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Abstract— Since the successful Apollo program, humanity
is once again aiming to return to the Moon for scientific
discovery, resource mining, and inhabitation. Upcoming decades
focus on building a lunar outpost, with robotic systems play-
ing a crucial role to safely and efficiently establish essential
infrastructure such as solar power generating towers. Similar
to the construction of the International Space Station (ISS),
shipping necessary components via modules and assembling
them in situ should be a practical scenario. In this context,
this paper focuses on the integration of vision, control, and
hardware systems within an autonomous sequence for a dual-
arm robot system. We explore a perception and control pipeline
specifically designed for assembling solar panel modules, one of
the benchmark tasks. Ad hoc hardware was designed and tested
in real-world experiments. A mock-up of modular solar panels
and active-passive connectors are employed, with the control
of this grappling fixture integrated into the proposed pipeline.
The successful implementation of our method demonstrates that
the two robot manipulators can effectively connect arbitrarily
placed panels, highlighting the seamless integration of vision,
control, and hardware systems in complex space applications.

I. INTRODUCTION

In the past years, the interest in lunar exploration
has been growing worldwide [1]. Up-to-date successful
missions include the Indian Space Research Organiza-
tion (ISRO)’s Chandrayaan-3, Japan Aerospace Exploration
Agency (JAXA)’s extremely precise soft landing on the
moon with the SLIM (smart lander for investigating moon)
mission, and a USA based startup, Intuitive Machines’s
IM-1 lunar landing [2]. From navigating the challenging
lunar terrain to conducting complex manipulation tasks,
autonomous robotic systems offer a unique set of capabilities
that have the potential not only to boost scientific progress
but also to mitigate risks associated with human missions. To
ensure self-sustenance and to support human presence on the
Moon, robots capable of autonomous manipulation tasks are
particularly relevant. During the early stages of lunar base de-
velopment, these robots must create vital infrastructure such
as solar power units and communication stations with Earth.
A practical approach is to ship all required components in
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Fig. 1: Overall hardware setup (top) and functional scheme to
illustrate the integration and interaction of the perception and
control modules (bottom).

modules and have the robots assemble them on-site. In this
scenario, the robots should also be modular.

In this work we present a perception and control pipeline
to perform autonomous assembly tasks in a multi-robot
setup; two robot arms have the task to localize two solar
panels, pick them up with dedicated connectors, safely lift
them avoiding collision with the table they are placed on
and ultimately assemble them. The perception module is a
YOLOv8.1 [3] (You Only Look Once) model, an extension
of YOLOv8 trained to predict Oriented Bounding Boxes.
The control module integrates data coming from the vision
system with classical control methods like impedance con-
trol, Nonlinear Model Predictive Control (NMPC) and force
control [4], showcasing a comprehensive system integration.
The major contributions of this paper are highlighted as
follows:

• Fully autonomous pipeline of the robotic assembly of
the solar panels, which is regarded as the essential
milestone task, is designed and implemented.

• Hardware and software systems are optimally inte-
grated, resulting in successful real-world task demon-
stration.

The main goal of this work is to present a fully autonomous
pipeline that integrates a state-of-the-art perception module
with the control of novel hardware in a multi-robot cooper-
ative scenario.

The remaining part of this paper is structured as follows.
In Section II we review the state-of-the-art perception and
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control schemes as standalone components. In Section III
we design the aggregation of the modules and the overall
pipeline for the panels assembling. Section IV details the
experimental setup to conduct the robotic demonstration
considering the actual task scenario. Section V finally sum-
marizes the results and discusses future work.

II. RELATED WORK

In this work, object detection, impedance control, force
control, and Nonlinear Model Predictive Control (NMPC)
are exploited to design a pipeline to achieve full autonomous
assembly of structure modules. The relevant background on
these techniques is recalled hereafter.

A. Perception

Object detection is a computer vision task aimed at localiz-
ing and identifying objects within an image, assigning a label
to each identified object. Thanks to the seminal work [5] that
introduced Deep Convolutional Neural Networks (DCNNs)
into the computer vision field, and to the technological ad-
vancements of the last decades, DCNNs undoubtably became
the standard for computer vision tasks at large.

In the evolution of DCNNs for object detection, two
branches can be identified: two-stage and one-stage de-
tectors [6]. The models of the former category separate
the object location task and the object classification task,
while models of the latter generate the class probabilities
and location coordinates of an object in a single stage.
Separating the two tasks yields accurate models with slower
inference speed [7] which may not be suitable for real-time
applications, while one-shot models trade off higher speed
for lower accuracy.

Through the years, the one-shot YOLO series stood out
as a standard for real-time object detection thanks to the
high speed and accuracy achieved. Upon its release, YOLO
was the first one-stage model for object detection, boasting
impressive inference speed but suffering in terms of local-
ization accuracy [8]. Over the subsequent versions much
improvement was made, until the latest release which is
YOLOv9 [9]. YOLO models are extremely versatile and have
been applied to a wide array of different tasks, including
but not limited to construction: building classification [10],
healthcare: fracture detection [11] and agriculture: fruit
ripeness identification [12].

B. Control

Impedance control is a control method that makes the
robotic system react in a desired way to external force,
imposing a desired dynamic behavior to the interaction
between the robot’s end-effector and the environment. The
impedance model imposed is

Mm(r̈ − r̈d) +Dm(ṙ − ṙd) +Km(r − rd) = fe (1)

where r ∈ Rr is a representation for the relevant compo-
nents of the end-effector pose (position and orientation),
r is the dimension of the robot task — e.g., three for
planar tasks, six for spatial — and rd is a desired pose.

Mm > 0,Dm ≥ 0,Km > 0 ∈ Rr×r are respectively the de-
sired mass, damping and stiffness imposed by control, and
fe ∈ Rr are the generalized external forces applied on the
end-effector. With this scheme, it is possible to indirectly
control the contact forces, e.g., to prevent damaging impacts
in case of environment uncertainties or to assign a soft envi-
ronment interaction. Thanks to such versatility, this control
scheme is widely used not only in mechanical manipulation
but also in human-machine interaction and motion of robotic
devices with adjustable compliance [13].

Unlike impedance control, force control schemes are
aimed at precisely regulating a desired contact force at the
end-effector level where contact is expected. Thus, differ-
ently from impedance control where a desired end-effector
pose rd is used, in this scheme a desired force reference
is required. To reduce the dynamics of the manipulator to
a free-floating mass, a Cartesian feedback linearization law
can be employed first [14]. It is then possible to use linear,
lumped parameter models of different order to analyze the
interaction between the robot arm, the force sensor at its
end-effector, and the environment [15]. In this way, simple
linear controllers (e.g., PID or one of its subsets) can be
implemented to regulate efficiently the contact force.

Model Predictive Control (MPC) is a control strategy
that operates by repeatedly solving a constrained Optimal
Control Problem (OCP) over a finite time horizon, using
a model of the plant to predict future behavior. At each
control sampling instant an optimal control sequence that
maximizes a performance measure, which usually takes the
form of a cost to be minimized, is found and the first element
of the control sequence is issued. At subsequent control
instants, the process is repeated using the latest available
information on the system state. This introduces feedback
into the control scheme and robustness to uncertainties
or unknown variations in the model [16]. In general, one
distinguishes between linear and nonlinear model predictive
control (NMPC). In the former case, linear models are used
for the system dynamics, states and inputs are subject to
linear constraints, and a quadratic cost function is used;
instead, NMPC refers to MPC schemes that are based on
nonlinear models, and/or consider non-quadratic cost func-
tionals and/or impose general nonlinear constraints on the
states and inputs [17]. Due to its robustness and ability to
handle constraints and general nonlinear systems, MPC has
been widely used in process control in industries both in its
linear [18] and nonlinear formulation [19].

III. METHOD

The proposed method integrates the previously outlined
perception and control methodologies into an assembly
pipeline. Fig. 2 illustrates a flowchart delineating the various
phases of the assembly process. In this section, we elaborate
on each element within this scheme, whose structure is
reminiscent of the Finite State Machine developed in [20].
A. Approaching and Grasping

The perception module comprises a YOLOv8.1 model
and a deprojection operation. As the YOLO model performs
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Fig. 2: Flowchart of the assembly pipeline. Impedance control is
utilized to adjust to the pushed force when grasping the panels as
well as inserting one panel into the other. NMPC allows controlling
the panel picking up trajectory avoiding the collision with the
surrounding environment.

Fig. 3: Result of the inference made by the YOLO model in chal-
lenging lighting conditions: dark assumed in Lunar environment.
From the patch detection we retrieve the panel orientation, while
the connector detection provides the desired position for the end-
effector.

inference only once in the initial state, high inference speed
is not a requirement and the largest model with 69.5M
parameters can be used. The network is pretrained on the
DOTA-v1.0 [21] dataset and fine-tuned on a custom dataset
made of 309 training images and two classes. Inference
results in challenging lighting conditions are shown in Fig. 3.

From the detection of the patch we retrieve the orientation
of the panel on the table, and from the pixel coordinates of
the connector, using the depth information from the stereo
camera mounted on the end-effector, we deproject the point
first from the pixel space to the 3D camera frame, and
finally to the robot base frame using the robot state. This
procedure is analogous to the one in [22]. The deprojected
point together with the panel orientation retrieved from the
patch detection constitute the desired pose rd ∈ R6 that
is used in (1), where we can further specify the approach
velocity and acceleration ṙd, r̈d. This impedance-based ap-
proach will allow the correct grasp of the panel even in the
presence of small detection errors that may arise, especially
in challenging lighting conditions typical of lunar scenarios
(see Fig. 3).

Once the active side of the grappling fixture is properly
in place (see Fig. 4), we command the servo motor to lock
the mechanism, thereby attaching it to the passive side and
securing the grasp.

B. Collision-free lifting
After the successful connection, the robot enters in veloc-

ity control mode to bring the end-effector to a desired pose
where the panels are lifted. Since the payload is now attached
to the end-effector, it is crucial to avoid collisions between
the payload, i.e., a panel and obstacles in the environment,
such as the table on which it is placed. The choice of NMPC,
differently from other control choices, allows to explicitly
consider nonlinear collision avoidance constraints, offering
also the additional flexibility of dynamically changing con-
straints in non-static environments.

In this framework, we consider the end-effector posi-
tion to be directly controllable via velocity commands,
while for the orientation we adopt an ingenious approach.
Given the current orientation represented by the rotation
matrix RA ∈ SO(3) and the desired one represented by
RB ∈ SO(3), where SO(3) is the special orthogonal group
of order 3, we determine a unit axis a ∈ R3 and an angle
θAB ∈ R such that

R(a, θAB) = R⊤
ARB . (2)

Using the axis-angle representation with (a, θAB) has two
main advantages:

• Constraining the change of orientation from RA to
RB to occur as a rotation around a predefined axis
offers more predictable intermediate orientations than
considering the elements of an Euler representation
independently. This is not a secondary aspect when
dealing with large payloads, as in our application.

• Within the NMPC scheme, a single scalar variable θ is
used to represent the orientation. The value of θ will be
0 at the initial instant and has to reach to the desired
value of θAB.

Thus, the desired end-effector pose rd ∈ R6 is trans-
formed to a lifting goal pℓ = (xd, yd, zd, θAB) ∈ R4 where
(xd, yd, zd) is the desired end-effector position and θAB

comes from (2).
Initially, we assume to be able to control the value of θ di-

rectly via a velocity input uθ. Therefore, the state of the sys-
tem used in the NMPC scheme is x =

(
x y z θ

)
∈ R4,

the state space representation is

ẋ = ux, ẏ = uy, ż = uz, θ̇ = uθ (3)

and we formulate the OCP to solve at each control instant
as

∗ min
x(·),u(·)

∫ T

0

∥x(τ)− pℓ∥2Q + ∥u(τ)∥2Rdτ

+ ∥x(T )− pℓ∥2W e (5)
subject to:
x(0) = x0 (6)
f(x(t), ẋ(t),u(t)) = 0 t ∈ [0, T ) (7)
h ≤ h(x(t), s) ≤ h t ∈ [0, T ] (8)
u ≤ u(t) ≤ u t ∈ [0, T ) (9)

The cost function has a quadratic cost to go and terminal
cost to bring the state to the desired value, while also
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minimizing the control effort. Moreover, T ∈ R+ is the
prediction horizon, Q ≥ 0,R > 0,W e ≥ 0 are weighting
matrices of appropriate size, f : R4 × R4 × R4 7→ R4 is the
implicit linear system dynamics from (3), x0 is the initial
system state, s ∈ Rns is a vector of system parameters,
h : R4 × Rns 7→ Rnc is the nonlinear constraint function
imposing a number of nc constraints for collision avoidance,
h,h ∈ Rnc are lower and upper bounds for the vector
function h, while u,u ∈ R4 are input bounds. The only
source of nonlinearity in this NMPC scheme comes from
the collision avoidance constraints imposed in (8).

Functional for collision avoidance is the set of parameters
s that includes a representation of the initial orientation of the
end-effector RA, the neutral axis a from (2), and information
about the payload geometry. To ensure a collision-free mo-
tion, we use the four corners of the payload as control points.
Using the information stored in s, together with the current
state of the system, it is possible to retrieve their coordinates
in the robot base frame (see Fig. 4). Observing that at any
time instant t the actual end-effector (EE) orientation is given
by

REE(t) = RAR (a, θ(t)) (10)

and using knowledge about the payload geometry, it is finally
possible to expand the constraints (8) as

vx,i ≥ bcollision, vy,i ≥ ywall, vz,i ≥ zmin, (11)

for i = 1, . . . , 4, where vi =
(
vx,i vy,i vz,i

)
is the i-

th control point expressed in the robot base frame. The
numbering convention begins with v1 representing the top
right corner of the panel from a top view (see bottom
right image of Fig. 4), and subsequent numbering progresses
counterclockwise. Moreover, bcollision > 0 is a constant to
avoid collisions of the panel with the base of the robot, ywall

erects a virtual wall separating the two robot arms to prevent
collision between the payloads during the lift, and zmin is the
minimum height for not colliding with the table. Differently
from the previous two, this last value is not predetermined,
but obtained by recording the end-effector z-coordinate when
the panel is grasped. Finally, note that the nonlinearity of the
constraints (11) with respect to the NMPC state x lies in the
transformation needed to obtain vi in the robot arm base
frame ΣB .

C. Assembly

After the robot end-effector reaches the desired pose
avoiding collisions, the two arms need to collaborate to
successfully assemble the solar panels. To achieve this they
are controlled differently: one arm (Yielding arm in Fig. 2)
enters again into impedance control mode having a desired
pose rd that is the one reached at the end of the lifting phase,
while the other arm (Driving arm in Fig. 2) enters force
control mode applying a desired wrench (force and moment)
fd ∈ R6 at the end-effector level. Thus, the first arm will
be stationary and compliant to external forces according to
(1), with these external forces being explicitly applied by
the Driving arm. This force interaction leads to a successful
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Fig. 4: Experimental setup for solar panels assembly demonstration
(top), showing the representation of the robot base reference frame
and of the control point v3: left bottom corner of the panel. The
end-effector of the robot has the dedicated grappling fixture to grasp
the adapter located at the center of the backside of the panel (bottom
left). Each panel has two connection rods at two corners which are
inserted into the holes prepared on the other edge for assembly
(bottom right).

assembly, compensating for small uncertainties and pose
errors.

IV. REAL WORLD DEMONSTRATION

A. Hardware Setup

The setup consists of the following elements (also see
Fig. 4). Two solar panels and two fixed 7-DoF robotic arm
manipulators, xArm7 from UFactory, whose end-effector is
equipped with an Intel Realsense D435i RGBD camera, a
6-axis force/torque (F/T) sensor, and the active side of the
novel grappling modules we present.

The grappling module is made up of an active fixture
that is mounted after the F/T sensor on each arm, paired
with a passive frame embedded in the center of the panel’s
backside. The active fixture features a servo actuator that
locks the connection upon contact with the passive fixture.
Both modules are designed with trapezoidal-shaped guides
around the outer frame to help compensate for misalignments
between the adapters to a certain extent.

Finally, each panel has two connection rods at the upper
corners, which are inserted in the holes designed on the
other side. The panels are kept lightweight to be withing
the payload capacity of the robot arms, weighing 1 kg each.
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t = 0 s t = 10 s t = 25 s t = 30 s

t = 38.5 s t = 41.2 s t = 43.3 s t = 44.2 s

Fig. 5: Snapshots of the two panels assembling demonstration by dual robot manipulators in real world. End-effectors are approaching
with visual feedback control the detected grappled fixture (t = 10 s), grasping them (t = 25 s), picking the panels up avoiding collision
with NMPC (t = 30 s). Then, after achieving the lift-up positions (t = 38.5 s), the right panel is pushed into the other one with force
control (t = 41.2 s), and thanks to impedance control the panel is compliant to the applied force (t = 43.3 s), eventually succeeding in
the two panels connected (t = 44.2 s). The implemented autonomous sequence was successful irrespectively of the panels’ initial pose.

0 10 20 30 40
Time [s]

-0.2

0

0.2

0.4

0.6

0.8

Po
si

tio
n 

[m
]

x y z rd;x rd;y rd;z

(a) Position profile of the Yielding arm’s end-effector expressed in the base
frame ΣB

0 10 20 30 40
Time [s]

-40

-30

-20

-10

0

10

20

Fo
rc

e 
[N

]

fx fy fz fd;y

(b) Force measured by the F/T sensor at the tip of the Driving arm expressed
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Fig. 6: The vertical black dashed line represents the phase distinction: at t = 28.2 s the lifting phase starts, while at t = 41.2 s the driving
arm starts applying a desired fref at the end-effector level. At t = 41.2 s we reset the zero of the sensor so that we get rid of the effect
of the panel. Contact between the two panels happens at around t = 43.3 s.

B. Results and Analysis

Until now, the input to the system was assumed as the
one from (3). However, while the desired linear end-effector
velocity can be directly issued to the xArm7, uθ is not an
available input. Since the available input to affect the end-
effector orientation is the rate of change of the euler angles,
we apply the following mapping

uΦ = RAauθ (12)

and the new input u =
(
ux uy uz uΦ

)
∈ R6 is issued

to the robot.
A representative demonstration of the task of two panels

assembly is showcased in Fig. 5. Analyzing the force profile
measured by the F/T sensor mounted on the Driving arm
reported in Fig. 6 (b), it is possible to recognize the contact
between the arm and the panel at t = 24 s due to forces
arising particularly along the z axis of ΣS . These forces
depend on how far off the connector is from the right
position, but adjusting the parameters Mm,Dm,Km in (1)
also affects their magnitude. At t = 41.2 s the Driving

arm starts applying the wrench fd at the end-effector that,
expressed in ΣB , is fd =

(
∗ −35 0 ∗ ∗ ∗

)
where ∗

means that the robot will act rigidly in response to stimuli
in those directions. Simultaneously, the Yielding arm will be
compliant to external wrenches except along the x axis and
around the z axis of ΣB , which is equivalent to choosing the
corresponding entries in Km as +∞. The two panels come
in contact when the y coordinate of the Yielding arm’s end
effector starts changing in Fig. 6 (a) at t = 43.3 s, and the
successful assembly is reached when the connecting rods
slip into the connecting holes at t = 44.2 s, recognizable in
Fig. 6 (b) as a temporary decrease in the measured fy .

To measure the effectiveness of the proposed method
quantitatively, in Table I we report the performance over 40
trials. The main factor that affects these results is a noisy
depth estimation, leading to a failed grasp. Improving just
this aspect, e.g., by improving the depth estimation from the
Intel camera [23] or by using a more accurate 6D perception
system [24], will bring a major increase in the pipeline
success rate.
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TABLE I: Performance of the proposed pipeline over 40 trials.

Success rate Failure rate Failure modality Failure rate
per modality

0.61 0.39 Failed grasp 0.66
Failed panels

insertion 0.34

C. Discussions

Together with depth estimation, the other key element for
the performance of this pipeline concerns different choices of
compliance and rigidity. Beside those discussed in Sec. IV-
B, also other combinations have been tested: performance
improved while allowing compliance along more axes. Fur-
thermore, during the final assembly phase, we experimented
with alternative controller pairs, with some pairs being more
favourable. A more sistematic approach to find the right
stiffness and damping values in the impedance controller, as
well as the force value in the force controller, might improve
the success of the overall pipeline.

Having both arms in impedance control required to craft
a final goal position for the Yielding arm which would lead
to contact between the panels: this is not in the nature of
the task as the final assembly position varies depending on
the exchanged forces. Having both arms in force control,
the ability to control the nature of the interaction between
the panels is lost, differently from what it is possible with
impedance control, although the task of autonomous assem-
bly can be done with comparable efficacy. Finally, having
the Yielding arm in position control compromises the safety
of the entire system, as small uncertainties and errors during
insertion are met with complete rigidity on one side.

V. CONCLUSIONS

In this work, we developed a fully autonomous pipeline
for solar panel assembly. The proposed method employs the
YOLO visual perception algorithm together with depth in-
formation to extract the six dimensional pose of the detected
object; then, a nonlinear Model Predictive Control scheme
with a minimalist state representation is used for collision
avoidance during motion; finally, to accommodate for un-
certainties and errors, a combination of impedance and force
control makes up the insertion phase. This holistic integration
of vision, control, and specialised hardware demonstrates a
robust and effective approach to complex assembly tasks in
a multi-robot system.

The future scope of this work includes a learning-based
approach to evolve between different states and control
modes, and implement a method to address the noisy depth
estimation limitation.
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