CONTROL SYSTEMS - 2/9/2024

[time 3 hours; no textbooks or notes; no programmable calculators; all the mathematical passages must be motivated and clearly explained]

Ex. # 3) Given
$$\mathbf{P} : \dot{\mathbf{x}} = A\mathbf{x} + B\mathbf{u}, \ \mathbf{y} = C\mathbf{x}, \ \text{with } A = \begin{pmatrix} -3 & 1 \\ 0 & 2 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 \\ 0 \end{pmatrix},$ (i) find $u(t)$ and $t_f > 0$ such that $x(t_f) = (10, 10)^{\top}$ with $x(0) = (1, 1)^{\top}$ (ii) for which choices of the matrix C the system \mathbf{P} is observable? for which choices of the matrix C the eigenvalues of the unobservable subsystem of \mathbf{P} are in \mathbb{C}^{-} ? (iii) set $C = \begin{pmatrix} 1 & 0 \end{pmatrix}$ and calculate the forced output response of \mathbf{P} to an input $u(t) = 1$ and, if there exists, its steady-state value.