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Singularity-free trajectory tracking for steerable
wheeled mobile robots

Michele Cipriano, Giuseppe Oriolo, Andrea Cherubini

Abstract—Omnidirectional robots can be realized using
Mecanum wheels or using a suitable arrangement of conventional
steerable wheels. The latter group, known as omnidirectional
steerable wheeled mobile robots (SWMRs), are known to have a
lower cost with respect to the former, and to be more robust
thanks to the presence of conventional wheels. Nevertheless,
their modeling and control is complex, due to the presence
of singularities in their representation. This paper proposes a
framework for trajectory tracking of SWMRs using Nonlinear
Model Predictive Control (NMPC) based on a real-time iteration
scheme. The NMPC generates feasible motions for the robot,
avoiding model singularities of the mobile base, together with
bounds on driving and steering velocities on the wheels. Our
NMPC works alongside a finite state machine, responsible for
singularity avoidance during starting and stopping motion, and
a state trajectory generation scheme based on dynamic feedback
linearization, which makes our framework capable of tracking
any trajectory. Our approach is validated on a Neobotix MPO-
700 on various trajectories.

Index Terms—Motion Control; Wheeled Robots

I. INTRODUCTION

MNIDIRECTIONAL SWMRs (Fig. 1) have greater ma-
neuverability than other wheeled mobile robots [1],

can transport higher payloads with respect to omnidirectional
robots equipped with Mecanum wheels or with omni wheels
[2], and can operate also on inclined surfaces. Nevertheless,
modeling and controlling these robots is not trivial, due to the
presence of model singularities [3], which need to be handled
with particular care, to avoid affecting the robot functionalities.
While many different approaches for modeling and control
of omnidirectional SWMRs exist in the literature, none of
them fully exploits the potentialities of these platforms. The
main property of this kind of robots, indeed, is that their
Instantaneous Center of Rotation (ICR) can be located any-
where on the plane [4]. This causes a parametrization, based
on two-dimensional Cartesian [5] or on polar coordinates
[6], leading to singularities, which can make it difficult to
develop a control scheme. Sorour et al. [3] developed an ICR-
based controller which handles singularities of the steering
axes. That work was further improved in [7], where the
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Fig. 1: Neobotix MPO-700 steerable wheeled mobile robot.

singularity of the ICR at infinity is taken into account through
a complementary route strategy. Although these approaches
consider all parameterization singularities, the velocity and
acceleration bounds are only considered at the level of the
ICR, often resulting in undesired motions with high velocity
and high acceleration of the steerable wheels. A singularity-
free representation is presented in [8] and [9], and used in [10],
where a singularity-free motion controller is developed. Here,
time scaling is performed, to satisfy velocity and acceleration
constraints on the wheels, resulting in non-optimal motion
execution.

In this paper, we consider the problem of trajectory tracking
for an omnidirectional SWMR, equipped with two or more
actuated caster wheels. The robot is required to follow a user-
defined reference pose trajectory in an environment free of
obstacles, without violating the driving and steering velocity
constraints of each wheel. Trajectory tracking in robotics is
solved traditionally with a variety of methods, see [11], [12].
Here, we propose a framework which makes use of NMPC
[13]. While many existing works use MPC on differential
drive robots [14], on autonomous vehicles such as cars [15]
or tractor-trailers [16], and on wheeled-legged robots [17], the
application of MPC to SWMRs has yet to be explored.

Our NMPC is supported by:

e a finite state machine, responsible for starting and stop-
ping the motion of the robot, while guaranteeing that it
never encounters model singularities,

e a state trajectory generation scheme based on dynamic
feedback linearization [18], which generates reference
configurations and control inputs for the NMPC itself,
given the reference pose trajectory.
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The NMPC is formulated as a nonlinear programming prob-
lem, and solved using the real-time iteration scheme [19].

The contributions of our paper, with respect to the reviewed
literature, are the following:

o« we propose a framework for trajectory tracking of
SWMR, which generates motions that satisfy driving and
steering velocity bounds on all wheels;

e our NMPC is, to the best of our knowledge, the first
model predictive controller to be applied to SWMRs.

Furthermore, considering the taxonomy of singularities pre-
sented in [3], our framework:

« cannot encounter the singularity of ICR on one of the

steerable axes, thanks to the NMPC constraints;

« cannot encounter singularities due to the mobile base’s
zero velocity, thanks to the finite state machine (which, as
will be explained in Sect. III-A, makes use of singularity-
free kinematic models);

« does not present a singularity when the ICR is at infinity,
thanks to our parametrization.

The paper is structured as follows. Section II presents the
kinematic model of the mobile base, and discusses in detail its
singularities. Section III introduces the proposed framework,
describing the finite state machine, the state trajectory gener-
ation scheme, and the NMPC. Section IV and V validates the
proposed framework on multiple simulations and experiments,
which have been performed using a Neobotix MPO-700.
Section VI concludes the paper, and discusses future works.

II. KINEMATIC MODEL

In this section, we will develop the kinematic model of a
SWMR, following the analysis presented in [1]. Note that,
while our mobile base is equipped with off-centered steerable
wheels, its kinematic model is identical to the one described
in [1], which considers centered steerable wheels. In general,
when using off-centered wheels one can expect greater ma-
neuverability and higher payload.

Consider an SWMR equipped with n > 2 steerable wheels
driven by independent motors. With reference to Fig. 2, we
will denote with £ = (z,y,0) € SE(2) the pose of the mobile
base, with (x,y) the position of a representative point, and
0 its orientation. Denote by S; the point where the axis of
the i-th joint intersects the plane of motion, and by W; the
projection on the same plane of the i wheel center. Let p?
and p!V respectively be their positions in the world frame
F, and B; be the steering angle of the i-th wheel measured
with respect to the mobile frame F’ (see Fig. 2). Each wheel
is also controlled by two independent velocities, the driving
velocity v}V and the steering velocity w;, which are taken as
control inputs. We define the whole robot configuration via

q = (& 8), where 8 = (b1, ..., Bn).

The position of the i-th steering joint S; is defined as

p) = (;) + R(0) <2> :

and the position of the i-th wheel W; is defined as

ol ot v rio ) (0.

A :
F /

ICR ®

x
Fig. 2: Schematic model of an SWMR. Note that, even if
the figure represents a robot equipped with four wheels, our
approach is generic and works with an arbitrary number of
wheels.

where R € SO(2) is a rotation matrix, and with b;,a;, d
defined in Fig. 2.

Under to the assumption of no slipping (i.e., wheel contact
point velocity orthogonal to wheel zero motion line), each
wheel is subject to the Pfaffian constraint:

(—sin(0 + B;) cos(0+ B;)) p;” =0. (1)

By combining the above equations, it is possible to rear-
range the n constraints in matrix form

—sin(@ 4 B1) cos(@+pB1) A 0...0
—sin(0 4 B2) cos(@+B2) A 0...0

: : : : q=0, @
—sin(0+ B,) cos(@+B,) A, 0...0

AT (q)

with A; = b; cos B; + a; sin 3;.

For the mobile base to perform a motion without slipping,
all wheel axles must instantaneously intersect at the same
point, the ICR. The existence of an ICR can also be seen
as a geometric constraint (ICR constraint), which requires all
wheel orientations to be coordinated. In the following, we will
study how the ICR constraint affects the robot mobility.

A. ICR constraint satisfied

Whenever the robot configuration is such that there exists an
ICR, it is possible to derive a kinematic model through the use
of coordinating functions for 3; [1], with 4 > 2. The idea is to
let the ICR be defined by the trajectory of . In the following,
we will assume that £ is twice differentiable and persistent
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(i.e., the platform is always in motion). Considering the i-th
constraint in (2) and solving for (; yields the coordinating
function!

—a':sin@—kycos@—i—bié

i ,. = arctan —,
fil&.€) Zcosf + ysinf — a,;0

1=2,...,n.
3)
The last n — 1 constraints of (2) are automatically satisfied

as a result, and it is hence possible to consider only the first
constraint and the first four coordinates:

X

(=sin(0+81) cos(0+58) A1 0)| 5 =0,

p1

Assuming the robot is controlled at the acceleration level,
it is easy to obtain the reduced kinematic model

i = v cos(0 + B1) + w(by sin b + ay cosh)
§ = vP sin(@ + B1) + w(—by cos @ + ay sin h)

0=w 5)
Blzwl
Of:a
w = G,

with x = (z,v, 0, 81, v{,w) denoting the robot state, and u =
(a,ay,w1) denoting the control inputs. In the following, we
will denote model (5) as x = f(x, u).

Note that the angular velocity w does not represent a direct
input, but it is realized by imposing to [3; the orientations
specified by

o7 sin 1 + w(bi — by)

vi cos By +wlay —a;)’

(6)

Bi(v{,w, B1) = arctan

which can be obtained from (3).

Coordinating functions present a singularity whenever S; is
stationary (i.e., pf = 0). This needs to be considered when
designing a controller. Note that this occurs only in two cases:
when the platform is stationary (q)f = 0,w = 0) or when the
ICR position coincides with that of one of the S;’s (vf =
(by — b;)/sin By = (a; — ay1)/ cos B1).

If the position of the ICR does not change through time
(which happens when all 8; = 0), and if the ICR does not
coincide with any of the joint positions S;, all coordinating
functions are free of singularity, as long as the platform is
moving.

B. ICR constraint not satisfied

Whenever the robot configuration is such that no ICR exists,
the null space of AT(q) in (2) reduces to the trivial one [1].
The kinematic model of the robot is

Bi = wi,
with w; steering velocities. In this case, the robot pose is
constant, and it is only possible to control the steering joints.

In this particular case, the driving velocity of the i-th wheel
is given by vV = dw;.

'In practice, our implementation uses atan2 to produce a single result.

III. PROPOSED FRAMEWORK

This section describes the main components of our frame-
work (shown in Fig. 3), namely: the finite state machine,
responsible for starting and stopping the robot; the state tra-
jectory generator, which provides reference trajectories to the
NMPC; and the NMPC itself, which computes control inputs,
while satisfying the driving and steering velocity bounds of
each wheel. In all phases of motion, model singularities are
avoided.

A user-defined reference pose trajectory &' (t) is fed
to a Finite State Machine (FSM), which determines when
to start/stop robot motion, hence the corresponding control
strategy. The mobile base is accelerated (using open-loop
commands) until all wheel driving velocities are non null.
When this condition is met, the NMPC takes full control of
the robot motion. In this case, a state trajectory generation
scheme based on dynamic feedback linearization computes the
trajectories X" and u*f (using £**!(¢)), which are used by
the NMPC to compute control inputs (a, a,,,w1). Note that it
is always possible to realize the given £°f(¢) (whatever it is)
with a motion that avoids model singularities. Therefore, using
the NMPC (which enforces this avoidance) does not imply any
limitation for motion generation.

A. Finite state machine

Since the ICR constraint may be not satisfied at initializa-
tion, and since the NMPC must avoid configurations in which
coordinating functions (6) are singular, we designed a finite
state machine (FSM) to move the robot towards a configuration
free of singularity.

The FSM, shown in Fig. 4, consists of five states, defined
— along with the triggering events — as follows.

» NoICR. The configuration of the robot is such that the
ICR constraint is not satisfied. In this state, the wheels
are regulated to a user-defined configuration using a pro-
portional controller. Once the ICR constraint is satisfied,
the state of the FSM becomes Ready.

» Ready. The configuration satisfies the ICR constraint,
and the robot is not moving. Once a new trajectory is
available, the state of the FSM becomes Starting.

» Starting. In this state, the control of the robot is given
to an open loop controller, which starts its motion. Once
all velocities p;9 become non-null, the state of the FSM
becomes Moving.

» Moving. In this state, the robot moves under the action of
the NMPC. When the trajectory tracking task is about to
be be completed?, the state of the FSM becomes Stopping.

» Stopping. As for Starting, an open loop motion makes
the mobile base reduce its speed until it stops. Then, the
state of the FSM becomes Ready.

B. Open-loop commands (starting and stopping)

In this section, we present our singularity-free strategy
for handling starting and stopping motions. To this end, we

2We use a threshold on the pose of the robot to determine the completion
of the tracking task, considering the last pose specified by £"¢f(t).
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Fig. 3: Block scheme of the proposed framework.

Stopping

Fig. 4: Finite state machine defining the base motion.

constrain the ICR to be constant, accelerating (respectively,
decelerating) the base along the arc of circle defined by initial
robot position and initial ICR, until all velocities p7 are non-
null (respectively, null). Note that the radius of the circle is
given by R = v7 /w. Moreover, the arc of circle degenerates
in a line when the ICR is at infinity.

We choose the control inputs as follows:

« when the state of the FSM is Starting, we accelerate the

mobile base by choosing u = (a™ a™'/R,0);

e when the state of the FSM is Stopping,
we decelerate the mobile base by choosing
u = (—K5Pyy | — K5PyS /R 0);
where ™ is a parameter, and K5%°P > 0,

Note that, when the ICR is constant at infinity, the coordi-
nating functions simplify to

Bi = B,
and when the ICR is constant, but not at infinity, they simplify

to
- Rsin,@l +bi—bl
"~ RcosPr+a—a;

Bi

C. State trajectory generation

Once the velocities p? become non-null, the state becomes
Moving, and the robot is controlled by the NMPC. In this sec-
tion, we present the state trajectory generation scheme based
on dynamic feedback linearization [18], which computes state
configurations and control input trajectories for the NMPC,
given a reference pose trajectory £ of the mobile base. Note
that both state trajectory generation and NMPC are only active
when the state is Moving.

Consider the output function z(x) = &. By deriving it
twice, we obtain

T a
Zx)=¥|=mx)+H(x) |a ], (7)
0 w1

with m(x) € R and H(x) € R3*3 defined as
—sin(0 + B1)wvf + (by cosf — ay sin O)w?

m(x) = | cos(f + B1)wvi + (a1 cosf — by sinf)w? |,
0
cos(0+31) bysinf+aycosd —sin(6+3;)vy
H(x)=|sin(0+p1) —bicosO+aysing cos(0+p1)vy
0 1 0
By choosing
a
u=|a, | =H(x)"'(n-mx)),

w1

we can transform (7) into an equivalent chain of integrators
Z=m,

which can be easily stabilized. Indeed, exponential regulation
of the trajectory tracking error e(t) = 2"f(¢) — 2z(t), can be
achieved by taking

n=z24+Kpe+Kpée, Kp Kp>0,

with 2% (t) a twice differentiable and persistent (i.e., vy # 0)
reference trajectory. Note that the above decoupling matrix
H (x) is singular at v = 0. Thanks to the FSM, we can
assume that the reference trajectory is not stopping. However,
vy can still be zero during a transient. Hence, a singularity-
robust inverse should be used. This singularity is structural for
mobile robots [18].

At each timestep tg, Algorithm 1 generates, given the
reference trajectory €' and the current configuration .,
the state configurations X;T,E (j = 0,...,N), together with
the state control inputs uﬁ,ﬁ (4 =0,...,N —1). These are
synchronized and used by the NMPC, described in the next
section, to compute control inputs (af, auk,wik) for the
mobile base. In the pseudocode: function Sample discretizes
a trajectory, given over interval (¢g,ty + NJ), into N + 1
elements, with & timestep of the NMPC, and function F
denotes the discrete-time kinematic model obtained integrating
f from (5) with fourth-order Runge-Kutta over timestep §.

D. Nonlinear Model Predictive Control

The NMPC solves, at each control cycle, a finite horizon
constrained Optimal Control Problem (OCP), taking into ac-
count the kinematic model (5), wheel velocity and control
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Algorithm 1: StateTrajectoryGeneration

Input: £,y

. ref ref ref ref
Output: Xy, - - -

» XN k> u0|k» o UN )k

1&g ,gﬁ{k + Sample(£™);

2 55?2, . 7£N‘k +— Sample(£™);

3 &k, -, &l < Sample(£™);

4 X0k X

5 for j < 0to N —1do

6 ’rhm(—ir‘é—‘er(z;Ti—

7|l e HOGR) ™ (M — mOGH)):
s | X5 < FOGH ujik):

9 end

10 return x{ﬁi, -

zji) + Kp (25 — 2518);

ref

ref .
7XN\k7uO|k7 s UN ks

inputs bounds, singularities of the coordinating functions (6),
and singularity of the decoupling matrix H (x) in the state
trajectory generation scheme. In the following, we will denote
as I’ = {a,...,b} C N the subset of natural numbers
containing all naturals from a to b.

As already mentioned, since the coordinating function 3;
is singular when pf = 0, it is important to carefully design
the control scheme. A simple strategy to make the NMPC
free of singularities, is to never let the position of the i-th
steering joint be at rest. Since the NMPC is activated only
when changing the FSM state from Starting to Moving, it is
possible to constrain p; so that it is never null. Indeed, the
constraint p7 # 0, with a proper change of coordinates, can
be rewritten as

T 0 . S: vzs
R ( +ﬂ7)pz 0 #07

with T
s _ (cos(6+ B;) .5
i = \sin(0+p)) P

To satisfy the above inequality, we need to have vy # 0,
which is equivalent to imposing constant sgn(v:). Note that
because of the starting motion described in Sect. III-B, Ui is
either positive or negative when the NMPC is activated. This
implies that the constraint will simply be written as

if v (tg) > 0
otherwise

v;g>0,

8
vP <0, ®)

with ¢( time of activation of the NMPC. This guarantees that
subsequent calls of the state trajectory generation scheme are
free of singularities.

The OCP can be defined as

tp+T

T(iin O(x(ty + 1)) +/t L(x,w)dt
k

s.t.x = f(X7 )

<vt, Viel}

Py £0, Viel}

a <a< at

11<11

w” <w; <wt,

x(te) = Xk,

Vi e I

with T = N the prediction horizon, and stage and terminal
cost respectively defined as

Lix,w) =[x = xl3w,, + uw
O(x) = Ix"" — xllw,

W,., W,, positive semi-definite matrices, which respectively
weigh the impact of tracking and control effort [15], v~ and
vT min/max wheel driving velocity, a~ and a® min/max
wheel driving acceleration, w™ and w' min/max wheel steer-
ing velocity and X, initial configuration.

Note that the velocity constraints are linear for the coordi-
nating wheel (since v{ and w; are part of x) and nonlinear
for the coordinated wheels. In particular, because of the
assumption of no slipping (1), the driving velocity of the
coordinated wheels can be computed as

w_ (cos(9+ﬂ¢)>T .

—uly,

i sin(0 + ;) i
Since the steering angles of the coordinated wheels are de-
fined as B;(v{,w, B1), the steering velocities can simply be
computed as their time derivatives.
We can transcribe the above OCP into the following nonlin-

ear programming (NLP) problem by using multiple shooting
[20]:

N-1
leﬂ D(xnk) + Z L(X k> k)
k> k‘,
j=

St Xjt1k = (Xj‘k,uﬂk) Vi eI !
vT < vi’j|k(~) <ot Viel},vjel) !
sgn(vls,j‘k) = sgn(vi (o)), Vj € IY
sgn(vp,(-)) = sgu(v (to)), Vi € I,Vj € I~

Vj eIyt

Vj eIyt

Vi€, Vi el

a” <ajp<a’,
w” <wp g <wT,
w” <wijik() <w
Xolk = Xk

with vectors

Qk = (XO\k?XHk? s 7XNU€)’

Ur = (%o, Wik, - - > UN—1]k),

collecting the decision variables of the NMPC at ¢, § timestep
of the NMPC, and the cost function evaluated using X;T;fﬁ
(G = 0,...,N) and uref G = 0,...,N — 1), computed
by the state trajectory generatlon scheme. Note that, within
the constraints, (-) denotes the use of nonlinear functions,
moreover, as mentioned before, the sign constraints are a
consequence of constraints (8).

Having solved the NLP problem, we extract the control

sample ug;, from Uy and apply it to the robot.

IV. SIMULATIONS

The proposed framework has been implemented in Python,
using the acados library [21] to solve the aforementioned NLP
problem with real-time iteration scheme [19]. We use the robot
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Neobotix MPO-700, which has n = 4 steerable wheels (Fig.
1). The scheme runs at 75 Hz (at the same frequency of the
low-level controller) on an Intel Core i5-10210U (1.6 GHz, 8
cores) with Ubuntu 20.04 LTS. The used parameters are listed
in Table I. Note that the bounds on velocities and accelerations
have been chosen according to the technical specifications of
the platform.

We validated our implementation in simulation on various
trajectory tracking scenarios, where we highlight the avoidance
of singularities, and the bounds activation in the NMPC.

In the quick slalom with tangent orientation, the robot is
required to follow a sinusoidal trajectory while keeping its
orientation tangent to it. Figure 5 shows the driving and
steering velocities computed by the NMPC, together with
the FSM state, and the case where the ICR is at infinity
(highlighted by the blue area). In particular, at ¢ = 0, the state
of the FSM changes from Ready to Starting, and the robot
starts its motion using open-loop commands (Sect. III-B). In
this first part of the motion (highlighted by the green area
on the left side of the plots), the FSM keeps the Starting
state until the configuration of the robot is singularity-free.
The state of the FSM then changes from Starting to Moving,
and the NMPC is activated. Figure 6 shows the NMPC control
inputs and the trajectory tracking errors. The NMPC controls
the mobile base until the pose of the robot is close to the final
pose, where the state of the FSM changes from Moving to
Stopping. In this last part of the motion (highlighted by the
green area on the right of the plots), the robot gracefully stops,
and the state of the FSM finally changes to Ready. Note that,
because the reference trajectory is too quick for the mobile
base, the driving velocities of the wheels computed by the
NMPC reach the bounds, and the trajectory tracking error
increases. These velocities are then kept high by the NMPC,
decreasing the tracking error (this is reflected by the right side
plot in Fig. 6).

Note that removing the Starting state from the FSM would
result in a complete failure of the NMPC because the use
of the initial state containing v{ = 0 would make the opti-
mization problem infeasible. If we keep Starting and remove
the Stopping state, the NMPC would not be able to bring the
robot to a stop. For example, if we consider the same trajectory
discussed before (Fig. 7), at the end of the motion the driving
and steering velocities of the wheel increase, as a consequence
of the reference trajectory computed by the state trajectory
generation scheme containing high values. This behavior is
due to the velocity v§ being close to zero.

V. EXPERIMENTS

We validated our framework on the Neobotix MPO-700
platform on trajectories of different complexity. We invite
the reader to watch the accompanying video®, which shows
the described experiments, as well as additional ones with
different reference trajectories.

In the circle with tangent orientation trajectory, the robot is
required to follow a circle while keeping its orientation tangent
to the circle itself. Figure 8a shows a sequence of snapshots

3https://youtu.be/OXPZSjrF9Ak
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Fig. 5: Driving and steering velocities of the wheels for quick
slalom with tangent orientation. The bounds are dashed.
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Fig. 6: NMPC control inputs and trajectory tracking error for
quick slalom with tangent orientation.
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Fig. 7: Driving and steering velocities of the wheels for quick
slalom with tangent orientation without Stopping.
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Fig. 8: Snapshots of the mobile base tracking a desired trajectory.

TABLE I: Parameters used in all our experiments.

Symbol Value
a (—0.19,0.19,0.19, —0.19) [m]
b (0.24,0.24, —0.24, —0.24) [m]
d 0.045 [m)]
alinit 0.1 [m/s?]
Kstop 1.0
Kp diag(4.0, 4.0,2.0)
Kp diag(2.0, 2.0, 1.0)
N 5
4 0.1 [s]
Wy Iy
W I3
v -0.9 [m/s]
vt 0.9 [m/s]
a” —0.5 [m/s?]
at 0.5 [m/s?]
w™ —2.0 [rad/s]
wt 2.0 [rad/s]

TABLE II: Trajectory tracking error, with e, position error
norm and ey orientation error norm.

. ep [m] eg [rad]
Trajectory Avg 8 Max Avg Max
circle with tangent orientation | 0.021 | 0.053 | 0.001 | 0.047
circle with inward orientation 0.014 | 0.048 | 0.001 | 0.031
slalom with tangent orientation | 0.004 | 0.022 | 0.001 | 0.005

of the robot moving while tracking this trajectory. The initial
configuration of the robot is such that the ICR is at infinity
(because all steering angles have the same value). The robot
starts its motion using an open-loop command (as described
in Sect. III-B), which makes the configuration of the robot

be singularity-free. At this point, the NMPC is activated, and
the circular trajectory is followed. Notice how the orientation
of the mobile base is always tangent to the circle during the
whole motion. When the pose of the robot is close to the final
configuration, the robot decelerates, successfully completing
its task. This experiment highlights the capability of the NMPC
to handle situations in which the ICR starts at infinity, and it
is moved to the center of the circle.

Similarly to the previous experiment, in the circle with
inward orientation trajectory, the robot is required to follow a
circle while pointing its front towards the circle center. Figure
8b shows snapshots of the robot tracking this trajectory, and
Fig. 9 shows the driving and the steering velocities computed
by the NMPC, together with the FSM states (as before, the
green area on the left side of the plots represent the Starting
state, while the green area on the right side of the plots
represent the Stopping state). Once the NMPC is activated, the
ICR is moved to the center of the circle, and the trajectory is
correctly followed. Notice how the orientation of the mobile
base always points to the circle center. This highlights the
omnidirectionality of the platform, which is able to follow
circular trajectories with different orientations.

Finally, we consider the slalom with tangent orientation
trajectory, where the robot is required follow a sinusoidal
trajectory, while keeping its orientation tangent to it. Figure 8c
shows snapshots of the mobile base moving in this scenario.
Note that in this experiment (similarly to the slalom trajectory
in the previous section) the ICR must necessarily go through
infinity to correctly track the considered trajectory. The capa-
bility of handling such situations is due to our parametrization,
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Fig. 9: Driving and steering velocities of the wheels for circle
with inward orientation.

which does not directly used the position of the ICR in the
control scheme (see [3] for more details on the taxonomy of
singularities of SWMRs).

In all experiments, our NMPC is solved in less than 1
ms, making it possible to satisfy real-time constraints of the
platform. Table II presents statistics on the trajectory tracking
error over the three discussed trajectories. In particular, for
each experiment, the average and the maximum position and
orientation error norms are computed. In our experiments, we
have seen that increasing N does not significantly improve
tracking. Note that, while the robot is equipped with two laser
scanners, the estimated pose of the robot is retrieved by an
odometric localization module which use only wheel encoders.
The use of additional sensors for a more precise localization
will be part of future works.

VI. CONCLUSIONS

In this work, we presented a framework for trajectory
tracking with omnidirectional SMWRs, which makes use of
a NMPC based on real-time iteration. Our scheme is capable
of tracking trajectories without violating wheels’ velocity con-
straints, while taking into account kinematic model singulari-
ties. We have validated our approach on multiple trajectories
using the Neobotix MPO-700, showing that our scheme is
always able to track them. To the best of our knowledge, this
is the first time NMPC has been implemented on an SWMR.

In future work, we plan to extend the framework in several
ways:

1) extend the NMPC to a dual-arm mobile manipulator
such as BAZAR robot [22], making it interact with the
environment with its arms, while moving;

2) implement a motion planning algorithm such as kino-
dynamic RRT* [23], making the robot able to navigate
autonomously in an environment with obstacles;

3) further improve the performance of the framework by
implementing it in C++ (while the scheme runs in
real-time thanks to acados, the time consuming state
trajectory generation runs in Python).
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