
Robotics 2

July 8, 2024

Exercise 1

Consider the robot in Fig. 1 with n = 3 joints, the first one prismatic and the other two revolute.
Each link has uniformly distributed mass, center of mass on its major physical axis, and a diagonal
barycentric inertia matrix. Assume that friction at the joints can be neglected. The robot is
commanded at the joint level by a generalized vector of forces/torques τ ∈ R3.

a) Derive the dynamic model of the robot in the Lagrangian form M(q)q̈ + c(q.q̇) + g(q) = τ .

b) Find a linear parametrization Y (q, q̇, q̈)a = τ of the robot dynamics in terms of a vector
a ∈ Rp of dynamic coefficients and of a 3× p regressor matrix Y . Discuss the minimality of p.

c) Determine which of the 10n = 30 standard dynamic parameters of the links are irrelevant for
the describing the motion of the robot.
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Figure 1: A PRR robot with its coordinates q = (q1 q2 q3)T and kinematic/dynamic parameters.

Exercise 2

The 2R planar robot in Fig. 2 has equal links of length l and is commanded by the joint acceleration
q̈ ∈ R2. The robot end effector has to perform a one-dimensional trajectory task rd(t) ∈ R specified
only along the x-direction. In a given robot state (q, q̇), a desired task acceleration r̈d is assigned.
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Figure 2: A 2R planar robot in a one-dimensional task.
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Provide in symbolic form the command q̈ that executes the task while minimizing the cost

H =
1

2
(q̈ − q̈0)

T
(q̈ − q̈0) , q̈0 = −Kv q̇,

for a diagonal matrix Kv > 0. Evaluate then numerically the solution when the robot is in the
configuration q = (π/4,−π/2) [rad] with joint velocity q̇ = (1,−1) [rad/s], the link length is
l = 1 m, the task acceleration is r̈d = 1 m/s2, and Kv = diag {2, 2} [s−1]. How would you modify
the acceleration command if there was a task error in position and/or velocity?

Exercise 3

Figure 3 shows a mechanical system made of two masses B and M connected by a pulley and a
damped elastic spring, viscous friction on the motion of the individual masses, an input force τ
acting on the first mass, and gravity acting on the second mass only. The zero of the two position
variables θ and q is associated to an undeformed spring. The spring has stiffness K > 0 and its
elastic potential energy is quadratic in the deformation q − θ.
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Figure 3: Two masses connected by a pulley and a damped elastic spring under gravity.

a) Derive the dynamic model of this system, including all non-conservative terms due to viscous
friction (with coefficients Fθ > 0 and Fq > 0, respectively) affecting the motion of the two
masses and damping (with coefficient D ≥ 0) on the time-varying deformation of the spring.

b) Provide the simplest feedback law that is able to asymptotically stabilize the position of the
mass M to a constant desired height qd. Prove the result using any preferred analysis method
(linearization by Taylor expansion, Lyapunov/LaSalle, etc.).

c) Set now D = 0. Solve the inverse dynamics problem for a desired, sufficiently smooth trajectory
qd(t). Provide the explicit expression of τd(t) as a function of qd(t) and its (higher order) time
derivatives only.

Exercise 4

Suppose that a 2R planar robot that is moving in a vertical plane has only one actuator at the
first joint providing a torque τ . Find the expression of all forced equilibria (q̄,0) associated to a
generic constant input torque τ̄ . Are you able to find a state feedback control law τ = f(q̄, q, q̇)
that asymptotically stabilizes one of these equilibria, at least locally?

[240 minutes (4 hours); open books]
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Solution
July 8, 2024

Exercise 1

The kinetic energies of the first two links are easy to compute:

T1 =
1

2
m1q̇

2
1 T2 =

1

2
m2q̇

2
1 +

1

2
Ic2,yy q̇

2
1 .

For the third link, one can use the moving frame recursive algorithm for obtaining 3vc3 and 3ω3,
or use the direct kinematics of the robot for computing the position pc3(q) of the center of mass,
and then differentiating it, as well as the orientation R3(q) of the last frame, extracting then the
angular velocity from its derivative. In any event, one should attach frames to the robot arm
according to the Denavit-Hartenberg (DH) convention, as done in Fig. 4. Note that the last frame
has been placed conveniently at the center of mass of the third link: this is reflected in the D-H
parameter a3 = dc3.

m2,
I2

q1

q2

q3

g0

m1
m3,
I3

dc2
dc3

l2

x0

y0

z0

x1

z1

z2
z3

x3
x2

𝜃!𝑑!𝑎!𝛼!𝑖
0𝑞"0−𝜋 2⁄1

𝑞#𝑙#0𝜋 2⁄2

	𝑞$0𝑑%$03

Figure 4: DH frames and associated table of parameters for the PRR robot of Fig. 1.

Following the second approach, we compute via the DH direct kinematics

pc3 =

 dc3c2c3
l2 + dc3s3

q1 − dc3s2c3

 ,

so that its velocity in the absolute (zero) frame and in the local (third) DH frame are

vc3 = ṗc3 =

 −dc3 (s2c3 q̇2 + c3s3 q̇3)
dc3c3 q̇3

q̇1 + dc3 (s2s3 q̇3 − c2c3 q̇2)

 ⇒ 3vc3 = 0RT
3(q)vc3 =

 −s2c3 q̇1

s2s3 q̇1 + dc3 q̇3

c2 q̇1 − dc3c3 q̇2

 .

Similarly, using the relationship
S(ω3) = 0Ṙ3(q) 0RT

3(q),
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the angular velocity of the third link is

ω3 =

 −S23(q, q̇)
S13(q, q̇)
−S12(q, q̇)

 =

 s2 q̇3

q̇2

c2 q̇3

 ⇒ 3ω3 = 0RT
3(q)ω3 =

 s3 q̇2

c3 q̇2

q̇3

 .

Thus

T3 =
1

2
m3

∥∥3vc3
∥∥2

+
1

2
3ωT3

3I3
3ω3

=
1

2
m3

(
(c2 q̇1 − dc3c3 q̇2)2 + (s2s3 q̇1 − dc3 q̇3)2 + s2

2c
2
3 q̇

2
1

)
+

1

2

(
(Ic3,xxs

2
3 + Ic3,yyc

2
3) q̇2

2 + Ic3,zz q̇
2
3

)
.

After substituting s2
3 = 1−c23, the inertia matrix of the robot is found from the total kinetic energy

T = T1 + T2 + T3 =
1

2
q̇TM(q)q̇,

as

M(q) =

 m1 +m2 +m3 −m3dc3 c2c3 m3dc3 s2s3

−m3dc3 c2c3 Ic2,yy + Ic3,xx +
(
Ic3,yy − Ic3,xx +m3d

2
c3

)
c23 0

m3dc3 s2s3 0 Ic3,zz +m3d
2
c3

 .

Introducing the following p = 5 dynamic coefficients

a =
(
a1 a2 a3 a4 a5

)T
a1 = m1 +m2 +m3

a2 = Ic2,yy + Ic3,xx

a3 = Ic3,yy − Ic3,xx +m3d
2
c3

a4 = m3dc3

a5 = Ic3,zz +m3d
2
c3,

(1)

the inertia matrix is rewritten more compactly as

M(q) =

 a1 −a4 c2c3 a4 s2s3

−a4 c2c3 a2 + a3 c
2
3 0

a4 s2s3 0 a5

 =
(
M1(q) M2(q) M3(q)

)
.

Using Christoffel’s symbols, the Coriolis and centrifugal terms are computed as

c(q, q̇) =

 a4

(
s2c3 (q̇2

2 + q̇2
3) + 2 c2s3 q̇2q̇3

)
−2a3 s3c3 q̇2q̇3

a3 s3c3 q̇
2
2

 .

Finally, the potential energy of the three links due to gravity is U = U1 + U2 + U3, with

U1 = m1g0 (q1 − dc1) U2 = m2g0 q1 U3 = m3g0 (q1 − dc3s2c3) .

Thus

g(q) =

(
∂U

∂q

)T
=

 g0 (m1 +m2 +m3)

−m3dc3g0 c2c3

m3dc3g0 s2s3

 =

 a1g0

−a4g0 c2c3

a4g0 s2s3

 , (2)
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where g0 = 9.81 m/s2 is assumed to be known (this allows to use in (2) the previously introduced
coefficients a1 and a4).

The complete dynamic model is

M(q)q̈ + c(q, q̇) + g(q) = Y (q.q̇, q̈)a = τ ,

with the 3× 5 regressor matrix Y of the linear parametrization given by

Y =

 q̈1 + g0 0 0 s2c3 (q̇2
2 + q̇2

3) + 2c2s3 q̇2q̇3 − c2c3 q̈2 + s2s3 q̈3 0

0 q̈2 c3 q̈2 − 2s3c3 q̇2q̇3 −(q̈1 + g0) c2c3 0

0 0 s3c3 q̇
2
2 (q̈1 + g0) s2s3 q̈3


(3)

and the dynamic coefficients a ∈ R5 defined in (1).

Summarizing, out of the 3 × 10 = 30 standard dynamic parameters of the three robot links, half
of them (15) has been removed from the beginning because of the simplifying assumptions made
(center of mass on the kinematic/physical link axis, diagonal barycentric inertia matrix); other 7
parameters never appear, and play thus no role in the robot dynamics; the remaining 8 dynamic
parameters appear in suitable combinations, generating the 5 dynamic coefficients in (1) — note
that a4 = m3dc3 is both a standard dynamic parameter and a dynamic coefficient.

Exercise 2

The one-dimensional task kinematics of the 2R planar robot is

r = px(q) = l1 cos q1 + l2 cos(q1 + q2).

Therefore, we have

ṙ =
∂px
∂q

q̇ = Jr(q)q̇ =
(
− (l1 sin q1 + l2 sin(q1 + q2)) −l2 sin(q1 + q2)

)
q̇,

with the 1× 2 task Jacobian matrix Jr, and

r̈ = Jr(q)q̈ +J̇r(q)q̇ = Jr(q)q̈ + h(q, q̇)

where

h(q, q̇) =
(
− (l1 cos q1q̇1 + l2 cos(q1 + q2)(q̇1 + q̇2)) −l2 cos(q1 + q2)(q̇1 + q̇2)

)
q̇

= −
(
l1 cos q1 q̇

2
1 + l2 cos(q1 + q2)(q̇1 + q̇2)2

)
.

Note that the y-component of the end-effector position is not assigned by the task and its acceler-
ation can take any value (this is why the 2R planar robot is redundant with respect to the given
one-dimensional task).

The joint acceleration command q̈ that realizes the desired task r̈d (out of singularities, i.e., where
Jr(q) does not vanish) while minimizing instantaneously the complete quadratic objective H,
where q̈0 = −Kvq̇ is the preferred joint acceleration, is given by

q̈ = J#
r (q) (r̈d − h(q, q̇))−

(
I − J#

r (q)Jr(q)
)
Kvq̇

= −Kvq̇ + J#
r (q) (r̈d − h(q, q̇) + Jr(q)Kvq̇) ,

(4)

with J#
r (q) = JTr (q)(Jr(q)JTr (q))−1 (if Jr(q) 6= 0T ). Substituting the numerical values of the

problem in (4) gives

q̈ =

(
−2

2.4142

)
[rad/s2]. (5)
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Note that the two components of the joint acceleration both oppose their respective velocity (i.e.,
q̈iq̇i < 0, for i = 1, 2), which confirms that the damping action specified by q̈0 is being pursued.
On the other hand, with the acceleration (5) produced in the given state (q, q̇), the resulting
acceleration of the end-effector is

p̈ =

(
p̈x
p̈y

)
=

(
1

−1.8284

)
[m/s2]

showing that p̈x = 1 = r̈d has been correctly realized (while p̈y 6= 0 is just a result of the chosen
redundancy resolution scheme).

In the presence of a task error, the command (4) is modified by adding a PD action to the desired
task acceleration,

q̈ = −Kvq̇ + J#
r (q) (r̈d +KD(ṙd − Jr(q)q̇) +KP (rd − px(q))− h(q, q̇) + Jr(q)Kvq̇) , (6)

so as to bring the task error back to zero at an exponential rate governed by the choice of the two
gains KP > 0 and KD > 0.

Exercise 3

The dynamic model of the system in Fig. 3 is given by the two second-order differential equations
(one for each mass)

B θ̈ +K (θ − q) +D (θ̇ − q̇) + Fθ θ̇ = τ (7)

M q̈ +K (q − θ)−Mg0 +D (q̇ − θ̇) + Fq q̇ = 0, (8)

which can be easily derived either from an energy-based Lagrangian approach with

TB =
1

2
Bθ̇2 TM =

1

2
Mq̇2 Ug = −Mg0q Ue =

1

2
K (θ̇ − q̇)2,

including all non-conservative terms, or simply by the balance of forces acting on the two masses in
a Newton approach. Note that the dynamics (7) is linear, whereas eq. (8) is affine since it contains
the offset constant term −Mg0 due to gravity.

Under the action of a constant force τ̄ , any forced equilibrium configuration (θ̄, q̄) for eqs. (7), (8)
should satisfy

K (θ̄ − q̄) = τ̄ K (θ̄ − q̄)−Mg0 = 0,

and thus
τ̄ = −Mg0 θ̄ = q̄ −K−1Mg0. (9)

With the above in mind, for the regulation problem consider the simplest linear feedback law with
constant feedforward

τ = τd +KP (θd − θ) KP > 0, (10)

where
τd = −Mg0 θd = qd −K−1Mg0 (11)

satisfy the conditions (9) for achieving an equilibrium; θd is the required position of mass B when
mass M is in equilibrium at qd. Note that no derivative term is present in (10), as customary
instead in a PD control law: the presence of various sources of dissipation in the system (viscous
friction with coefficients Fθ and Fq, damping D on the elastic spring) makes this additional control
action no longer needed for stabilization purposes.
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The closed-loop equations (7), (8) with the control law (10) are

B θ̈ +K (θ − q) +D (θ̇ − q̇) + Fθ θ̇ = −Mg0 +KP (θd − θ) (12)

M q̈ +K (q − θ)−Mg0 +D (q̇ − θ̇) + Fq q̇ = 0. (13)

At steady state, θ̇ = θ̈ = q̇ = q̈ = 0, it is

K (θ̄ − q̄) = −Mg0 +KP (θd − θ̄) K (q̄ − θ̄)−Mg0 = 0 (14)

which imply KP (θd− θ̄) = 0, so that (θ̄, q̄) = (θd, qd) = (qd−K−1Mg0, qd) is the unique equilibrium
configuration.

To verify the asymptotic stability of the closed-loop equilibrium, we present next two alternative
methods: the first is a global approach based on Lyapunov analysis, completed by the use of
LaSalle theorem as done during the course; the second analyzes the linearized version of the system
dynamics, obtained by a first-order Taylor expansion around the desired closed-loop equilibrium
point, and has in general only a local validity.1

1. Lyapunov analysis. Define the following energy-based function

V =
1

2
B θ̇2 +

1

2
M q̇2 +

1

2
K (θ − q)2 −Mg0 q +

1

2
KP (θd − θ)2 −Mg0 (θd − θ) , (15)

which contains the kinetic energy of the two masses, the potential energy of the elastic spring,
the potential energy due to gravity (acting only on mass M), together with a virtual potential
energy introduced by control (in terms of the position error of the mass B, with KP > 0), and an
additional term that is linear in the position error. The addition of this last term guarantees that
V ≥ 0 for all states x = (θ, q, θ̇, q̇) ∈ R4 and V = 0 if and only if x = xe = (θd, qd, 0, 0), namely
the desired equilibrium specified in (14), so that (15) is a Lyapunov candidate. On one hand, V is
quadratic and positive definite with respect to the velocities θ̇ and q̇. On the other hand, consider
the remaining terms of V collected in the configuration-dependent function

P (θ, q) = V |θ̇=q̇=0 =
1

2
K (θ − q)2

+
1

2
KP (θd − θ)2 −Mg0 (θd + q − θ) .

It is easy to see that P is a convex function with global minimum at (θd, qd): in fact, its gradient
is

∇P =

(
∇θP
∇qP

)
=

(
K (θ − q)−KP (θd − θ) +Mg0

K (q − θ)−Mg0

)
and the stationarity condition ∇P = 0 holds if and only if (θ, q) = (θd, qd) in agreement with (14);
moreover, being the Hessian of P

∇2P =

(
∇2
θθP ∇2

θqP

∇2
qθP ∇2

qqP

)
=

(
K +KP −K
−K K

)
> 0,

the desired configuration is a minimum for P . As a result, V is a valid Lyapunov candidate.

The time derivative of (15) evaluated along the trajectories of the closed-loop system is

V̇ = Bθ̈ θ̇ +Mq̈ q̇ +K (q − θ) (q̇ − θ̇)−Mg0 (q̇ − θ̇)−KP (θd − θ) θ̇

=
(
K (q − θ) +D (q̇ − θ̇)− Fθ θ̇ −Mg0 +KP (θd − θ)

)
θ̇

+
(
K (θ − q) +Mg0 +D (θ̇ − q̇)− Fq q̇

)
q̇

+K (q − θ) (q̇ − θ̇)−Mg0 (q̇ − θ̇)−KP (θd − θ) θ̇

= −D (θ̇ − q̇)2 − Fθ θ̇2 − Fq q̇2 ≤ 0.

1This method should be part of the background knowledge of any student exposed to linear dynamical systems.
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Thus, the closed-loop system is certainly stable. To conclude about asymptotic stability, we use
LaSalle theorem. Since

V̇ = 0 ⇐⇒ θ̇ = q̇ = 0,

we analyze the closed-loop eqs. (12) and (13) under this condition:

B θ̈ +K (θ − q) = −Mg0 +KP (θd − θ)
M q̈ +K (q − θ)−Mg0 = 0.

Since for any set of states contained in S = {x : V̇ = 0} to be invariant both θ̈ and q̈ must also
vanish, we have

K (θ − q) = −Mg0 +KP (θd − θ)
K (q − θ)−Mg0 = 0.

As shown in (14), these equations have (θ, q) = (θd, qd) as the only solution. Thus, the maximal
set of invariant states contained in S reduces to the singleton xe = (θd, qd, 0, 0), which is then a
global, asymptotically stable equilibrium. This concludes the proof.

It should be noted that a control law of the form

τ = −Mg0 +KP (qd − q) KP > 0, (16)

similar to eq. (10) and maybe more natural at first sight, produces the same desired equilibrium
point. However, showing asymptotic stability with a Lyapunov argument is quite difficult —
either when trying to define a correct candidate function V ≥ 0, with V = 0 only at the desired
equilibrium, or in proving that V̇ ≤ 0 is obtained. Moreover, a restriction to the maximum gain in
the control law (16) would apply, while a global result would be hard if not impossible to obtain.
The reason for this behavior will become clearer when pursuing the alternative approach.

2. Analysis by local approximate linearization. A simpler and systematic approach consists
in linearizing the dynamic equations (7), (8) around the desired equilibrium point xd = (θd, qd, 0, 0).
In this case, the approximate linearization procedure by Taylor expansion boils down to simply
removing the constant offset term −Mg0 due to gravity. Furthermore, one can apply Laplace
transforms to the linearized equations and then conveniently use a SISO transfer function for
describing the process to be controlled.

Let ∆x = x − xd = (θ − θd, q − qd, θ̇, q̇) = (∆θ,∆q,∆θ̇,∆q̇) and ∆τ = τ − τd = τ + Mg0. Then,
replacing in eqs. (7), (8)

θ = θd + ∆θ q = qd + ∆q θ̇ = ∆θ̇ q̇ = ∆q̇ τ = τd + ∆τ = −Mg0 + ∆τ,

as well as θ̈ = ∆θ̈ and q̈ = ∆q̈, yields

B∆θ̈ +K (∆θ −∆q) +D (∆θ̇ −∆q̇) + Fθ ∆θ̇ = ∆τ

M ∆q̈ +K (∆q −∆θ)−Mg0 +D (∆q̇ −∆θ̇) + Fq ∆q̇ = 0,

where the identity K(θd− qd) +Mg0 = 0 coming from (11) has been used. In the Laplace domain,
we obtain (

Bs2 + (D + Fθ)s+K
)

∆θ(s)− (Ds+K) ∆q(s) = ∆τ(s)(
Ms2 + (D + Fq)s+K

)
∆q(s)− (Ds+K) ∆θ(s) = 0.
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Thus, after some algebraic manipulation, the transfer function from ∆τ to ∆q is

Pq(s) =
∆q(s)

∆τ(s)
=

Ds+K

sden3(s)
, (17)

with the third-order polynomial in the denominator

den3(s) = BMs3 +((D+Fθ)M + (D+Fq)B) s2 +((B+M)K + (Fθ+Fq)D + FθFq) s+(Fθ+Fq)K.

On the other hand, the transfer function from ∆τ to ∆θ is

Pθ(s) =
∆θ(s)

∆τ(s)
=

∆θ(s)

∆q(s)
Pq(s) =

Ms2 + (D + Fq)s+K

sden3(s)
. (18)

The transfer function Pθ(s) has a pole-zero excess (also called relative degree) equal to two. Being
all physical coefficients positive, the two zeros of its numerator have negative real part and the
three poles from den3(s) (one certainly real) have all negative real parts —as can be shown from
the Routh table this polynomial; finally, the fourth pole is at the origin. According to elementary
feedback theory and using the properties of the root locus method, if one considers a proportional
feedback of the form

∆τ = −KP∆θ KP > 0, (19)

the four closed-loop poles will remain in the left-hand side of the complex plane for all positive
values of the gain KP . In particular, when increasing this gain, two poles converge to the open-loop
zeros, while the other two approach the vertical asymptotes (whose center is located at a value
s0 < 0). A numerical example of such behavior is shown in Fig. 5.

Figure 5: The root locus of the process (18) for varying KP > 0.

As a result, the desired equilibrium is asymptotically (actually, exponentially) stabilized by control
laws of the form

τ = τd + ∆τ = τd −KP∆θ = −Mg0 +KP (θd − θ), ∀KP > 0,

just like in eq. (10). Although an approach based on approximate linearization has usually only a
local validity, in the present case the method was only used to remove a constant bias (and no other
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nonlinear terms). The analysis can then be considered of global validity, as already confirmed by
the previous Lyapunov method.

The transfer function Pq(s) in (17) also explains why it is preferable to close the proportional
feedback loop (19) on the position variable θ of the first mass B (using the modified reference
θd, as computed from qd in (11), rather than closing a feedback loop KP (qd − q) directly on the
desired position of the second mass M . In fact, while the transfer function Pq(s) shares most of
the characteristics of Pθ(s), its pole-zero excess is instead equal to three (there is only one zero in
the numerator). Again from elementary feedback theory and the properties of the root locus, such
a feedback would lead to a stable closed-loop system only for a very limited positive range of KP ,
going unstable for larger values. This is a consequence of the physical non-colocation between the
control input τ and the output q to be controlled, because of the presence of elastic dynamics in
the mechanical transmission between the two masses B and M .

Finally, assume that D = 0 in eqs. (7), (8) and that we would like to reproduce a trajectory qd(t)
that is four times differentiable. Setting q = qd(t) in (8) and solving for θ gives

θd(t) = qd(t) +K−1(M q̈d(t) + Fq q̇d(t)−Mg0).

Differentiating this once and twice provides

θ̇d(t) = q̇d(t) +K−1(M
...
q d(t) + Fq q̈d(t)).

and
θ̈d(t) = q̈d(t) +K−1(M

....
q d(t) + Fq

...
q d(t)).

By replacing these expressions for θ, θ̇ and θ̈ in (7), we obtain the required inverse dynamics torque

τd(t) = B θ̈d(t) +K(θd(t)− qd(t)) + Fθ θ̇d(t)

= B q̈d(t) +BK−1(M
....
q d(t) + Fq

...
q d(t)) +M q̈d(t) + Fq q̇d(t)−Mg0

+Fθ q̇d(t) + FθK
−1(M

...
q d(t) + Fq q̈d(t))

= BMK−1 ....
q d(t) + (FθM + FqB)K−1 ...

q d(t)

+ ((B +M) + FθFq)K
−1) q̈d(t) + (Fθ + Fq) q̇d(t)−Mg0,

which is eventually expressed only in terms of qd(t) and its first four time derivatives, as requested.

Exercise 4

The dynamic model of a 2R robot in the vertical plane is given by (see, e.g., the lecture slides)(
a1 + 2a2 cos q2 a3 + a2 cos q2

a3 + a2 cos q2 a3

)(
q̈1

q̈2

)
+

(
−a2 sin q2

(
q̈2
2 + 2q̇1q̇2

)
a2 sin q2q̈

2
1

)
+

(
a4 cos q1 + a5 cos(q1 + q2)

a5 cos(q1 + q2)

)
=

(
τ
0

)
,

(20)

for suitable dynamic coefficients ai, i = 1, . . . , 5, and with a zero in the right-hand side of the
second scalar equation due to the missing actuation (this underactuated robot is usually called
Pendubot). The forced equilibrium conditions for this mechanical system are determined by setting
τ = τ̄ (constant) and θ̇ = θ̈ = 0 in (20). This gives

a4 cos q̄1 + a5 cos(q̄1 + q̄2) = τ̄

a5 cos(q̄1 + q̄2) = 0,
(21)
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implying
τ̄ = a4 cos q̄1 = g0(m1dc1 +m2l1) cos q̄1. (22)

Therefore, we have two continuum families of equilibria, each parametrized by the value q̄1, with

q̄2 = −q̄1 ±
π

2
,

i.e., the second link is vertical upward or downward, and with the corresponding equilibrium torque
τ̄ given by (22).

The global stabilization of any such equilibrium by a PD control law with gravity compensa-
tion/cancellation is made very hard by the fact that the robot is underactuated: no torque com-
mand can be delivered at joint 2. Therefore, in order to define a state feedback control law that
locally asymptotically stabilizes one of these equilibria, we use the approximate linearization of (20)
around (q̄,0), with q̄ = (q̄1, q̄2) satisfying (21) and with a (small) control action ∆τ around the
equilibrium torque τ̄ given by (22). Substituting in (20)

q = q̄ + ∆q q̇ = ∆q̇ q̈ = ∆q̈ τ = τ̄ + ∆τ,

and neglecting second- and higher-order terms in the variations ∆(·), we obtain(
a1 + 2a2 cos q̄2 a3 + a2 cos q̄2

a3 + a2 cos q̄2 a3

)(
∆q̈1

∆q̈2

)
−
(
a4 sin q̄1 + a5 sin(q̄1 + q̄2) a5 sin(q̄1 + q̄2)

a5 sin(q̄1 + q̄2) a5 sin(q̄1 + q̄2)

)(
∆q1

∆q2

)
=

(
∆τ
0

)
,

(23)

or in compact form

M̄ ∆q̈ + Ḡ∆q =

(
∆τ
0

)
, with M̄ = M(q̄) Ḡ = G(q̄) =

∂g

∂q

∣∣∣∣
q=q̄

.

The system can be put in state-space format by choosing, e.g.,

∆x =

(
∆x1

∆x2

)
=

(
∆q

M̄∆q̇

)
,

leading to

∆ẋ = A∆x+ b∆τ, with A =

(
O M̄

−1

−Ḡ O

)
b =

 0(
1
0

)  .

At this stage, provided that the 4× 4 controllability matrix

C =
(
b Ab A2b A3b

)
=


0(
1
0

) M̄
−1
(

1
0

)
0

0

−ḠM̄−1
(

1
0

) −M1ḠM̄
−1
(

1
0

)
0


is nonsingular,2 we can obtain a local asymptotic stabilization of the system at the chosen equi-
librium state xe = (q̄,0) (and actually also assign all the closed-loop eigenvalues as desired), by
means of the full state feedback law

∆τ = −K∆x = −K1∆q−K2M̄∆q̇ = −K1∆q1−K2∆q2−K3

(
1 0

)
M̄∆q̇−K4

(
0 1

)
M̄∆q̇,

2The controllability condition is generically satisfied.
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with K such that σ(A− bK) ∈ C−. As a result, the required complete control torque will be

τ = τ̄ + ∆τ = a4 cos q̄1 +
(
K1 K2

)( q̄1 − q1

q̄2 − q2

)
−
(
K3 K4

)
M̄

(
q̇1

q̇2

)
,

in the form of a PD-type feedback with constant feedforward.

∗ ∗ ∗ ∗ ∗
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