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Abstract— We propose an effective whole-body MPC con-
troller for locomotion of humanoid robots. Our method gener-
ates motions using the full kinematics, allowing it to account
for joint limits and to exploit upper-body motions to reject
disturbances. Each MPC iteration solves a single QP that
considers the interplay between dynamic and kinematic features
of the robot. Thanks to our special formulation, we are able
to perform a feasibility analysis, which opens the door to
future enhancements of functionality and performance, e.g.,
step adaptation in complex environments. We demonstrate its
effectiveness through a campaign of dynamic simulations aimed
at highlighting how the joint limits and the use of the angular
momentum through upper-body motions are fundamental for
maximizing performance, robustness, and ultimately make the
robot able to execute more challenging gaits.

I. INTRODUCTION

Interest in humanoid robots has been on the rise, with
companies now working towards producing more affordable
models for the consumer market. This growing fascination
is fueled by advancements in actuator technology, offering
increased power density and reduced gear ratios. Addition-
ally, the popularity surge is also driven by advances on
the control side. Whereas reinforcement learning techniques
have been often successfully applied on quadrupeds [1],
Model Predictive Control (MPC) remains the go-to option for
humanoids. In MPC, control actions are determined online by
solving a constrained optimization problem over a prediction
horizon. However, the complexity of the problem requires
some compromises to make the application to humanoid
robots tractable.

Historically, the most popular approaches used simplified
models to reduce the number of optimization variables.
Among these, the most common is the Linear Inverted
Pendulum (LIP) model [2], which relates the dynamics of the
Center of Mass (CoM) to the Zero Moment Point (ZMP). The
ZMP is the point of application of the resultant ground reac-
tion force, and must be kept within the support polygon (the
convex hull of contact surfaces) in order to maintain balance.
While such approaches have proven to be effective, they have
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two main drawbacks: (i) they neglect dynamic effects such
as angular momentum variations, which might be relevant
when performing faster motions, and whose omission can
limit the performance; (ii) they require a separate whole-body
controller to realize the high-level trajectories planned by the
MPC [3], [4], [5], whose commands could be inconsistent
with the MPC constraints.

A radically different approach is to perform whole-body
MPC using the full model of the robot [6]. This is a
complex endeavor because humanoids have a large number
of degrees of freedom, their dynamics are highly nonlinear,
and the ability to engage and disengage contacts makes
this effectively a hybrid dynamics problem. To this day,
there exist only few works that showcase real-time whole-
body MPC for humanoid robots, even in simulation (see [7]
for a survey of recent results). A promising approach uses
Differential Dynamic Programming (DDP) [8] which enables
faster computations when using the full model, but forgoes
the ability to enforce hard constraints. Moreover, since many
humanoid robots are controlled in position with high-gain
servos [9], in many cases it might be unnecessary to solve
the whole-body dynamics as the resulting torques cannot be
directly used for control.

To reduce the number of optimization variables it is
possible to use models of different complexity at different
stages across the MPC prediction horizon [10]. In [11], this
technique was successfully applied to whole-body humanoid
control, highlighting how upper-body motions can be essen-
tial to reject disturbances.

Another interesting way to scale down the complexity of
the problem is to consider a model composed of the cen-
troidal dynamics and the full kinematics [12], thus reducing
the nonlinearities. In this work we use a similar approach.

In previous works, we have proposed Intrinsically Stable
MPC (IS-MPC) [13], which is a LIP-based MPC scheme that
enforces an explicit stability constraint on the unstable part
of the dynamics. Thanks to the addition of this constraint we
were able to study the feasibility properties of the scheme,
which offers guarantees, but more importantly allows to
devise several functional improvements, such as feasibility-
based step timing adaptation [14], and more general online
footstep adaptation techniques [15], [16].

In this work, we propose Joint-level IS-MPC (JIS-MPC):
a whole-body MPC scheme taking joint accelerations as
control inputs on the robot. We define a set of centroidal
dynamic and kinematic tasks that allows the robot to produce
a stable gait, and show an efficient way of formulating the
associated Quadratic Program (QP). We enforce joint limits,



ZMP and stability constraints, and perform a feasibility study
that opens the possibility to use the feasibility-based tools we
developed for standard IS-MPC on the proposed method with
minimal modifications.

We believe our approach offers a series of advantages with
respect to the state of the art. For example, when comparing
to [11], we do not need to resort to a simplified model to
increase the length of the horizon, and we include joint
position constraints that are shown to be essential when
preforming challenging gaits. Compared to [8], we are able
to generate whole-body motions including the upper body
(torso and arms), instead of just the lower body, and show
how this is useful for disturbance rejection. Moreover, we
are not subject to the limitations of DDP in enforcing hard
constraints.

We validate the effectiveness of the proposed method with
dynamic simulations on the Kawada HRP-4 robot. We show
that, compared to a standard IS-MPC using the simplified
model, JIS-MPC is able to produce substantially faster gaits,
both in terms of stride length and of step timing. It is also
able to better tolerate disturbances, thanks to its ability to
use angular momentum to more accurately determine the
position of the ZMP. In order to prove the usefulness of
studying the feasibility properties, we show that tracking the
center of the feasibility region produces better results rather
than tracking the center of the ZMP constraint, which is the
standard alternative.

The paper is organized as follows. Section II describes
in general terms the proposed JIS-MPC control scheme,
while Section III details the prediction model. The con-
straints presented in Section IV are enforced in the MPC,
see Section V. These are used in the feasibility analysis
provided in Section VI while simulation results are discussed
in Section VII. Finally, some future work is mentioned in
Section VIII.

II. THE PROPOSED APPROACH

Consider the problem of generating joint commands for
the humanoid robot so as to execute an assigned footstep
plan, i.e., step over a sequence of given footsteps according
to a specified timing. To this end, we propose an MPC
scheme with a mixed kinematic-dynamic prediction model.
On the one hand, we use centroidal dynamics [17] to relate
the variation of the linear and angular momentum of the
humanoid to the position of the ZMP, which is featured in the
balance condition. On the other hand, the kinematic part of
the model expresses all quantities of interest in terms of joint
variables, which are taken as decision variables to account
for the mechanical limitations of the actual robot, such as
joint limits.

To successfully achieve locomotion, we define a set of
tasks that will be either enforced as constraints or tackled
via the cost function of our MPC formulation:

• keeping the ZMP inside the support polygon;
• keeping the support foot still on the ground;
• executing the swing foot trajectory;

• ensuring that the resulting CoM trajectory is bounded
with respect to the ZMP.

Additional tasks are considered, which may either improve
the quality of the resulting gait, such as

• keeping an upright torso orientation;
• controlling the vertical angular momentum to reduce

the vertical component of contact torques, limiting the
chance of slipping;

or allow the robot to perform other operations, e.g.,
• manipulating an object;
• controlling the head of the robot to orient its gaze.
The only control inputs of our model are joint accelera-

tions. While in the literature contact forces are commonly
included among the decision variables, we enforce dynamic
consistency via a constraint on the ZMP. This has the ad-
vantage of reducing the number of variables; in fact, contact
wrenches are 6-dimensional vectors which, once propagated
over the entire horizon, can amount to hundreds of additional
decision variables. Clearly, with this choice we forgo the
possibility of enforcing friction constraints; however, in our
experience, friction is rarely a limiting factor when walking
on flat ground, so that we reserve this extension for future
works in more challenging environments.

Joint accelerations are mapped to the different tasks via
linearized differential kinematics. This allows to formulate
our MPC optimization problem as a QP, with obvious
advantages in computational efficiency. The resulting QP is
in condensed form, i.e., states do not appear as decision
variables.

In the proposed approach, it is assumed that the footstep
plan is generated by an external module and not altered by
the MPC. To preserve the reactivity of the gait generation
framework in the presence of perturbations, we could rely
on the use of a real-time planner [16] which adapts footsteps
and timing so as to always guarantee feasibility of the MPC;
more on this in the concluding section.

III. MODELING

In this section, we introduce prediction models for both
the robot and the various tasks of interest.

A. Dynamic model

Consider a humanoid robot with n revolute joints. Its
configuration is described by q = (qb, qj), where qb ∈
SE(3) is the pose of the floating base (e.g., the torso)
and qj ∈ (SO(2))n is the configuration of the joints.
Moreover, let ν = (vb,ωb, q̇j) be the (n+6)-dimensional
velocity vector, where vb and ωb denote the linear and
angular velocities of the floating base.

Since joint accelerations q̈j are the control inputs u ∈ Rn,
we can directly write

ν̇ =

(
αb

u

)
, (1)

where αb is the 6-dimensional vector of linear and angular
accelerations of the floating base. Clearly, αb is not directly
controllable; its evolution must be consistent with the contact



sequence prescribed by the footstep plan. In particular, the
pose of the support foot psf (q) is subject at all times to a
constraint of the form

psf (q) = constant, (2)

which, together with appropriate conditions on the ZMP,
ensures a stable contact [18]. Continuous satisfaction of this
constraint leads to

Jsf (q)ν̇ + J̇sf (q,ν)ν = 0, (3)

where Jsf (q) is the contact Jacobian, i.e., the 6 × (n + 6)
matrix such that ṗsf (q) = Jsf (q)ν. Equations (1) and (3)
together express the second-order kinematic model of the
robot in contact.

The second part of the model is the centroidal dynam-
ics, i.e., the dynamics of the centroidal momentum hc =
(mṗc, l), with m the mass of the robot, pc = (xc, yc, zc)
the CoM position, and l = (lx, ly, lz) the angular momentum
of the robot at the CoM. We use the centroidal momentum
matrix [17] to relate hc to the joint velocities:(

mṗc
l

)
=

(
Ac(q)
Al(q)

)
ν. (4)

By differentiating (4), we obtain an expression depending on
our control inputs:(

mp̈c
l̇

)
=

(
Ac(q)
Al(q)

)
ν̇ +

(
Ȧc(q)

Ȧl(q)

)
ν. (5)

Predicting the evolution of the centroidal momentum is
necessary for ensuring the dynamic realizability of contacts.
In fact, on flat ground, unilaterality of the contact forces
requires that the ZMP pz = (xz, yz, 0) is always inside the
support polygon. As shown in [2], the position of the ZMP
is given by(

xz

yz

)
=

(
xc

yc

)
− zc

z̈c + g

(
ẍc

ÿc

)
+

1

m(z̈c + g)

(
−l̇y
l̇x

)
, (6)

where g = 9.81 m·s−2 is the gravity acceleration.

B. Task prediction models

In the following, we define a variety of tasks that will
either be directly regulated in the MPC cost function, or used
to constrain the robot motion. These include configuration-
dependent tasks, that we denote as kinematic tasks, as well
as the centroidal angular momentum task, and the ZMP task.
For each of these, we are interested in finding a relationship
affine in ν̇. In the following, we denote with superscript (·)k
the related quantity at time tk.

1) Kinematic tasks: Consider a generic configuration-
dependent task r(q) and the corresponding differential kine-
matics as r̈(q) = Jr(q)ν̇+J̇r(q,ν)ν. In order to predict the
evolution of the tasks over the control horizon, we linearize
around the auxiliary trajectory q̄(t), ν̄(t), t ∈ [tk, tk+C ],
defined as the MPC solution1 computed at time tk−1, and

1At the start, when no previous solution is available, the algorithm is
warmstarted using an initial guess.

integrate using the linear time-varying prediction model(
ri+1

ṙi+1

)
=

(
I δtI
0 I

)(
ri

ṙi

)
+

(
δ2t I/2
δtI

)
r̈i, (7)

with r̈i = Jr(q̄
i)ν̇i+J̇r(q̄

i, ν̄i)ν̄i, for i = k, . . . , k+C−1.
By propagating (7) over the control horizon from an initial
condition (rk, ṙk), we can express the predicted task position
Rk+1 = (rk+1, . . . , rk+C) as:

Rk+1 = ΨrR̈
k +ψk

r , (8)

where R̈k = (r̈k, . . . , r̈k+C−1) is the vector of task acceler-
ations depending on the predicted inputs, Ψr turns out to be
a lower triangular strictly positive matrix, and ψk

r denotes
the forward propagation of the current state.

The considered kinematic tasks include any relevant robot
link, such as the left/right foot pose plf , prf , the torso ori-
entation ϑt, as well as possibly the hands or the orientation
of the head, and the joint configuration qj . Additionally, we
leverage the same formulation to predict the CoM position
pc, which will be used to control the CoM height zc and to
express the ZMP position (see Sect. III-B.3).

2) Angular momentum: In addition to the kinematic tasks,
we are interested in regulating the centroidal angular momen-
tum of the system. In this case, we use a first-order model,
as in the second row of (7):

li+1 = li + δtl̇
i, (9)

with l̇i = Al(q̄
i)ν̇i+Ȧl(q̄

i, ν̄i)ν̄i, for i = k, . . . , k+C−1.
3) Zero Moment Point: By setting a constant CoM height

zc in (6), the relationship between the ZMP position on the
ground plane and centroidal quantities becomes linear:(

xi
z

yiz

)
=

(
xi
c

yic

)
− 1

η2

(
ẍi
c

ÿic

)
+

1

mg

(
−l̇iy
l̇ix

)
, (10)

for i = k, . . . , k + C − 1, where η =
√
g/zc. Defining

Ẍk
c = (ẍk

c , . . . , ẍ
k+C−1
c ), L̇k

y = (l̇ky , . . . , l̇
k+C−1
y ) and

Xk
z = (xk

z , . . . , x
k+C−1
z ) equation 10 becomes

Xk
z =Xk

c +− 1

η2
Ẍk

c − 1

mg
L̇k

y .

Using (8), the CoM trajectory Xk
c can be related to the task

accelerations using its prediction matrix Ψ, leading to

Xk
z =MẌk

c +Mly L̇
k
y + µk

x, (11)

where Mly = − 1
mgI and µk

x = (xk
c , x

k
c + δtẋ

k
c , . . . , x

k
c +

δt(C − 1)ẋk
c ). Matrix M has a particular structure which

will be used in the feasibility analysis. Let Ψij be the (i, j)
entry of Ψ, then M can be written as

M = − 1

η2
I +


0 0 . . . 0

Ψ11 0
. . .

...
. . . . . .

...
ΨC−1,1 . . . ΨC−1,C−1 0

 .

Being M by construction lower triangular, with a strictly
negative diagonal and positive off-diagonal terms, −M is a
non-singular M-matrix [19]. In (11), accelerations ν̇ appear
explicitly using (5) evaluated on the auxiliary trajectory.



IV. CONSTRAINTS

In this section, we detail the different constraints that are
enforced in the MPC.

A. ZMP constraint

Aside from the kinematic condition (2), in order to ensure
contact stability it is also necessary that the ZMP remains
strictly2 inside the support polygon, i.e., the convex hull of
contact surfaces. We employ a conservative approximation
of the polygon in double support, which we refer to as
moving box [20]. The moving box is a rectangular region of
fixed shape and size, which corresponds with the footprint
during single support phases, and shifts between consecutive
footprints during double support phases. If the orientation of
the box is constant over the horizon3, the ZMP constraints
are decoupled along x and y and can be written as(

xmin,i
z

ymin,i
z

)
≤

(
xi
z

yiz

)
≤

(
xmax,i
z

ymax,i
z

)
, i = k . . . , k + C − 1.

For convenience, we express the constraints in matrix form
separately for the x, y components. Recalling (11), the ZMP
constraint for the x coordinate is then

Xmin,k
z ≤MẌk

c +Mly L̇
k
y + µk

x ≤Xmax,k
z , (12)

with Xmin,k
z and Xmax,k

z collecting the bounds over the
control horizon.

B. Stability constraint

Controlling the ZMP is necessary for the stability of
contacts, but it is not enough to produce a stable gait since
the CoM may still diverge [21]. We therefore use the CoM
stability constraint introduced in [13].

The unstable component of the CoM dynamics can be
isolated by performing the change of coordinates

xu = xc +
ẋc

η
, (13)

often referred to as the Divergent Component of Motion
(DCM). To ensure bounded ZMP-CoM trajectories we en-
force a terminal constraint on (xu, yu). For xu it writes as

xk+C
u = xk+C

c +
ẋk+C
c

η
= x̃k+C

u

where x̃k+C
u is defined as

x̃k+C
u = η

∫ ∞

tk+C

e−η(τ−tk+C)xz(τ)dτ. (14)

In order to compute this term, we assume to have an
available approximation x̃z(t) in [tk+C , tk+H ] of the future
ZMP trajectory derived from the footstep plan, and that that
x̃z(t) = x̃k+H

z for t ≥ tk+H . In the terminology of [13], this
corresponds to using an anticipative tail.

2Normally, strict inequalities cannot be enforced, but the available area
for the constraint is reduced from the full contact surface.

3The constant orientation is automatically verified if the robot walks in
a straight line, but can also be obtained when the robot rotates, by slightly
shrinking the box with respect to the footprint.

Here we also assume that l̇x and l̇y are equal to zero
for t ≥ tk+C . In principle, one could conjecture a future
trajectory for l̇, but since it will be regulated to zero, this
turns out to be a sensible choice. We can now split the
integral over two time intervals and compute

η

∫ ∞

tk+H

e−η(τ−tk+C)x̃k+H
z dτ = e−η(tk+H−tk+C)x̃k+H

z︸ ︷︷ ︸
x̃∞
z

.

which plugged in (14), gives

x̃k+C
u = η

∫ tk+H

tk+C

e−η(τ−tk+C)x̃z(τ)dτ + x̃∞
z .

Finally, assuming that x̃z is a piecewise-constant anticipative
tail, we have

x̃k+C
u = (1− e−ηδt)

H−1∑
i=C

e−iηδt x̃k+i
z + x̃∞

z .

The stability constraint can then be written as a function of
the CoM accelerations Ẍc as:

xk+C
u = ΦuẌ

k
c + φk

x = x̃k+C
u , (15)

with Φu being the last row the matrix Ψu which describes
the prediction of xu over the control horizon and φk

x =

xk
c +

(
1
η + Cδt

)
ẋk
c . Matrix Ψu is obtained by applying the

change of coordinates (13) to the CoM prediction model of
the form 8. In (15), accelerations ν̇ appear explicitly using
(5) evaluated on the auxiliary trajectory. Similar considera-
tions can be made for the y coordinate.

C. Joint limits

In order to make the predicted motion kinematically
feasible, we impose position limits on the joints over the
prediction horizon:

qmin
j ≤ qij ≤ qmax

j i = k + 1, . . . , k + C. (16)

D. Contact constraint

The contact constraint (2) is enforced over the control
horizon by imposing zero velocity to the support foot:

ṗisf = 0, i = k + 1, . . . , k + C. (17)

V. JIS-MPC

This section will define the QP to be solved at each
iteration by JIS-MPC.

The cost function includes terms aimed at executing
the kinematic tasks, minimizing the angular momentum l,
tracking the feasibility region center f̃ , keeping a constant
CoM height zc,d, and regulating the upper-body joints to
their initial configuration q0j for resolving redundancy.

The feasibility-related terms f and f̃ will be defined
in Sect. VI, where we will conduct a centroidal feasibility
analysis of the proposed MPC scheme. Even though it might
seem like their inclusion could lead to a recursive definition,
this is not the case. In fact, f̃ does not depend on the cost
function because the feasibility of any QP is fully determined
solely by its constraints.



Let the decision variables be wk = (ν̇k, ..., ν̇k+C−1). At
time tk, JIS-MPC solves the following QP:

min
wk

k+C∑
i=k+1

∥∥ri − rid∥∥2Wr
+
∥∥q̇ij∥∥2Wq̇j

+
∥∥li∥∥2

Wl
+
∥∥∥f i − f̃ i

∥∥∥2
Wf

+

k+C−1∑
i=k

∥∥ν̇i
∥∥2
Wν̇

subject to:
• stability constraint (15) for x and y,
• ZMP constraints (12) for x and y,
• joint limits (16),
• contact constraint (17),

where r indicates the stack of kinematic tasks, i.e., the
torso orientation, feet pose, joint positions, and CoM height,
obtained following (8).

After computing the solution, the first optimal acceleration
ν̇∗,k is selected from the optimal sequence w∗,k, and the
joint commands u∗,k are applied to the system. Then,
the optimal sequence is integrated to generate an auxiliary
trajectory q̄(t), ν̄(t) for the next iteration.

VI. FEASIBILITY ANALYSIS

We are interested in studying the feasibility of the JIS-
MPC optimization problem. To do so, we consider its min-
imal set of constraints, i.e., the stability constraint (15) and
ZMP constraint (12). This will allow us to characterize a
feasibility region that is defined at the level of the centroidal
dynamics, thus independent on the joint configuration. While
this is a simplification, it still provides significant value.
In fact, even though we are operating at the joint level,
the centroidal state turns out to be the major contributor
to determining the feasibility of the QP. The reason for
this is given by the fact that the robot is very redundant,
and kinematic limitations (including contact constraints) are
unlikely to limit centroidal motions in typical locomotion
scenarios. In fact, these constraints are actively enforced in
the MPC and we have empirically verified that in our tests the
success of the QP was accurately predicted by the centroidal
feasibility region.

Moreover, in the present analysis we neglect the angu-
lar momentum contribution to the ZMP constraint, setting
Mlx = Mly = 0. Indeed, although this term is important
for performance and robustness, it would be necessary to
impose proper bounds on it to carry out a similar analysis,
which we reserve for future work.

A. Centroidal feasibility region

Let fk
x = φk

x − ΦuM
−1µk

x, a quantity4 which depends
on the current CoM position and velocity (xk

c , ẋ
k
c ), and

similarly define fk
y . By combining the stability (15) and ZMP

constraints (12), it is possible to find lower/upper bounds for
fk = (fk

x , f
k
y ) that ensure the MPC being feasible.

4This quantity represents the predicted free evolution (i.e., with xz = 0)
of the unstable component of the dynamics xu at the end of the prediction
horizon.

Proposition 1: If matrix Ac(q̄
k+i), for i = 0, . . . , C − 1

is nonsingular5, then, JIS-MPC is feasible at time tk if and
only if the current state (qk,νk) is such that fk ∈ Fk, where

Fk =

{
(fx, fy) :

fmin,k
x ≤ fx ≤ fmax,k

x

fmin,k
y ≤ fy ≤ fmax,k

y

}
,

with feasibility region bounds

fmin,k
x = x̃k+C

u −ΦuM
−1Xmin,k

z

fmax,k
x = x̃k+C

u −ΦuM
−1Xmax,k

z ,
(18)

and equivalent definitions for the y coordinate.
Proof. The assumption on the CoM Jacobians ensures suf-

ficient redundancy such that there exist some joint commands
that realize any given CoM acceleration profile Ẍk

c . Then,
we need to prove that if the current state is such that fk ∈ Fk

there exists a solution that satisfies both stability and ZMP
constraints, and that there are no such trajectories if fk is
outside of the feasibility region.

To prove necessity, assume that fk /∈ Fk. For the x
coordinate, either fk

x > fmax,k
x or fk

x < fmin,k
x . Let us first

account for the former, that is

fk
x = fmax,k

x +∆fx, ∆fx > 0, (19)

and assume that there exists an acceleration profile Ẍ∗
c for

which both the stability and the ZMP constraints (15) and
(12) are satisfied. As a consequence of the latter, it must be
that

MẌ∗
c + µk

x =Xmax,k
z −∆z

with ∆z a vector of nonnegative components. Left-
multiplying by M−1 and rearranging we obtain

Ẍ∗
c −M−1(Xmax,k

z − µk
x) = −M−1∆z. (20)

Let

Ẍmin,k
c =M−1

(
Xmin,k

z − µk
x

)
Ẍmax,k

c =M−1
(
Xmax,k

z − µk
x

)
,

(21)

then (20) becomes

Ẍ∗
c − Ẍmax,k

c = −M−1∆z.

Left-multiplying by Φu, we obtain

Φu(Ẍ
∗
c − Ẍmax,k

c ) = −ΦuM
−1∆z ≥ 0. (22)

This inequality holds because Φu is a positive matrix by
definition, −M−1 is a positive matrix, since −M is a
nonsingular M-matrix, and ∆z is nonnegative by definition.
We now prove that actually the left side of (22) is strictly
negative, leading to contradiction. In fact, imposing the
stability constraint (15) with Ẍk

c = Ẍ∗
c and recalling the

definition of fk
x , (18), and (19), one obtains:

ΦuẌ
∗
c + fmax,k

x +ΦuM
−1µk

x︸ ︷︷ ︸
x̃k+C
u −ΦuM−1(Xmax,k

z −µk
x)

+∆fx = x̃k+C
u .

5The Jacobians being full rank is actually a requirement only for
sufficiency. Also, empirical results showed this to be the case, thanks to
the high degree of redundancy of the system.



which combined with (21) leads to

ΦuẌ
∗
c + x̃k+C

u −ΦuẌ
max,k
c +∆fx = x̃k+C

u

Φu(Ẍ
∗
c − Ẍmax,k

c ) = −∆fx < 0.

Thus, it is impossible that Ẍ∗
c satisfies both constraints if

fk
x > fmax,k

x . The same reasoning can be repeated for the
case fk

x < fmin,k
x and for the y coordinate, proving necessity.

We now prove that if fk
x ∈ [fmin,k

x , fmax,k
x ], a feasible

solution Ẍ∗
c exists. In fact,

∃αx ∈ [0, 1] : fk
x = αxf

min,k
x + (1− αx)f

max,k
x .

Thanks to the convexity of the constraints, it is then possible
to prove that the acceleration profile

Ẍ∗
c = αxẌ

min,k
c + (1− αx)Ẍ

max,k
c (23)

satisfies the stability and ZMP constraints along x. The same
reasoning can be applied to the y coordinate.

B. Tracking of the feasibility region center

Having defined the feasibility region Fk, it is possible
to compute its center f̃k, which depends only on the
predicted ZMP bounds. This can be used by the MPC to
favor trajectories that will keep the system far from the
bounds of the feasibility region to improve robustness. In
fact, assuming that the time horizon over which the ZMP
bounds are available is P ≥ C + H , the feasibility region
center over the control horizon (for i = k + 1, . . . , k + C)
can be computed as

f̃ i
x =

fmin,i
x +fmax,i

x

2
= x̃i+C

u +
1

2
ΦuM

−1
(
Xmin,i

z +Xmax,i
z

)
for the x coordinate, and similarly for y.

VII. RESULTS

We performed a series of dynamic simulations on a
Kawada HRP-4 robot using the DART simulation environ-
ment. For comparison, each simulation is replicated using the
same settings on IS-MPC with fixed footsteps. Joint limits
are enforced based on the specifications contained in the
URDF description.

Since the simulations are dynamic, CoM position and
velocities are affected by disturbances, such as imperfect
contacts and external forces. CoM measurements are passed
through a Kalman filter, whose model is a double integrator
with CoM acceleration as input. Interestingly, although IS-
MPC does not work if the measures are not filtered, JIS-MPC
does work correctly, and the filter is only added in order to
make the comparison fair.

We first show a typical gait followed by more challenging
ones. Moreover, we test the robustness of the method by
applying impulsive disturbances of increasing intensity, and
report detailed comparative results. Animations of all the
simulations are also reported in the accompanying video6.

6Available at https://youtu.be/Fa6iy3mUcBY

Fig. 1. Simulation snapshots for the standard gait obtained with average
speed 0.3 m/s and step duration 1 s.

Settings: The number of actuated joints is n = 20, having
locked some redundant joints in the upper body to reduce
the number of variables. The same parameters and weights
are used in all simulations: δt = 0.1 s, TC = 1 s, TH = 2 s,
Wν̇ = 10−4I , Wf = 0.5I , Wl = diag{10−4, 10−4, 1},
Wr = diag{Wϑt ,Wlf ,Wrf ,Wzc ,Wqj} with Wϑt =
10−2I , Wlf = Wrf = 500I , Wzc = 1; for the joints,
we only regulate the chest pitch and yaw, the left/right
shoulder pitch and roll, elbow pitch and hip yaw, so Wqj =
10−3diag{10, 5, 10, 50, 5, 5, 10, 50, 5, 5,010×1}, and Wq̇j =
10−2Wqj . The size of the ZMP constraint is 0.1 m along x
and y.

Reference trajectories: Footstep plans are generated by
setting the duration of a step and calculating the position
around a straight line path in such a way to achieve a desired
average speed. The desired swing trajectory follows a linear
profile for x and y and a parabolic profile along z, with
maximum height equal to 0.06 m. Since we only report
simulations in which the robot walks along the x axis, the
torso reference angle is always assumed to be equal to the
starting orientation. Unless stated otherwise, the desired CoM
height is zc,d = 0.77 m.

Implementation details: The code is accessible via an
open-source repository7. All kinematic and dynamic quan-
tities of the model used for control are obtained using
the Pinocchio library. Optimization problems are solved
using hpipm. The average computation time in a typical
simulation is around 5 ms, including the QP preparation, on
an AMD Ryzen 9 5900X (4.8 GHz) with 16 GB DDR4 3600
MHz running Ubuntu 22.04 LTS, making the scheme fully
compatible with real-time requirements.

A. Standard gait

The standard gait is generated with an average speed
of 0.3 m/s and step duration of 1 s, divided in 0.7 s for
single support and 0.3 s for double support. Snapshots of
the simulation are reported in Fig. 1. The robot is able to
execute the footstep plan, with both the lower and upper
body being involved in the gait. Note that the arm swing
motion in opposition to the foot swing only arises due to the
minimization of the vertical angular momentum lz .

7https://github.com/DIAG-Robotics-Lab/joint_level_ismpc



Fig. 2. Simulation snapshots for the long-step gait, with average speed 0.5 m/s and step duration 1 s: the motion is executed successfully when joint
position limits are enforced (left), while it fails if these are removed due to the knee reaching a singular configuration (right).

Fig. 3. Simulation snapshots for the short-step gait, with average speed 0.3 m/s and step duration 0.6 s: the motion is natural when tracking the center
of the feasibility region (left), but becomes very unnatural when tracking the center of the ZMP constraint (right).

Standard IS-MPC can generate a stable gait with these
settings, however the arm swinging motion is not generated
by itself and must be superimposed if one wishes to obtain
a natural-looking gait.

B. Challenging gaits

We now report simulations for more challenging gaits, in
which standard IS-MPC is unable to produce a stable solution
due to the accelerations becoming too high and violating the
assumptions of the LIP model.

1) Long-step gait: first is a gait with average speed of
0.5 m/s and same step duration as the standard gait, shown in
Fig. 2. In this case, the desired CoM height has been lowered
to zc,d = 0.76 m to make the task kinematically feasible.
This results in longer leg swings, and demonstrates how the
introduction of joint position limits is necessary to perform
movements that require the full kinematic capabilities of the
robot. In fact, the very same settings fail if joint limits are
removed, because the knee joint reaches a singularity.

2) Short-step gait: the second is a gait with average speed
of 0.3 m/s and step duration of 0.6 s, divided in 0.4 s for
single support and 0.2 s for double support. The resulting
motion, shown in Fig. 3, is characterized by higher-frequency
steps, requiring large vertical accelerations of the swing foot.

Interestingly, these settings provide a testbed for evaluating
the usefulness of the tracking of the feasibility region center.
In fact, if this is removed and replaced with a classic term
in which the ZMP tracks the center of the moving box,
then the generated movements become very unnatural, as the
robot tilts its torso backwards to gain angular momentum for
moving the ZMP. On the other hand, we have not experienced
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Fig. 4. Comparison of robustness to impulsive disturbances of duration
0.1 s applied from various directions with intensity of [30, 180] N. Angles
represent the direction from which the force is coming from. Note how the
proposed method is able to tolerate larger disturbances, indicated by the
colored region, especially when applied from the 3rd quadrant.

such issues when tracking the center of the feasibility region,
where the angular momentum is not involved. Indeed, one
could tune the cost function weights, to limit this behavior
when tracking the ZMP, by penalizing upper-body move-
ments; however, such tuning would be very specific to the
task and ultimately detrimental to robustness, as upper-body
movements are shown to be crucial in rejecting disturbances.

C. Robustness to impulsive disturbances

Finally, we performed a simulation campaign in order to
evaluate the ability to react to an impulsive force. In this
case, the footstep plan is generated with an average speed
of 0.2 m/s and same step duration as the standard gait.
Disturbances from 12 different directions, equally distributed



Fig. 5. Snapshots of the robot motion after being pushed with a force of 140 N from the 225◦ direction (red arrow).

around the robot, are applied at the torso. The magnitude of
the force starts at 30 N and goes up to 180 N in increments of
10 N. All pushes are applied at t = 3 s for a duration of 0.1 s.
Again, we compare with standard IS-MPC: we report the
maximum force that each method was able to sustain for each
direction in the radial plot of Fig. 4, which shows the clear
advantage of JIS-MPC. In fact, in accordance with the results
of [11], the introduction of the angular momentum allows
the robot to better react to disturbances, as it translates to a
more accurate ZMP prediction. This is particularly evident
for pushes coming from the rear-right direction (3rd quadrant
of Fig. 4). An instance of these is shown in Fig. 5 where,
upon receiving the push, the robot is initiating a swing with
the right foot.

VIII. CONCLUSIONS

We proposed a whole-body MPC based on a centroidal
dynamics + kinematics formulation, enforcing a stability
constraint. The proposed scheme offers significant perfor-
mance and robustness improvements over an MPC-based
on a simplified model. Our feasibility study (see Sect. VI)
will let us utilize the same feasibility-driven results that we
developed for standard IS-MPC, with minimal adaptation.

Future work will include:
• exploiting the feasibility information for online footstep

adaptation;
• extension to 3D motions of the CoM in a world of stairs

[20], where direct access to joint variables is crucial for
clearing taller steps;

• extending the feasibility study to consider the angular
momentum contribution, as well as the presence of other
constraints (e.g., joint limits and contact constraints);

• extending the work to torque-controlled robots.
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