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Abstract— We propose an MPC-based decentralized scheme
for cooperative transportation between two agents. One agent,
the leader, can be either a human or a robot with knowledge
of the task. The other, the follower, has no knowledge of the
task, and must autonomously decide how to move based on the
perceived interaction forces. The robots interact with the object
in a compliant way thanks to a hand admittance controller, and
the follower continuously adapts its footstep plan in order to
accommodate the hand displacement. The combination of these
two effects allows the follower to smoothly react to the motion of
the leader: it can move omnidirectionally and rotate, as well as
accommodate lifting and lowering of the transported object, all
while performing obstacle avoidance during footstep placement.
We report dynamic simulations on two HRP-4 robots in a
number of different scenarios, both when carrying a table and
an object with handles.

I. INTRODUCTION

Facilitating the introduction of robots in fields that involve
manual labor can bring about many advantages, among
which is the reduction the amount of heavy work that must
be done by humans. This reduction can be achieved by either
completely entrusting the heavier tasks to robots, or by using
robots to collaborate with humans.

Collaborative approaches between humanoid robots can
make use of a centralized controller, which, being able to
act on both systems concurrently, is well suited to determine
the individual behaviors necessary to achieve the common
goal. However, for retaining high flexibility in the range
of possible applications, it is better to use a decentralized
approach which can be applied both to human-robot or to
robot-robot scenarios.

In a decentralized approach, two agents are usually iden-
tified by the roles that they take on during the transportation
[1]. The leader has knowledge of the task to be executed,
and can be embodied either by a human or, as in our case,
by a robot with a predefined plan. The follower is a robot
that is unaware of the task and must determine how to move
based on the interaction forces that it perceives.

Earlier works have explored transportation by pushing,
e.g., in [2], where six-legged robots are used to push a box,
or in [3], in which mobile robots are used. Other works, such
as [4], make use grippers to hold on to the transported object.
[5] proposed an approach based on Model Predictive Control
(MPC) for human-robot transportation using a mobile-base
manipulator. A comprehensive review that includes several
classic and more recent works can be found in [6].
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Fig. 1. Cooperative transportation of an object over a tall obstacle. Only
the leader (left) has information about the task, while the follower (right)
reacts to the motion of the transported object on the basis of the perceived
interaction forces.

Focusing on humanoid robots restricts the scope to a much
more contained number of works. In [7], two humanoids
perform transportation of a table along a straight line path
using a centralized approach. [8] tackles human-humanoid
transportation by focusing more on the problem of human
intention detection rather than on the robot control aspect,
which is approached by separately controlling the upper and
lower body. [9] has proposed a walking pattern generator
in which role-specific objective functions determine the
robot behaviour in human-robot collaborative tasks along a
straight line. In [10], the authors use a combination of hand
admittance and predictive control, with motions limited to
straight-line walking in an obstacle free environment. In [11],
some curve-line paths are achieved by combining different
behaviors thanks to a finite state machine, which however,
due to its intrinsically discrete nature, cannot blend these
behaviors together.

In this paper, we propose a decentralized scheme in which
controllers for both the leader and the follower are based
on the Intrinsically Stable Model Predictive Control (IS-
MPC) [12]. IS-MPC simultaneously determines the trajec-
tory of the Center of Mass (CoM) and of the Zero Moment
Point (ZMP). The ZMP is the point of application of the
ground reaction force, which guarantees contact stability
as long as it is kept within the support polygon (i.e., the
convex hull of contact surfaces). To guarantee boundedness
of the generated trajectories, IS-MPC features a stability
constraint, which we showed to be useful also for performing
disturbance rejection [13], an aspect that is particularly
relevant in this setting where the weight of the transported
object and the interaction forces cannot be ignored.

Our approach uses a hand admittance controller, which
allows both robots to hold on to the object in a compliant



way. The follower robot, having no knowledge of the task,
determines its footstep placement so as to recuperate the hand
displacement generated by the admittance. The combination
of admittance and footstep replanning is what make the
follower move in reaction to a motion of the leader.

The range of possible motions that can be generated in
this way is very rich, including omnidirectional walking
(i.e., frontal, lateral, and diagonal), as well as changes
in footstep orientation. The follower is placing footsteps
using a constrained optimization problem, which allows us
to perform obstacle avoidance by forbidding stepping into
particular regions.

Compared with the state of the art, our approach offers
several improvements:

• by using a three-dimensional admittance-based ap-
proach, we are able to lift and lower the transported
object, e.g., to overcome an obstacle or to better adapt
to changes in stature of a human transporter, for the
case of human-robot collaboration;

• we design a continuous (rather than rule-based) strategy
adapting the orientation of the footsteps, overcoming
a common limitation in the literature where the trans-
portation usually takes place along a straight line;

• we plan footsteps in a dedicated module separate from
the gait generation, which allows us to perform more
sophisticated planning (e.g., involving nonlinear and
nonconvex constraints) without burdening the MPC,
which is always linear and can comfortably run at high
frequency.

The paper is organized as follows. Section II gives an
overview of the control architectures of the leader and the
follower. In Sect. III, we introduce the dynamic model that
will be used by the predictive controller. The hand admittance
controller is described in Sect. IV, while the footstep planner
for the follower is presented in Sect. V. The MPC used for
gait generation is illustrated in Sect. VI. Simulation results
for different transportation tasks are shown in Sect. VII,
while some concluding remarks are offered in Sect. VIII.

II. CONTROL ARCHITECTURE

The goal of the proposed scheme is to have two agents
collaborate in transporting an object using a decentralized
approach, so that it can be applied both to human-robot and
robot-robot scenarios. In our case, the leader is a robot who is
directly instructed about the transportation task. In particular,
the description of the task is given in the form of an assigned
trajectory of the object, which the leader uses to plan a
footstep sequence. The follower robot has no information
about the task, but will experience interaction forces through
the object as soon as the leader starts moving. We intend
to give the follower the ability to react to these interaction
forces in a way that (i) safeguards balance, so that the robot
does not fall and (ii) allows to maintain the grasp of the
object at all times, so that it can effectively collaborate in
the transportation.

Figure 2 shows a block scheme of the proposed control
architecture for both the leader and the follower. We assume

that both robots start from a bimanual grasping configuration,
that is maintained throughout the entire motion. For each
robot, we measure or estimate the force applied at each hand.
In an experimental setting, this would be done either using
a force sensor at the wrist [9], [14] or by reconstructing the
interaction force, e.g., with a residual-based technique [15].

In both the leader and the follower, the perceived inter-
action forces are fed to an admittance controller, which
regulates the position of each hand around a reference value
according to a mass-spring-damper model. Such positions
are then sent to the whole-body robot controller.

The footstep planner module is substantially different
for the two agents: in particular, the leader decides its
plan solely based on the transportation task, whereas the
follower generate its footsteps in reaction to the average hand
displacement with respect to their reference positions. To this
end, we propose an optimization-based planner which can
also handle non-convex constraints for obstacle avoidance.

The combination of the admittance control and the footstep
planner allows the follower robot to react to the interaction
forces caused by the leader by using two concurrent effects:
initially, it reacts by moving the hands, but since this also
triggers a replanning of the footsteps, the entire body will
follow. We find that having the robot body react indirectly is
preferable to directly moving based on the perceived force.
In fact, this strategy inherently gives the hands a priority
over the body, smoothing out the effects of variations in the
interaction forces and filtering the inevitable noise affecting
their measurements.

Finally, both the leader and the follower use an MPC
controller for gait generation based on their footstep plan.
In particular, we adopt the IS-MPC algorithm [12], which
determines the CoM trajectory in such a way that dynamic
balance and internal stability are guaranteed throughout the
motion. More precisely, we employ a robust variant of IS-
MPC [13], which relies on a disturbance observer to estimate
perturbations on the CoM, and injects this information in
a robust stability constraint so as to perform disturbance
compensation.

The hand trajectories resulting from the admittance con-
troller and the CoM trajectory produced by IS-MPC are
finally sent to the whole-body controller, which generates
joint acceleration commands for driving the robot.

III. DYNAMIC MODEL

In this section, we derive a centroidal model for a hu-
manoid of mass m transporting an object with two hands.

One starts by imposing the balance of moments with
respect to the point of application of the ground reaction
force, which removes the contribution of the latter. The
remaining forces are (1) gravity mg = (0, 0,−mg), acting
on the CoM, and (2) external forces fi = (fx

i , f
y
i , f

z
i ),

i = l, r, respectively applied on the left/right hand, whose
positions in the world frame are denoted as pi = (xi, yi, zi).
We obtain

L̇+(pc−pz)×mp̈c = (pc−pz)×mg+
∑
i=l,r

(pi−pz)×fi
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Fig. 2. Control architectures for the leader and the follower, with role-specific signals shown in red. The two robots exchange forces through the transported
object but no other information. As a consequence, the scheme will still work if the leader is replaced by a human.

where pc = (xc, yc, zc) is the CoM position, pz = (zx, zy, 0)
is the ZMP position, and L is the centroidal angular momen-
tum. We can rewrite the above expression as

L̇+ (pc − pz)× (mp̈c −mg − f) =
∑
i=l,r

(pi − pc)× fi,

with f =
∑

i=l,r fi. From this, denoting by vxy the
subvector consisting of the first two components of a 3D
vector v, one obtains

p̈xy
c =

m(g+z̈c)−fz

mzc
(pxy

c − pxy
z ) +

S(nxy−L̇xy)+zcf
xy

mzc
(1)

where S is the rotation matrix by −π/2, fz =
∑

i=l,r f
z
i ,

and n =
∑

i=l,r(pi − pc) × fi. If we assume a constant
CoM height z̄c, and collect in a disturbance term wxy the
second term in the right-hand side term of (1), we get the
perturbed Linear Inverted Pendulum (LIP) model

p̈xy
c = η2(pxy

c − pxy
z ) +wxy, (2)

where the natural pendulum frequency

η =

√
mg − fz

mz̄c
accounts for the vertical component fz of the total force f
applied on the hands. Note that the disturbance depends on
(1) the horizontal components fxy of f (2) the sum n of the
centroidal moments of the two external forces, and (3) the
angular momentum variation, which is related to the whole-
body dynamics.

In order to make the linear model (2) time-invariant for
control design, we will use in η a nominal value f̄z of fz ,
equal to half the weight of the transported object. The effect
of perturbations with respect to f̄z will be lumped into the
disturbance term.

IV. HAND ADMITTANCE CONTROLLER

We now begin the description of the different components
of the proposed scheme, starting with the hand position
admittance controller.

The hand admittance controller regulates the position of
each hand with respect to the robot body in response to the
perceived interaction force fi on the hand, i = l, r. For each
robot, let us define a local 3D frame F having the origin
at the midpoint1 between the ground projections of the left
and right feet (such projection exists even when the foot is
airborne) and orientation RF equal to the orientation of the
current support foot. The 3D positions of the robot hands
relative to this frame are denoted as ri, i = l, r.

Each hand is assigned a reference grasping position r̄i,
which is constant in F and chosen in such a way to yield
a comfortable posture of the arm and a sufficient level of
manipulability at the same time. In addition, since it is
assumed that both grasps are maintained at all times, the
references for the two hands should be chosen so as to satisfy
a suitable rigidity constraint in order to avoid the appearance
of internal forces, at least at steady state.

The relative hand position ri, i = l, r, is determined so
as to mimic a virtual mass-spring-damper system loaded by
the external force fi, with rest position r̄i when the external
force is f̄i:

Mr̈i +Cṙi +K(ri − r̄i) = RT
F (fi − f̄i),

where the diagonal matrices M , C and K contain the
mass, damping and stiffness along the three axes. While
we assume that these matrices are the same for the left and
the right hand, they can be different for the leader and the
follower, in view of their different role in transporting the
object. Note that the reference force on each hand at rest is
f̄i = (0, 0, f̄z/2), i = l, r, corresponding to a quarter of the
weight of the object.

V. FOOTSTEP PLANNER

Footstep generation is inherently different for the two
robots. For the leader, the footstep plan is chosen so as to

1Another possibility would be to place the local frame at the CoM or at
a fixed point on the robot, e.g., the torso. A drawback of these choices is
that F would inherit the lateral sway motion associated with the gait.



realize the given transportation task; in our implementation,
the task was specified through a desired velocity for the
object and footsteps were generated using a planner similar
to the one described in [12]. The follower, however, has no
direct information about the task: its footstep plan generation
is then essentially reactive and aimed at maintaining the
grasp on the object as the latter is moved by the leader. In
addition, both the leader and the follower should also avoid
collisions with workspace obstacles. In the following, we
focus on the footstep planner used by the follower.

Footstep planning is performed in real time and incremen-
tally: that is, at each instant of time the next F footsteps
are generated by choosing their position pj

f = (xj
f , y

j
f )

and orientation θjf , j = 1, . . . , F , while the step duration
Tstep is assumed to be fixed throughout the plan. In partic-
ular, footstep placement is found by solving a constrained
optimization problem which makes use of two nominal
displacements ∆p and ∆θ, whose determination is discussed
in detail below.

The nominal Cartesian displacement ∆p = (∆x,∆y)
between successive footsteps in the plan should make the
body of the robot move in accordance with its hands. To
this end, define the average hand error

eh =

(
exh
eyh

)
=

r̄ xy
l − rxyl + r̄ xy

r − rxyr
2

,

and let

∆x = kp,xe
x
h + kd,xė

x
h + ki,x

∫ t

0

exh dt

∆y = kp,ye
y
h + kd,y ė

y
h + ki,y

∫ t

0

eyh dt,

with all gains positive. The structure of these formulas is
clearly reminiscent of a PID controller, with the integral
term needed to ensure that the follower robot produces a
persistent gait at steady state, i.e., when eh has converged to
zero (consider that the horizontal interaction forces can be
expected to oscillate around zero when the object is being
transported at a constant velocity). The derivative term is
obviously introduced to dampen the response.

Coming to the nominal angular displacement ∆θ, its
objective is to allow the follower to curve when the leader
does. Define then the transportation axis as the line through
the origin of F which is normal to the segment joining
rx,yl and rx,yr (the ground projections of the two hands). ∆θ
is then defined as the orientation of the transportation axis
measured with respect to the x axis of F , i.e., the sagittal
axis of the robot (see Fig. 3, left). Note that the geometric
construction of the transportation axis degenerates when the
ground projections of the two hands coincide at a point P ,
as for example in the object grasp of Fig. 1; in this case,
the transportation axis is directly defined as the line joining
P with the origin of F (Fig. 3, right). The degenerate case
also allows to execute single-hand (rather than bimanual)
transportation tasks.

regular degenerate
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Fig. 3. Geometric construction for determining the transportation axis
and the associated angular displacement ∆θ. Left: regular case. Right:
degenerate case (the ground projections of the hands coincide). Besides
appearing in the QP which determines the positions of the next F footsteps,
∆θ is also used to define the orientation of such footsteps.

Once ∆p and ∆θ have been determined, the position of
all the F footsteps in the plan is computed by solving the
following quadratic program (QP) with nonlinear constraints:

min
p1
f ,...,p

F
f

F∑
j=1

∥pj
f − pj−1

f −Rj(∆p± (0 ℓ)T )∥2

subject to:
• kinematic constraints
• obstacle avoidance constraints,

where p0
f is the position of the current support foot (not a

decision variable) and we have set

R1 = RF

Rj = RFR∆θ for j = 2, . . . , F ,

being R∆θ the rotation matrix by ∆θ.
The cost function of the QP encodes the nominal place-

ment of the planned footsteps: the first footstep p1
f should

be displaced2 from p0
f by ∆p, whereas the displacement

between the generic successive footstep pj
f (j = 2, . . . , F )

and pj−1
f should be ∆p rotated by ∆θ. The actual placement

of the footsteps may differ from the nominal placement due
to the presence of the constraints, whose structure will be
discussed below.

As for the choice of the orientation of the F footsteps, the
first footstep of the plan (i.e., the next footstep, corresponding
to j = 1) is rotated by an angle ∆θ with respect to the current
support foot, whereas the remaining footsteps (j = 2, . . . , F )
have the same orientation of the first.

The role of the kinematic constraints in the QP is to ensure
that each footstep is kinematically realizable by the robot.

2Note how ∆p is actually offset in the y direction by ±ℓ to guarantee
the appropriate lateral separation between left and right footsteps.



In practice, this is done by defining a rectangular admissible
region of dimensions da,x, da,y aligned with the previous
footstep and displaced from its position pj−1

f = (xj−1
f , yj−1

f )
by a distance ±ℓ in the y direction:

RT
j

(
xj
f − xj−1

f

yjf − yj−1
f

)
≤ 1

2

(
da,x

da,y

)
±

(
0

ℓ

)
for j = 1, . . . , F.

The obstacle avoidance constraints in the QP guarantee
that the planned footsteps do not lead to a collision between
the robot and objects in the environment. In general, these
constraints are expressed as

pj
f ∈ S, for j = 1, . . . , F,

where S ⊆ R2 denotes the ground region where a footstep
can be placed without colliding with obstacles. In the general
case, S will be a non-convex region, leading to a nonlinearly
constrained QP. Still, a real-time solution is possible since
the number of variables is typically small. In our implemen-
tation, we consider a decomposition (possibly by excess) of
R2 − S in No circular obstacles, and express the obstacle
avoidance constraints as

∥pj
f − pl

o∥ ≥ ρl, for j = 1, . . . , F , l = 1, . . . , No,

where pl
o is the center of the l-th obstacle and ρl its radius,

slightly increased in order to provide a safety margin.

VI. MODEL PREDICTIVE CONTROLLER

For both the leader and the follower, the IS-MPC al-
gorithm [12] is used for stable gait generation along the
planned footsteps. In this version, IS-MPC does not modify
the footstep positions given by the planner. The algorithm
operates over sampling intervals of duration δ with a control
horizon of C samples. It is assumed that C ≤ P , where
P = F ·Tstep/δ is the number of sampling intervals included
in the footstep plan; in other words, we assume that the
footstep plan covers at least the whole control horizon. We
denote the generic time instant by tk and the corresponding
value of a generic quantity γ by γk = γ(tk).

The prediction model for the MPC is a dynamically
extended version of the perturbed LIP (2) in which the ZMP
velocity ṗxy

z is used as input. This choice allows to include
the norm of this velocity as a regularization term in the MPC
cost function, ultimately resulting in smoother trajectories.

A sufficient condition for dynamic balance is that the ZMP
is at all times inside the support polygon, i.e., the convex
hull of the contact surfaces. To preserve linearity of the
resulting constraint in the presence of foot rotations, we use
a slightly conservative condition, which constrains the ZMP
to be within a moving box, i.e., a region of fixed shape and
size (dz,x, dz,y), whose center pmb = (xmb, ymb, 0) moves
in such a way to always be within the support polygon [16].
In this setting, the ZMP constraint can be written as

−1

2

(
dz,x
dz,y

)
≤ Rk+i

mb

(
xk+i
z − xk+i

mb

yk+i
z − yk+i

mb

)
≤ 1

2

(
dz,x
dz,y

)
Rk+i

mb is the rotation matrix associated with the orientation
of the moving box at time tk+i.

Dynamic balance by itself, however, does not ensure
closed-loop stability, due to the presence of a positive
eigenvalue in system dynamics (2). To ensure boundedness
between the ZMP and the CoM trajectories, we enforce a
robust stability constraint along the lines of [13], [12] on
the Divergent Component of Motion (DCM) [17]. To derive
this constraint, we start from the stability condition, which,
for the perturbed LIP, is

xk
u = η

∫ ∞

tk

eη(tk−τ)xz(τ) dτ − 1

η

∫ ∞

tk

eη(tk−τ)wx(τ) dτ,

(3)
along x, and similarly along y. Here, xu = xc + ẋc/η is the
x-component of the DCM. Condition (3) is non-causal, as
it depends on future values of the input and disturbance. We
write 3 as

η

∫ tk+C

tk

eη(tk−τ)xz(τ) dτ = xk
u − ckx + ckw,x,

with

ckx = η

∫ ∞

tk+C

eη(tk−τ)xz(τ) dτ

ckw,x =
1

η

∫ ∞

tk

eη(tk−τ)wx(τ) dτ

to isolate the sources of non-causality in ckx and ckw,x.
In particular ckx depends on the input outside the control
horizon, while ckw,x is a function on the future disturbance
after tk. To obtain a causal version, we conjecture the future
evolution of xz after the control horizon using the footstep
plan. In ckw,x, in place of wx for t > tk, we use the current
estimate ŵk

x obtained from a disturbance observer (see [13]
for details).

IS-MPC solves at each time instant tk the following
Quadratic Program (QP):
min
uk

k+C−1∑
i=k

(ẋi
z)

2+(ẏiz)
2+α((xi+1

z −xi+1
mb )

2+
(
yi+1
z −yi+1

mb

)2
)

subject to:
• ZMP constraints
• stability constraints,

where uk = (ẋk
z , . . . , ẋ

k+C−1
z , ẏkz , . . . , ẏ

k+C−1
z ) collects the

decision variables over the control horizon, and α is a weight
that modulates the relative importance of the second term
whose role is to bring the ZMP close to the center of the
moving box.

As customary in MPC, we extract the first sample (ẋk
z , ẏ

k
z )

from the QP solution and use it, together with the current
disturbance estimate (ŵk

x, ŵ
k
y), to integrate the dynamics (2).

The resulting CoM position and velocity (pc, ṗc) are used
as references (p∗

c , ṗ
∗
c) for the whole-body controller together

with the relative hand positions and velocities (r∗i , ṙ
∗
i ), for

i = l, r.



Fig. 4. Simulation 1: cooperative transportation of a table with the
leader varying its speed. The red/blue lines are the right foot trajectories of
leader/follower, while the footstep plan of the leader is shown in blue on
the ground.
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Fig. 5. Simulation 1. Left: x-component of the CoM velocity for the
leader (red) and the follower, compared to the reference velocity of the
object (dashed). Right: x-component of the nominal displacement ∆p.

VII. RESULTS

We now present a selection of illustrative results from
dynamic simulations performed in DART; see the video at
https://youtu.be/ChfhpSJFqg0 for animated clips.
Both the leader and the follower are HRP-4 humanoids, while
the manipulated objects are first a table and then a bar with
two handles, both with a mass of 10 kg. Force measurements
are obtained by querying the simulator for the contact forces
at the hands3. The IS-MPC QP is solved using HPIPM, while
the footstep planner QP uses IPOPT, interfaced from casADi.
The simulation runs at a 100 Hz, and all computations are
performed in real time.

Except when noted, the following parameters are used:
m = 38 kg, z̄c = 0.75 m, Tstep = 0.6 s, F = 10, δ = 0.01 s,
C = 166, dz,x = 0.07 m, dz,y = 0.07 m, α = 103, da,x =
0.4 m, da,y = 0.1 m, ℓ = 0.2 m, kp,x = 1, kd,x = 0.1,
ki,x = 0.1, kp,y = 1.2, kd,y = 0.15, ki,y = 0.05, M =
diag{5, 5, 5} kg. Different stiffness and damping are used
for the hand admittance controller for the leader and the fol-
lower, respectively KL = diag{500, 500, 500} N/m, CL =
diag{200, 200, 200} N·s/m and KF = diag{20, 20, 100}

3While this might seem as an ideal sensor simulation, forces measured
in this way are actually very noisy, due the fact that contacts are broken
and reestablished very frequently. For this reason, force measurements are
preliminarly fed to a low-pass filter with a cutoff frequency of 3.18 Hz

Fig. 6. Simulation 2 (stroboscopic view): cooperative transportation of a
table with the leader moving along a complex path including rectilinear,
diagonal, lateral and curved segments.

Fig. 7. Simulation 3 (stroboscopic view): cooperative transportation of a
bar with the leader moving along a curved path.

N/m, CF = diag{50, 50, 150} N·s/m.
In Simulation 1 (Fig. 5, left), the two robots walk in

a straight line while transporting the table. The reference
velocity of the leader is initially set to 0.05 m/s, then doubled,
and then set back to the initial value. Changes in velocity
of the leader are quickly accommodated by changes in the
velocity of the follower, as shown in Fig. 5.

Simulation 2 (Fig. 6) is still a table transportation case, but
with the leader now moving along a complex path involving
rectilinear, lateral, diagonal, and curved segments in order
to avoid certain obstacles in the workspace. Thanks to the
proposed framework, the follower robot is able to adapt to
the motion of the leader, and in particular to correctly infer
its direction changes.

In Simulation 3 (Fig. 7) the robots must transport a
long bar by using the handles at its extremities. This is
a degenerate case for constructing the transportation axis,
which must then be defined as in (Fig. 7), right. Again, the
follower behaves satisfactorily and the transportation task is
successfully completed.

Simulation 4 (Fig. 8) refers to a more challenging scenario.
The robots are placed on opposite sides of a tall obstacle with
variable height. The leader is instructed to walk sideways
while lifting the object to avoid the protrusion in the middle.
As before, the follower is able to accommodate the object



Fig. 8. Simulation 4: cooperative transportation of a bar over an obstacle. Note also the presence of a cylindrical obstacle further obstructing the motion
of the follower.
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Fig. 9. Simulation 4: placement of the footsteps (blue for right, red for left)
for the follower robot. In a few cases, the full footprint is shown to prove
that there are no collisions. The boundary of the safe area S (dashed circle)
is displaced with respect to the actual obstacle boundary (solid circle) to
provide a safety margin.

motion; in addition, it also plan its footsteps so as to
avoid the low cylindrical obstacle obstructing its motion, see
Fig. 9. The stiffness of the hand admittance controller for
the follower was lowered to 10 N/m in this case, to allow a
quicker response to height changes.

VIII. CONCLUSIONS

We have presented a decentralized framework for co-
operative transportation with humanoids. While the leader
autonomously decides its motion based on the specification
of the transportation task (and in fact can be replaced by a hu-
man), the follower infers the leader intentions (e.g, changes
in speed or direction) from the perceived interaction forces
and reacts accordingly to maintain its grasp on the object.
The proposed framework includes a footstep planner capable
of collision avoidance, but more advanced planners can be
accommodated without modifications, e.g., for achieving 3D
motion generation [18] or reaction to disturbances [19]).

Future work will include:
• using the vertical force measurement in place of its

nominal value f̄z , thus obtaining a time-varying LIP
to be used as a prediction model, see [20];

• allowing the leader to replan its footsteps by also taking
into account the perceived motion of the follower,
in order to handle critical situations, e.g., due to the
follower being blocked by obstacles or — more in
general — malfunctioning;

• performing experiments on a physical platform.
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