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Abstract: This paper presents a method based on particle filters to predict trajectories of unmanned aerial 

vehicles under uncertainties. The particle filter is able to cope with the influence of different sources of 

uncertainty such as the atmospheric conditions, the model of the UAV and the limitations of the sensors 

and control system on board the UAV. In the case of UAV the most important source during the flight is 

the wind. Several simulations that show the significance of the proposed method are presented. The 

obtained results also point out the interest of the resampling process of the particle filter. 
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1. INTRODUCTION 

In the last ten years, important progress in aerial robotics has 

been achieved. Currently, the unmanned aerial vehicles 

(UAVs) have evolved until becoming aerial robots able to 

execute autonomously takeoff, transition between waypoints 

and landing. Also, systems that allow the cooperation of 

multiple aerial vehicles (Maza and Ollero, 2004) and the 

integration of these vehicles with sensors and actuators in the 

environment (Ollero et al., 2007) have been developed and 

implemented. 

One of the most important problems that appears in the 

prediction of the trajectories described by an UAV is the 

uncertainty. This can be due to atmospheric conditions, the 

accuracy of the UAV model used to predict, and the 

limitations of the sensors and on board control system to 

cancel perturbations. In the case of the UAVs, the most 

important source of uncertainty during the flight is the 

changes in the atmospheric conditions. 

Fig. 1 shows an UAV of the Robotics, Vision and Control 

Group (University of Seville) and Fig. 2 describes an 

experiment of autonomous flight of this UAV. In this 

experiment the UAV should follow the waypoints defined in 

the four vertexes of the polygon. The real trajectory followed 

by the UAV can be observed. Note the discrepancy due to the 

previously mentioned sources of uncertainty. In this 

experiment, the wind is the most important one (see Fig. 2). 

The decreasing of the uncertainty in the trajectory prediction 

allows a better tracking of the flight plan. Furthermore, if the 

uncertainty is lower, the minimum required separation 

between UAVs could be also decreased allowing the 

increasing of traffic. 

UAV conflict detection and avoidance requires a model to 

predict the UAV trajectories. In a probabilistic configuration, 

the model could be any empirical distribution of the predicted 

positions of the aerial vehicle (Paielli and Erzberger, 1997) or 

a dynamic model as a stochastic differential equation (Hu et 

al., 2003; Prandini et al., 2000) that describes the motion of 

the aerial vehicle and defines implicitly a distribution for 

predicted positions. 

 

Fig. 1. Fixed wing UAV used in the experiments 

This paper presents the implementation of a particle filter, 

based on atmospheric and vehicle models, to predict the 

trajectory of an aerial vehicle by considering the evolution of 

the uncertainty. 

This paper is organized in four sections. Section 2 describes a 

particle filter basic algorithm and its implementation. Section 

3 presents simulations showing the main features of the 

method.  Conclusions are detailed in section 4. 
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Fig. 2. Tracking of the desired trajectory (blue line) and the 

real trajectory (violet line) under wind effects 

2. PARTICLE FILTER 

Bayesian location is based on probabilistic techniques and 

provides the estimated position of a mobile robot from the 

observations of the robot and its control actions.  

The Bayes rule is used to compute the posterior probability 

density function, that can be expressed as the probability 

p(zt|xt), of the last measurement zt, averaged by the prior 

probability density function of the robot position, p(xt|xt-1,at-1) 

and the prior probability , p(xt-1): 
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Depending on the technique used to compute the probability 

density function, hereafter p.d.f., several approaches of the 

bayesian location can be characterized. One of them is the 

particle filter. Particle filters allow solving the problem of the 

bayesian location representing the posterior p.d.f., which 

estimates the most probable positions of the robot. This is 

normally multimodal (Thurn et al., 2005). 

Particle filters solve this problem by approximating the 

posterior p.d.f. by random samples of a particle set that 

represent the most probable states of the robot. These 

location algorithms compute the probability that the robot is 

located in each of the particles using the Bayesian model, that 

is, the p.d.f. of each particle is computed (Thrun, 2002). The 

particles whose probability is negligible will not be 

considered, as they are not useful to describe the robot state.  

 

 

2.1 Basic algorithm 

Particle filters represent the distribution of the expected state 

by a set of random samples drawn from the distribution. The 

main benefit of this kind of nonparametric distribution model 

is that it can represent many different types of unknown 

distributions, not only Gaussian, but also multimodal ones. 

Particle filters are a nonparametric implementation of the 

Bayes filter, which can be used to estimate the p.d.f. of the 

state of a Markov process, given the previous outputs. Let x 

be the state of the process, then the state space equations of 

the process are: 
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where zk represents the current output, uk represents the 

current input, vk, wk and nk are samples of a random variable, 

and f, g and h are known functions. 

The particle filter will estimate the posterior p.d.f of x0:k , 

using the previous estimation obtained from the sampling of 

a set of particles that represent instances of the state 

trajectories. Therefore, the particle filter is a sequential 

Monte Carlo method, or recursive nonparametric Bayesian 

filter, with a belief function: 

)(),|()|()( 1:01:0 �� kkkkkkk xbeluxxpxzpxbel K   (3) 

where � is a normalizer that ensures the probability of x0:k 

being in the space of the state trajectories is equal to 1. 

As the space over the state sequence is dimensionally huge, 

and thus unfeasible to cover with particles, in practice the 

estimation will be done on bel(xk) instead of bel(x0:k-1). 

The algorithm of the basic Particle Filter is: 

 

This algorithm calculates bel(xk), and, when M :�, it is 

equivalent to calculate bel(x0:k) and extracting the last 

elements of the state sequence vector. 

Inputs are the particle set in the time t-1, control ut and the 

measurement zt in the time t. 

Line 3 of the algorithm represents the simulation of the 

motion of the aerial vehicle; that is, an estimation of the next 

vehicle state given the last known state and inputs. This will 
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be done using the UAV and atmospheric models. In our case 

the aim is to estimate the future state of the process at a 

particular future time step kf, i.e. we look for bel(xkf ). 

Therefore, the process lie in having the particle filter running 

normally until the current time kc, and then start a pure 

simulation of the particle set until the desired time kf without 

the use of any measurement. When a measurement is taken, 

the particle set can be modified at the measurement time if 

necessary by making a resampling. 

2.2  Importance resampling 

Importance resampling is a method to decrease the variance 

of the estimation process. It is based on the idea that some 

samples of the observable p.d.f. are more significant than 

others, and thus sampling them with a higher frequency will 

improve our estimator confidence. 

In line 4 of the previously presented algorithm, we have set 

the weight wk of a particle as the probability of measuring zk 

(that in fact is what we have already measured) given the 

state x[m]
k. This weighting function would give each particle 

the importance it deserves, making the particles that better 

represent the actual state more probable to be chosen and vice 

versa. The choice of the weighting function is a key for the 

accuracy of the algorithm, particularly when the size of the 

particle set cannot be large enough. Typical weighting 

functions are the squared distance to the measured state, or a 

Gaussian n-dimensional function centred on the state vector. 

Next a particle filter algorithm with resampling process is 

shown: 

 

The resampling process is done at lines 9 and 10. The main 

idea is to build a new set using the last set and its weighting 

factors so that it is a better estimate of the posterior 

distribution. 

As measurements are not available in each time step, we have 

to redefine the algorithm. 

Also, as the resampling can sometimes be an unnecessary 

time consuming process, we can restrict it to some condition. 

A possible way is shown in line 8 of the previous algorithm. 

We have introduced here the concept of effective number of 

particles of a set, Neff. 

As � is a normalizing factor that ensures that , 

Neff is a real number between 1 and M indicating the number 

of particles that are actually useful. Thus, Neff near 1 means 

that there is only a particle that has almost all the weight of 

the set, while values of Neff near to M means that all particles 

have almost the same weight. 

2.3 Implementation 

In order to use particle filters, models of both the UAV and 

the atmosphere are needed. 

In this article a simple UAV model proposed in (McLain and 

Beard, 2005) is used. Nevertheless, in the proposed method it 

is also possible to use models of arbitrary complexity. The 

model describes the behaviour of a controlled aerial vehicle: 
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where � �iii hyx ,,  represents the 3D coordinates, hi is the 

altitude, and i\  is the heading of the vehicle.  hv DDD \ ,,  

and 
h�

D  are known parameters that depend on the 

characteristics of the vehicle. The following constraints with 

regard to i\  and the speed are used: 

cc i dd� \�    (8) 

maxmin vvv i dd   (9) 

where c, vmin y vmax are positive constants that depend on the 

dynamic of the vehicle. Note that the constraints of minimum 

speed can be irrelevant in some aircrafts, such as helicopters, 

but have an important paper in fixed wing UAVs. 

Equations (3)-(7) model the behaviour of the UAV taking 

into account the references in speed, altitude and heading. 

The parameters of the above model can be estimated using 

real flight data of the UAV presented in Figure 1. It should be 

noted that the full model takes into account not only the 

above parameters but also high level control considerations 

about the waypoint tracking. This can be accomplished using 

the MATLAB nonlinear optimization tools over a large set of 

flight data from particular flight experiments carried out for 

that purpose. 

The used atmospheric model solely indicates the wind vector 

speed, !, which in the simulations will only have values in 

the horizontal plane. The value of each component of ! is the 
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average of a normal distribution with fixed standard 

deviation. Thus, each particle is affected by different wind 

disturbances. 

In the implemented algorithm two relevant steps can be 

emphasized: 

1.- Initialization 

The initialization process gives a probable state of the aerial 

vehicle to each particle in the set. In the current simulations, 

this is done by assigning them random values in the 

neighbourhood of the measured vehicle state. It is also 

possible to use the knowledge about the sensor systems 

uncertainties. 

2.- Resampling 

In the current resampling process, each particle will be 

assigned a probability of being chosen that is proportional to 

its weight. Therefore the particles with a higher weight are 

resampled with a higher probability. 

Next an implementation algorithm of the resampling step is 

presented: 

 

Inputs are X, the current particle set, and w, the corresponding 

vector of weights. Output is the new resampled set, Xnew. 

In this algorithm, set_seq is a sequence that represents the 

particle set. Its elements are the value of the previous element 

plus a proportional variable to the weight of the particle that 

it represents (see lines 1-4). 

Then the particles are chosen randomly for the resampling 

process, but following a distribution that gives more 

probability to the ones with higher weights: a number 

between 0 and the last sequence value is generated using a 

random number generator, rand(); then the index of the first 

sequence value that exceeds that number will identify the 

chosen particle. 

That process is repeated as many times as the size of the 

particle set, until a new set, Xnew, is formed. 

 

 

3. SIMULATIONS AND EXPERIMENTS 

In this section, two simulations are presented with two 

different trajectories to demonstrate the particle filter 

operation using the aerial vehicle and atmospheric model 

described in section 2.3. 

Besides, a simulation that uses a tracking control model of 

the UAV and real data instead of simulated nominal 

trajectories is also presented. 

In the first simulation, the reference angle, %c, is set to 0 

radians and ! equal to [1, 1]m/s. The results obtained in the 

first simulation are shown in Fig. 3. A deviation in the 

trajectory angle can be observed due to wind influence. The 

evolution of the particle set around the nominal trajectory can 

also be observed, and the reduction of the uncertainty when a 

resampling is done. 

In Figures 4 and 5 a detailed view of the evolution of the 

particle set is shown. In Fig. 4 the first iterations of the 

simulation can be observed. The particle set is gathered 

around the initial location of the vehicle (first point cloud) 

following a distribution that takes into account the error 

sources coming from the on-board sensors. The next point 

clouds are computed from particle set location samples each 

second. The expansion of the point clouds is due to the 

uncertainties and the different initial conditions of each 

particle. 

 

Fig.3. Evolution of the particle set (grey points) around the 

nominal trajectory (black line) with %c =0º and !=[1, 1]m/s 

When Nef is less than Nlim, the resampling process is carried 

out. Therefore, the uncertainty of the trajectory prediction 

decreases (see Fig. 3) by ruling out the less significant 

particles (lower weights w) and replacing them by others with 

higher weights. From that moment, each particle will evolve 

independently until the next resampling. 
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Fig. 4. First iterations of simulation 1 

In the second simulation, %c varies to describe a circular 

trajectory centered on the origin (see Fig. 6). In this 

simulation ! is set to [0, 1]m/s. 

 

Fig. 5. Resampling process in simulation 1 

In order to show the effect of resampling, the evolution of a 

particle set without carrying out this process is shown in Fig. 

6. The consistent progressive growth of the uncertainty is 

translated into a gradual growth of the point cloud. 

When the resampling is done, the uncertainty decreases in a 

similar way as in the first simulation (see Fig. 7). In this case 

it has to be noted that due to the differences in ! and the 

trajectory, the distribution of the clouds have different 

shapes. 

In order to analyze the effect of the wind in over the 

trajectory prediction, four different simulations with different 

! have been carried out. All simulations consider the same 

control law in %c. 

 

Fig.6. Evolution of the particle set around the nominal 

trajectory (black line) with %c following a circular law and 

!=[0, 1]m/s. Without resampling 

 

Fig. 7. Evolution of the particle set around the nominal 

trajectory (black line) with %c following a circular law and 

!=[0, 1]m/s. With resampling 

Mean and maximum errors and mean standard deviation for 

each of the four simulations are shown in Table 1. These 

errors are computed regarding the mean, maximum and 

standard deviation over each point cloud for the entire 

trajectory. 

Table 1. Trajectory prediction error in four 

different scenarios 

Error (m) Wind speed vector  ! (m/s) 

 [0, 1] [1, 0] [-1, 0] [0, -1] 

Mean 1.3121 1.2153 1.3475 1.3737

Maximum 13.3903 11.0736 10.3345 9.5199

Std. dev. 0.8614 0.8732 0.9082 0.8502
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Several simulations have been carried out using the algorithm 

described in section 2 and data extracted from real flights of 

the UAV presented in section 1. The model of the UAV 

motion is based on the one presented in section 2.3. Its 

behaviour can be seen in Fig. 8.  

 
Fig. 8. Real trajectory (red line) influenced by the wind, 

simulated trajectory using UAV model without wind (black 

line), and waypoints linked with segments (dotted blue line) 

In the simulation in Fig. 9, the particle filter achieves a 

drastic reduction of the uncertainty of the predicted 

trajectory. Note that these predictions are substituted on every 

resampling, so a long-term prediction will result on a 

Montecarlo simulation from the current state on, but with a 

more accurate model of the wind inferred by the particle 

filter. 

 

Fig. 9. Simulation of the particle set (grey points) around the 

real trajectory (black line) with resampling. A wind model is 

inferred by the filter, and the uncertainty decreases. 

 

 

 

 

4. CONCLUSIONS 

The estimation of the uncertainty in the trajectory prediction 

is a main issue for many UAV applications. Particularly, 

these estimations are required for obstacle detection and 

avoidance in both single UAV and multi-UAV systems. 

This paper has presented a method for the estimation of this 

uncertainty by using particle filters. The method uses UAV 

and atmospheric models of arbitrary complexity, although 

this complexity should be limited for the real-time 

application of the method.  

The obtained results are coherent and point out the interest of 

the resampling process of the particle filter. 

Furthermore, the results with the real flight data lead us to the 

same conclusion. Further improvements of the model will 

provide a better estimation of the uncertainty.   

The future work will include the real-time implementation of 

the proposed method for the estimation of the uncertainty in 

UAV collision avoidance. 
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