r (q)Jr(q)
)
β∇H(q)

= −β∇H(q) + J#
r (q)

(
Jαd

(q) ṗt + Jr(q)β∇H(q)
)
,

(9)

for some stepsize β > 0 in the direction of the negative gradient of H.

When there is a task error er = αd − α 6= 0, a feedback action should be incorporated in the joint
velocity command (9) as

q̇ = J#
r (q) (Jαd

(q) ṗt − ker)−
(
I − J#

r (q)Jr(q)
)
β∇H(q), (10)

for some scalar control gain k > 0. When the matrix Jr has full rank, i.e., when its single row
does not vanish, then Jr J

#
r = 1 and using (10) it follows that

ėr = α̇d − α̇ = Jαd
(q)Jp(q)q̇ − Jαd

(q)ṗt − Jαq̇ = Jr(q)q̇ − Jαd
(q)ṗt

= Jr(q)
(
J#
r (q) (Jαd

(q)ṗt − ker)−
(
I − J#

r (q)Jr(q)
)
β∇H(q)

)
− Jαd

(q)ṗt

= Jαd
(q)ṗt − ker − Jαd

(q)ṗt

= −ker,

showing exponential recovery of the task error.

In order to keep the joints close to the middle values q̄i = (qm,i+qM,i)/2 of their ranges [qm,i, qM,i],
for i = 1, . . . , 4, the following objective function (in our case, with N = 4)

H(q) =
1

2N

N∑
i=1

(
qi − q̄i

qM,i − qm,i

)2

will be minimized in the null space of the primary task. The gradient of H is

∇H(q) =

(
∂H

∂q

)T
=

1

N


q1 − q̄1

(qM,1 − qm,1)2

...
qN − q̄N

(qM,N − qm,N )2

 .

With the robot in the configuration q = (0, π/2, 0,−π/4), we can evaluate a number of terms
useful for the control expressions (9) or (10):

p =

(
1.7071
2.7071

)
Jp =

(
−2.7071 −2.7071 −1.7071 −0.7071

1.7071 0.7071 0.7071 0.7071

)
α = π/4.

Moreover, using the given joint limits we have

H = 0.0625 ∇H =


0

0.0796
0

−0.0796

 .

Consider first the nominal initial condition in which the end effector is correctly pointing at the
target (see Fig. 4). In this case, the actual position pt of the target is not specified in the problem
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Figure 4: Nominal initial condition for the task, with the robot end effector pointing at the target.
In addition, the target moves along the joining direction with ṗt = (−1,−1) [m/s].

and, as already mentioned, we cannot evaluate the Jacobian Jαd
nor the task matrix Jr. However,

we are in a very special situation since the velocity ṗt will keep the target along the direction joining
it to the robot end effector. Analytically, the target position is on the half-line

pt = p+ d

(
cosα
sinα

)
=

(
1.7071
2.7071

)
+ d

(
0.7071
0.7071

)
d > 0,

at a (unknown) distance d from the robot end effector. Since sinα = cosα = 0.7071 and the
velocity of the target is ṗt = (−1,−1) [m/s], we have from (7)

Jαd
ṗt =

(
sinα

d
−cosα

d

)(
−1

−1

)
= 0.

Moreover

Jr = Jαd
Jp − Jα =

0.7071

d

(
−4.4142 −3.4142 −2.4142 −1.4142

)
−
(

1 1 1 1
)

=
1

d

(
−(3.2113 + d) −(2.4142 + d) −(1.7071 + d) −(1 + d)

)
.

Without pursuing further the numerical computation, note that since Jr is just a row, its pseudo-
inverse is J#

r = JTr /‖J
T
r ‖2. The solution (9) takes then the form

q̇H = −β
(
I − 1∥∥JTr ∥∥2 JTr Jr

)
∇H.

The distance d > 0, which is embedded in the product J#
r Jr, plays a limited role in the solution.

On the other hand, the larger is β > 0, the more the joints will try to get close to their midrange.

In the second situation, i.e., when there is an initial pointing error er 6= 0, the target position is
given and thus all numerical data are available for evaluating the control law (10). In fact, we have

αd = −3.0209 er = −3.8063 [rad]
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and
Jr =

(
0.1751 −0.4022 −0.4722 −0.5423

)
.

Choosing for instance k = 0.2 and β = 20 in eq. (10) yields finally

q̇H =
(

0.3681 −2.4370 −0.9927 0.4516
)T

[rad/s].

In the chosen configuration, the second joint is at its upper limit, i,e., q2 = qM,2 = π/2, while the
fourth joint is at its lower limit, i.e., q4 = qm,4 = −π/4; therefore, in order to remain within the
feasible range, the velocity of the second and fourth joints should be respectively q̇2 ≤ 0 (remain
at rest, or rotate clockwise) and q̇4 ≥ 0 (remain at rest, or rotate counterclockwise), which is what
happens with the solution q̇H . Note however that this is obtained by fine tuning the gain k and
(especially) the stepsize β in the control law (10), since the joint range limits are not considered
as hard constraints in the problem but only within the (soft) objective H.

Exercise 3

Consider the closed-loop equations (2), (3) with the control law (4)

M(q)q̈ + S(q, q̇)q̇ +K (q − θ) = 0 (11)

Bm θ̈ +K (θ − q) = KP (θd − θ)−KD θ̇, (12)

where we replaced c(q, q̇) = S(q, q̇)q̇ using any factorization of the Coriolis and centrifugal terms.
It is easy to see that x = (q,θ, q̇, θ̇) = (θd,θd,0,0) = xe is the unique equilibrium state of such a
controlled robot with elastic joints (in the absence of gravity).

To show that this is a globally asymptotically stable equilibrium, define the energy-based Lyapunov
candidate

V =
1

2
q̇TM(q)q̇ +

1

2
θ̇
T
Bm θ̇ +

1

2
(q − θ)

T
K (q − θ) +

1

2
(θd − θ)

T
KP (θd − θ) ,

which contains the kinetic energy of the links and the motors, the potential energy due to the
elasticity of the joints (quadratic in the joint deformation δ = q − θ) , and a virtual potential
energy introduced by the control (in terms of the motor position error, with KP > 0). For this
function, it is V ≥ 0 for all x and V = 0 if and only if x = xe.

The time derivative of V , evaluated along the trajectories of the closed-loop system, is

V̇ = q̇TM(q)q̈ +
1

2
q̇TṀ(q)q̇ + θ̇

T
Bm θ̈ + (q̇ − θ̇)TK (q − θ)− θ̇

T
KP (θd − θ)

= −q̇T (S(q, q̇)q̇ +K (q − θ)) +
1

2
q̇TṀ(q)q̇ + θ̇

T
(
K (q − θ) +KP (θd − θ)−KD θ̇

)
+ q̇TK (q − θ)− θ̇

T
K (q − θ)− θ̇

T
KP (θd − θ)− θ̇

T
KD θ̇

= −θ̇
T
KD θ̇ ≤ 0,

where we used the identity

q̇T
(
Ṁ(q)− 2S(q, q̇)

)
q̇ = 0, for all q, q̇.

Thus, the closed-loop system is certainly stable.

To conclude about asymptotic stability, we use LaSalle theorem. Since

V̇ = 0 ⇐⇒ θ̇ = 0,
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we analyze the closed-loop equations for θ̇ ≡ 0. From eq. (12), since θ̈ must also vanish in order
for any set contained in S = {x : V̇ = 0} to be invariant, we have

K (θ − q) = KP (θd − θ) = constant. (13)

Being θ constant itself, this equation implies that also q must remain constant. Therefore, since q̇
and q̈ must also vanish, from eq. (11) it follows thatK(q−θ) = 0, and then q = θ. Substituting this
in (13) leads to θ = θd (thus, the constant therein is necessarily zero). Summarizing, q = θ = θd
and the maximal set of invariant states contained in S reduces to the singleton xe = (θd,θd,0,0),
which is then a global, asymptotically stable equilibrium. This concludes the proof.

Exercise 4

The method of residuals for fault detection is based on terms appearing in the robot dynamics.
We need then to derive first the dynamic model of the PR robot. Using the variables q = (q1, q2)
defined in Fig. 2, we have in particular

pc2 =

 dc2c2
0

q1 − dc2s2

 ⇒ vc2 =

 −dc2s2 q̇2
0

q̇1 − dc2c2 q̇2

 ⇒ ‖vc2‖2 = q̇21 + d2c2 q̇
2
2 − 2 dc2c2 q̇1q̇2.

Therefore, the kinetic and potential energies of the two links are

T1 =
1

2
m1q̇

2
1 T2 =

1

2
Ic2 q̇

2
2 +

1

2
m2

(
q̇21 + d2c2 q̇

2
2 − 2 dc2c2 q̇1q̇2

)
⇒ T = T1 + T2

and
U1 = −m1g0 q1 U2 = −m2g0 (q1 − dc2s2) ⇒ U = U1 + U2.

with g0 = 9.81 m/s2.

The dynamic model of the robot, assuming the possible presence of a fault uf1(t) on the first
actuator, is

M(q)q̈ + c(q, q̇) + g(q) = u− uf . (14)

with inertia matrix

M(q) =

(
m1 +m2 −m2dc2 c2

−m2dc2 c2 Ic2 +m2d
2
c2

)
,

velocity terms (as computed from Christoffel symbols)

c(q, q̇) =

(
m2dc2s2 q̇

2
2

0

)
,

gravity vector

g(q) =
∂U

∂q
= g0

(
−(m1 +m2)

m2dc2c2

)
,

and fault vector

uf =

(
uf1

0

)
.

The expression of the scalar residual for a fault on the first actuator1 is

r1(t) = k

(∫ t

0

(u1 − α1(q, q̇)− r1) dτ − p1(q, q̇)

)
r1(0) = 0, (15)

1It is assumed that the robot starts at rest at t = 0, i.e., q̇(0) = 0.
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where k > 0, u1 is the commanded force for the actuator at the first prismatic joint, the function
α1 is defined as

α1(q, q̇) = −1

2
q̇T

∂M

∂q1
q̇ + g1(q),

and p1 = mT
1 (q)q̇ is the first component of the generalized momentum p = M(q)q̇, being m1 the

first column of the inertia matrix. Since q1 never appears in the inertia matrix, one has simply

α1 = −(m1 +m2) g0,

while
p1 = (m1 +m2) q̇1 −m2dc2 c2 q̇2.

Substituting these expressions in (15) gives finally

r1(t) = k1

(∫ t

0

(u1 + (m1 +m2) g0 − r1) dτ +m2dc2 c2 q̇2 − (m1 +m2) q̇1

)
r1(0) = 0. (16)

The theory says that the evolution of r1(t) is governed by ṙ1 = k1 (uf1 − r1), allowing detection
of the fault, whenever present, through the response of a first-order filter with time constant 1/k1
excited by the unknown input signal uf1. One can also verify this property by differentiating (16)
and using the model terms in (14). In fact

ṙ1 = k1
(
(u1 + (m1 +m2) g0 − r1) +m2dc2 c2 q̈2 −m2dc2 s2 q̇

2
2 − (m1 +m2) q̈1

)
= k1 ((u1 + (m1 +m2) g0 − r1)− (u1 − uf1 + (m1 +m2) g0))

= k1 (uf1 − r1) .

If the fault is uf1(t) = 2, for t ≥ 0, the solution trajectory r1(t) and its steady-state value are

r1(t) = 2(1− exp(−k1t)) ⇒ r1,ss = lim
t→∞

r1(t) = 2.

∗ ∗ ∗ ∗ ∗
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