Robotics 2 January 13, 2025

Exercise 1

a) For the 2R polar robot in Fig. 1 moving in the presence of gravity, derive the dynamic model in the Lagrangian form

$$M(q)\ddot{q} + S(q,\dot{q})\dot{q} + g(q) = \tau$$
(1)

using the shown generalized coordinates $\boldsymbol{q} = (q_1, q_2)$ and with $\dot{\boldsymbol{M}} - 2\boldsymbol{S}$ being skew-symmetric. Assume that the links have a cylindric form and that their masses are uniformly distributed. Introduce all necessary kinematic or dynamic parameters. Friction phenomena are neglected.

Figure 1: A 2R polar robot

b) For the robot dynamics (1), find a linear parametrization in the form

$$\boldsymbol{Y}(\boldsymbol{q}, \dot{\boldsymbol{q}}, \ddot{\boldsymbol{q}}) \, \boldsymbol{a} = \boldsymbol{\tau} \tag{2}$$

in terms of a vector $\boldsymbol{a} \in \mathbb{R}^r$ of dynamic coefficients and a $2 \times r$ regressor matrix \boldsymbol{Y} . Discuss the minimality of r.

- c) Using the explicit elements of the dynamic model (1), write down the expressions of all the control laws that you are aware of that guarantee global regulation to a desired (generic) constant configuration q_d . Specify for each law the design conditions for success and the type of convergence/stability achieved.
- d) Determine the expression of the inverse dynamics torque needed to reproduce the following desired joint trajectory:

$$q_{d1}(t) = \cos 3t, \qquad q_{d2}(t) = 0.$$

e) Provide then the explicit expression of an adaptive control law that guarantees asymptotic tracking of a desired smooth joint trajectory $q_d(t)$, without any a priori knowledge about the robot dynamic parameters.

Exercise 2

Consider the 3P planar robot in Fig. 2. The robot is commanded by the joint velocity $\dot{q} \in \mathbb{R}^3$. Let a smooth trajectory $p(t) \in \mathbb{R}^2$ be assigned for the end-effector position of this robot.

Figure 2: A 3P planar robot

- a) Determine the command \dot{q}_a that realizes the assigned end-effector velocity \dot{p} while minimizing the norm $\|\dot{q}\|$.
- b) Determine the command \dot{q}_b that realizes the assigned end-effector velocity \dot{p} while minimizing the kinetic energy of the robot.
- c) Find, if possible, a distribution of the three link masses m_1 , m_2 and m_3 such that the 2×2 Cartesian inertia M_p of this robot is a scaled identity matrix μI_2 , for some scalar $\mu > 0$.

Very important: Provide in all three cases a physical interpretation of your obtained results.

[180 minutes (3 hours); open books]