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This article offers a new perspective in defining comfortable
helicopter flight along with two solutions based on passive and active
main rotor morphing. Constrained optimization design problems
aimed at minimizing flight control energy while satisfying variance
constraints on flight parameters that are considered important in
passenger comfort and noise reduction are formulated and solved.
Output variance constrained (OVC) control is used for control
system design and simultaneous perturbation stochastic
approximation (SPSA) is employed to solve the resulting constrained
optimization problems. Details on the computation of the control
energy are given. Closed-loop responses of designs that satisfy
prescribed variance constraints with a very small margin on the
achievable variance bounds are compared with responses of designs
that satisfy such constraints with a larger margin both for passively
and actively morphing helicopters.
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NOMENCLATURE

p, q, r = Helicopter angular velocities, [deg/s]
u, v, w = Helicopter linear velocities, [m/s]

φA, θA, ψA = Helicopter Euler angles, [deg]
cb = Blade chord length, [m]
κβ = Blade flapping spring stiffness

coefficient, [Nm/rad]
J = Control energy (cost)

m = Blade linear mass density, [kg/m]
R = Blade length, [m]

β0, βc, βs = Collective and two cyclic blade flapping
angles, [deg]

ζ0, ζc, ζs = Collective and two cyclic blade lagging
angles, [deg]

θ0, θc, θs = Collective and two cyclic blade pitch
angles, [deg]

θtw = Blade twist, [deg]
θT = Collective tail rotor angle, [deg]
� = Main rotor angular speed, [deg/s]

I. INTRODUCTION

In the early years of helicopter flight, pilot/passenger
comfort was of minimal importance compared with flight
safety. It is clear that the comfort is directly related to the
helicopter vibration/noise level, so reduction of these
parameters in helicopter flight will naturally improve the
comfort level experienced by passengers and decrease the
pilot stress level. In this article we attempt to address the
comfort improvement problem from this point of view, as
a problem in reduced vibration/noise via multivariable,
constrained control design.

Helicopter noise reduction is a topic of research in
designing helicopters that can be operated more quietly,
reducing the public-relations problems with night flying,
operating or expanding an airport. Noise reduction is of
course essential for military applications in which stealth
is required: long-range propagation of helicopter noise can
alert an enemy in time to reorient defenses. Helicopter
noise/vibration reduction also improves passenger/pilot
comfort and reduces the stress/workload of the pilot.

There have been many research papers published on
noise/vibration reduction [1–8]. For example in [3],
control of vibration and required rotor power is
implemented with partial span trailing edge flaps
operating according to a closed-loop control algorithm. In
another study [6], vibratory loads at the rotor hub, which
are the main sources of helicopter vibration, are reduced
by redesigning the helicopter using certain variables (e.g.,
blade lag and torsion stiffness). This also improves
passenger comfort. There is also one other way of
improving comfort. Specifically, it is intuitive that by
reducing the Euler angle perturbations the comfort level
will increase [9–12]. In all comfort improvement
strategies active control is a critical enabling technology,
therefore a review of helicopter control is mandatory.
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Throughout the years many strategies for aircraft flight
control system (FCS) design have been investigated. Some
of these techniques, listed here in approximate historical
order are: classical pole placement method and simple
feedback approaches [13–18], adjusted linear quadratic
regulator (LQR) and linear quadratic Gaussian (LQG)
controllers [19–21], modified H∞ control synthesis
[22–24], constrained model predictive control (MPC)
[25–27], and variance constrained controllers [9–12,
28–32]. In [33] the feasibility of nonlinear robust control
based on Lyapunov functions was recently demonstrated
in rotorcraft control. Variance constrained controllers,
which have been only recently studied, specifically for
helicopter sensor failure management [28] and passive
[10] and active [12] blade morphing control, will be the
focus of this article. These controllers are LQG controllers
which guarantee satisfaction of certain variance
constraints. And they utilize second-order information
(i.e., state covariance matrix, see [34, 35] for more
information).

Variance constrained controllers have been used for
some aerospace vehicles control before (e.g. helicopters
[9–12, 28–31]; tiltrotor aircraft, [32], Hubble space
telescope [36], and tensegrity structures [37, 38]). For
example, in [28] variance constrained controllers were
applied for helicopter FCS during specific maneuvers (i.e.,
level banked turn and helical turn). Moreover, in [10]
variance constrained controllers were applied for passively
blade morphing helicopters. In another study [12] output
variance constrained (OVCs) controllers were applied for
actively blade morphing helicopters. The major difference
between the active and the passive morphing study in [10]
is that in the active case the helicopter design parameters
are used as FCS parameters so they vary during flight, but
in a prescribed interval ( + /−5% of their nominal values).
However, in the passive case the helicopter design
parameters do not vary during flight (i.e., straight level
flight or maneuvering flight). Passive as well as active
morphing requires changes in some helicopter parameters
(e.g., blade length, blade chord, etc.). The key difference is
that active morphing requires continuous measurements
and actuation as well as a feedback control mechanism
whereas passive morphing does not. Passive morphing
changes can be applied by engineers and technicians, for
example as a one time change before the helicopter begins
the flight mission or even at some point during flight. Once
applied, these changes remain fixed for a prolonged period
of time during flight. Therefore, passive morphing does
not involve additional actively controlled elements beyond
the four conventional helicopter controls (i.e. blade pitch
collective, two cyclics, and tail rotor). In contrast, active
morphing requires special mechanisms that enable
continuous, in-flight modification of some of the
helicopter parameters. These modifications are computed
in response to sensor measurements and implemented via
feedback control. Therefore, active morphing involves
additional feedback controlled parameters beyond the four
conventional helicopter controls. Clearly, passive

morphing is easier to implement since it does not require
additional feedback-driven actuation mechanisms,
whereas active morphing requires sophisticated onboard
signal processing, multivariable, large dimensional
controllers, rapid continuous actuation mechanisms, as
well as computational power. However, active morphing is
generally expected to yield significant improvement in all
aspects of helicopter flight performance.

In this article, to improve flight comfort, we apply both
passive and active blade morphing control as well as
simultaneous design (i.e., of the helicopter and control
system) to highly complex helicopter models that include
relevant physics for helicopter flight control. Specifically
we use an analytical formulation for fuselage
aerodynamics, including degrees of freedom for blade
flapping and lead-lagging motions, aerodynamics of tail
rotor and empennage, downwash of main rotor, landing
gear effects, etc. The main viewpoint of our modeling
process is to build up physics-based, control-oriented
models capturing the “essential dynamics.” By essential
dynamics we mean, not only the dynamics to be
controlled, but also dynamic effects that are directly
affected by control system design and which are crucial
for safe and performant helicopter operation. For instance,
even if the principal objective of the control system design
is to control flight dynamics modes, we are interested to
capture blade flapping and blade lead-lagging modes and
monitor their behavior in the closed-loop configuration. Of
course, development of such models necessitates a
multibody dynamics approach which has been presented
in detail in [9]. References [12] and [29] also show how
the validity of these models has been confirmed against
trim and dynamics data that is available in the published
literature.

The problem of simultaneous design obtained via
joining our helicopter models and dynamic feedback
variance controllers is a highly complex constrained
optimization problem, which does not permit analytical
computation of derivatives (e.g. gradients or/and Hessians
that are necessary in traditional optimization approaches).
Therefore, we have chosen a stochastic optimization
method, which is called simultaneous perturbation
stochastic approximation (SPSA), to solve the
optimization problem. SPSA was selected primarily
due to its previous success in rapidly solving similar,
highly complex and constrained optimization problems
[40, 41].

In this article achievable bounds of OVC are
considered for the first time in passive and active blade
morphing helicopters control. Closed-loop responses of
designs that satisfy prescribed variance constraints with a
very small margin (i.e., actual variances are very close to
the achievable bounds) are compared with responses of
designs that satisfy these constraints with a larger margin
both for passively and actively morphing helicopters.
Therefore this study is different than previous studies in
[10] and [12], since it focuses on achievable bounds for
passive/active morphing rather than only studying
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arbitrarily specified variance bounds. Vibration/noise
reduction is also for the first time considered in this paper,
in conjunction with variance control design.

For the conventional helicopter, there are two
fundamental systems that contribute to the generation of
near-field and far-field noise, the main rotor and the tail
rotor. It has been long established that noise intensity is
directly related to typical angles associated with rotor
blades (pitch, flapping, lead-lagging). In general the larger
these angles are the larger the noise intensity is. Therefore,
it is reasonable to enforce the condition that some if not all
of these angles amplitudes are reduced for improved
comfort/reduced noise intensity. This is the line of thought
we follow in this article. For example, control design can
be used to decrease variances of the control angles (i.e.
blade pitch angles) by minimizing control energy while
keeping flapping and lead-lagging angles small by
satisfying prescribed variance bounds.

II. HELICOPTER MATHEMATICAL MODEL

Our modeling approach depends on two main points.
First, physics principles and suitable modeling
assumptions are used to result in nonlinear ordinary
differential equations (ODEs). Second, the models include
not only the flight dynamics modes but also blade
dynamics modes that are critical for safe and performant
operation. To obtain such models multibody dynamics was
used to capture all important components of a helicopter:
fuselage, fully articulated main rotor with 4 blades,
empennage, landing gear, tail rotor. The key points in
obtaining the model are given next.

A. Dynamic and Kinematic Equations of Fuselage

To find the nondimensionalized helicopter force and
moment equations (1) and (2) Newton-Euler equations
were used giving

d

dψ
û + q̂ŵ − r̂v̂ + g sin (θA)

�2R
= X

�2RMa

d

dψ
v̂ + r̂û − p̂ŵ − g cos (θA) sin (φA)

�2R
= Y

�2RMa

d

dψ
ŵ + p̂v̂ − q̂û − g cos (θA) cos (φA)

�2R
= Z

�2RMa

(1)

d

dψ
p̂ − q̂r̂

(
Iyy
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)
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Ixx

(
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dψ
r̂

)
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Ixx�2

d
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(
Izz

Iyy

− Ixx

Iyy

)
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Iyy

(
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Iyy�2

d

dψ
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(
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Izz

− Iyy
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)
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Izz

(
q̂r̂ − d

dψ
p̂

)
= N

Izz�2

(2)
Here typical notations are used. For instance, R and ψ are
blade length and azimuth angle, I is inertia matrix, Ma is

the mass of the helicopter, g is the constant gravitational
acceleration at sea level, and ˆ denotes the
nondimensionalized quantity (see [9] for details). The
nondimensionalized kinematic Euler equations are

p̂ = d

dψ
φA − d

dψ
ψA sin (θA)

q̂ = d

dψ
ψA cos (θA) sin (φA) + d

dψ
θA cos (φA)

r̂ = d

dψ
ψA cos (θA) cos (φA) − d

dψ
θA sin (φA)

(3)

B. Dynamic and Aerodynamic Forces Acting
on Single Blade

The infinitesimal aerodynamic force and moment
acting on a blade strip in lead-lagging and flapping frame
(LLF) are, respectively, (see [9])

dLLF Faero

= γ Ib

2R3

⎡
⎢⎢⎢⎢⎣

0

−
(
θU

2

T −UP UT

)
UP

UT
− 1

a0

(
δ0 + δ2

(
θ − UP

UT

)2
)

θU
2

T − UP UT

⎤
⎥⎥⎥⎥⎦ dx

(4)

dLLF Maero =[
0 −xR

(
dLLF Faero

)
III

xR
(
dLLF Faero

)
II

]T
(5)

Here UP and UT are perpendicular and tangential
components of air velocity acting on the blade leading
edge, θ is the blade pitch angle, x is the nondimensional
location of a generic point on the blade, γ is the Lock
number, a0 is the blade lift curve slope, and δ0 and δ2 are
parasite and induced drag coefficients. Integration over the
blade length gives total blade aerodynamic force and
moment.

C. Multiblade Equations

Neglecting higher harmonic terms and using 4 blades
for the main rotor, the blade flapping and lead-lagging
motions are expressed by

�i (ψ) = �0 + �1c cos (ψi) + �1s sin (ψi) + �0d (−1)i

(6)
where the blade azimuth angle of the blade i is

ψi = ψ − (
π

/
2
)

(i − 1) , i = 1, . . . , 4 (7)

and � is the generic notation for any of the two angles
mentioned in the above while �0, �c, �s , and �d are
collective, two cyclic and differential components,
respectively (see [42, pp. 102–106] for synchronous
flapping motion discussion). Each blade motion is derived
by using the relevant azimuth angle (see (7)).
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D. Downwash of Main Rotor

A linear static inflow model was chosen for the
downwash. Its cyclic components λc, λs are (see [43,
p. 160]):

λc = λ0
15π

23
tan

(χ

2

)
, λs = 0, χ = tan−1

(
û

ŵ + λ0

)

(8)
where χ is the wake skew angle. The uniform component
of the linear inflow λ0 is calculated numerically using the
momentum theory (see [9]).

E. Tail Rotor

The tail rotor does not flap and is not canted, and its
induced inflow is ignored. Its effect is a force in antitorque
direction. The drag force due to the tail rotor hub and shaft
is also modeled (see [9] for more details).

F. Assembly

For the aggregate helicopter model all the components
outlined in the above were assembled into the nonlinear
equations of the helicopter dynamics. These, derived using
Maple, were obtained in the generic implicit form

f (ẋ, x, υ) = 0 (9)

where f ∈ R
28, x ∈ R

25 is the nonlinear state vector
comprising the fuselage states (i.e., linear and angular
velocities, Euler angles) and blade states (i.e., flapping and
lead-lagging states), and υ ∈ R

4 is the nonlinear control
vector comprising two cyclic and a collective control for
the main rotor and tail rotor force (see [9] for details). For
control design the nonlinear model was linearized around
several trim conditions. The trim conditions were found
using “fsolve” in Matlab to solve the resulting algebraic
equations and linearization was performed in Maple.
Reference [44] provides examples of the linear model
matrices for some specific flight conditions.

III. HELICOPTER FLIGHT CONTROL SYSTEM

In this article for helicopter control we use output
variance constrained controllers (OVC). In the following
we review key elements related to OVC such as energy
and variance computation.

A. Energy Computation for LQG/OVC

Consider a continuous first-order linear time invariant
(LTI), stabilizable and detectable system, which we call
the “plant”

ẋp (t) = Apxp (t) + Bpu (t) + wp (t) ,

yp (t) = Cpxp (t) , z(t) = Mpxp(t) + v(t) (10)

and a full-order dynamic controller

ẋc (t) = Acxc (t) + Fz (t) , u (t) = Gxc (t) (11)

Here yp is the vector of size ny of system outputs, z is the
vector of sensor measurements of size nz, wp and v are
zero-mean uncorrelated process and measurement

Gaussian white noises with intensities Wp and V,

respectively, and xc is the controller state vector of the
same size n as the plant state vector xp. Matrices
F and G are state estimator and controller gain,
respectively. Then, with the closed-loop state defined as
x(t) = [ xT

p (t) xT
c (t) ]T , the closed-loop system is

ẋ (t) = Ax (t) + Dw (t) , y (t) = Cx (t) (12)

where

A =
[

Ap BpG

FMp Ac

]
, D =

[
Dp 0
0 F

]
, W =

[
Wp 0
0 V

]

and the output is

y (t) =
[

yp (t)
u (t)

]
=

[
Cy

Cu

]
x (t) (13)

where Cy = [ Cp 0 ] and Cu = [ 0 G ]. It is assumed that
the closed-loop system is exponentially stable. Then, for
this definition of the closed-loop state, the control energy,
defined as

J = E∞uT Ru (14)

where E∞
�= limt→∞E with E the expectation operator, is

computed as

J = tr
(
RCuXCT

u

)
(15)

where tr is the trace and

X =
[

X11 X12

X21 X22

]
(16)

is the “steady state” closed-loop state covariance matrix
that can be computed by solving the following Lyapunov
equation:

0 = AX + XAT + DWDT (17)

Note that the size of this Lyapunov equation is twice the
size of the plant (for example, the size of matrix A is
50 × 50 for our helicopter model, i.e. n = 25). Simple
algebra performed on (17) shows that

J = tr(RGX22G
T ) (18)

Therefore only the lower right part of X is required to
compute the control energy.

If the dynamic controller is an LQG controller, it can
be shown (for example by defining the closed-loop state as
x̄(t) = [ xT

p (t) − xT
c (t) xT

c (t) ]T ) and using the LQG
optimality conditions) that X22 (which is the covariance
matrix of the controller state) can be evaluated by solving
a smaller size Lyapunov equation:

0 = X22
(
Ap + BpG

)T + (
Ap + BpG

)
X22 + FV FT

(19)
For large dimensional systems, solving (19) may be an

important computational advantage compared with
solving (17).
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B. Computation of Variances

Let yi(t) be one of the components of y(t) in (13). The
variance of yi(t) is defined by

Yi = E∞
{
y2

i

}
(20)

and if 1 ≤ i ≤ ny it represents an “output variance” while
if ny + 1 ≤ i ≤ ny + nu it represents an “input variance.”
These variances can also be calculated using some parts of
the steady state closed-loop covariance matrix.

E∞y2
pi = [Y ]ii , f or i ≤ ny (21a)

E∞u2
i = [Y ]ii , f or i ≥ ny + 1 (21b)

where Y = CuXCT
u . Therefore,

E∞y2
pi = [

CT
pi 0

] [
X11 X12

X21 X22

] [
Cpi

0

]
= CT

piX11Cpi

(22)

E∞u2
i = [

0 GT
i

] [
X11 X12

X21 X22

] [
0
Gi

]
= GT

i X22Gi

(23)
where Cpi and Gi are the i-th row of Cp and G,
respectively. Therefore, output variance calculation
requires

X11 = E∞
{
xpxT

p

} = Xp (24)

and input variance calculation requires

X22 = E∞
{
xcx

T
c

} = Xc (25)

C. OVC Problem

For OVC design the problem described next must be
solved [45, 46]. Given (10), and an input penalty R > 0,
find a full order dynamic controller [see (11)] to solve the
problem

min
Ac,F,G

J = E∞uT Ru = tr
(
RGX22G

T
)

(26)

subject to

E∞y2
i ≤ σ 2

i , i = 1, ...., ny (27)

where σ 2
i is the upper bound imposed on the i-th output

variance.
The OVC solution reduces to an LQG problem by

choosing output penalty Q ≥ 0 depending on the
inequality constraints. An algorithm for Q selection is
presented in [45] and [46]. After converging on Q, OVC
parameters are

Ac = Ap + BpG − FMp, F = ℵMT
p V −1,

G = −R−1BT
p K (28)

where ℵ and K are solutions of two Riccati equations:

0 = ℵAT
p + Apℵ − ℵMT

p V −1Mpℵ + Wp (29a)

0 = KAp + AT
pK − KBpR−1BT

p K + CT
p QCp (29b)

Note that for all of the numerical experiments reported
herein (i.e., OVCs designs and closed-loop simulations),
the sensor measurements were helicopter linear velocities,
angular velocities, and Euler angles. The outputs of
interest were helicopter Euler angles for the first definition
of comfort and blade flapping and lagging angles for the
second definition of comfort. Also nondimensionalized
noise intensities were taken as Wp = 10−7I25, V = 10−7I9

for consistency with other results used for comparison (see
[29] for a discussion on the selection of these values).

It is important to note that the minimum achievable
output variance bounds can be computed a priori, before
OVC design is performed. These are given by

[
σ 2

i

]
min

= [
CpℵCT

p

]
ii

(30)

where, for the particular system described in (10), ℵ is
computed by solving the Riccati equation (29a).
Therefore, before implementation of the OVC algorithm
these bounds should be computed and σi must be selected
such that σi > σimin, otherwise there is no solution.

D. Problem Formulation

The passive blade morphing design problem is:

min
Ac,F,G,�p

J = E∞uT Ru (31)

subject to (10), (11), and (27) where
�p = {cb, κβ, m, R, θtw, �} is the set of helicopter blade
optimization parameters. The elements of �p are
constrained, i.e. �pimin

≤ �pi ≤ �pimax
. Because, after

solving this simultaneous helicopter and control design
problem a new helicopter design is obtained along with an
OVC controller, the resulting helicopter is also referred to
as the redesigned helicopter (obtained via passive
morphing).

Note that matrices Ap and Bp are functions of �p.
These dependencies lead to a complicated optimization
problem in which both the objective J and the variance
constraints depend on the optimization variables in a
sophisticated manner. The solution to this problem is
discussed in the next section.

The active blade morphing design is summarized next.
Let �a = {cb, R, θtw, �} be the set of trim morphing
controls. The problem of obtaining optimum trim values
for these morphing controls can be obtained by altering
the traditional OVC design problem described in the above
if we take into account the dependencies Ap(�a), Bp(�a).
We emphasize that here �a represents the vector of
morphing controls trim values. In the control problem
formulation u represents perturbations of all the controls,
including the morphing controls, from their trim values.
The control energy in (26) as well as all the variance
constraints in (27) are now functions of the trim morphing
controls and the control matrices (Ac, F, G). Therefore,
the following optimization problem is formulated:

min
Ac,F,G,�a

E∞ uT Ru (32)
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subject to (10), (11), and (27). In addition, the elements of
�a are constrained, i.e., �aimin

≤ �ai ≤ �aimax
. This new

optimization problem is more complex than OVC control
design and its solution is discussed next.

In order to solve the problems defined, we selected a
stochastic optimization method called SPSA, which was
successfully used in similar complex constrained
optimization problems [9, 10, 12, 41]. SPSA is
inexpensive because it uses only two evaluations of the
objective to estimate the gradient [40]. It is also successful
in solving constrained optimization problems [9, 10, 12,
41, 47].

IV. ACHIEVABLE BOUNDS AND COMPARISONS
(COMFORT VERSION-I)

A. Passive Morphing

Using the achievable bounds equation (see (30) and
[45]) it is found that σ 2

min = 1.3 ∗ 10−7[ 1 1 1 ] for the
nominal helicopter. These values are close to the ones
for the redesigned helicopter obtained in [10].
However, if output variance bounds very close to
σ 2

min = 1.3 ∗ 10−7[ 1 1 1 ] are chosen, after solving the
passive morphing design problem defined in Section IV,
the expectation values of the inputs of interest are huge
(e.g. E∞u2

i > 1012, i = 1, . . ., 4). This can be easily
explained by the fact that tight output bounds satisfaction
requires a large control effort. This is also a reflection of
the trade-off one has to make between control energy and
comfort requirements: the output variance specifications
are directly related to improved comfort. If stringent
requirements are imposed (i.e. output variance bounds
close to the achievable OVC bounds) then a high price has
to be paid in terms of the control effort required to achieve
this level of comfort.

In [10] passive morphing was applied as described in
this article using the helicopter model linearized around
VA = 40 kts straight level flight and some other flight
conditions. For the OVC design there σ 2 = 10−4[ 1 1 0.1 ]
were selected as variance constraints on Euler angles. In
this study the variance constraints on Euler angles are
changed to σ 2 = 10−6[ 1 1 1 ]. For both articles the inputs
of interest are all four conventional helicopter controls.

The relative energy saving is calculated using

%J = 100 (Jn − Jr )
/
Jn (35)

where Jr and Jn are the costs of OVCs obtained using the
redesigned helicopter (i.e., the helicopter obtained after
passive morphing) and the nominal helicopter with OVC
designed to satisfy the respective OVC bounds,
respectively. From [10] we have that %J = %33.3. From
the current calculations we obtain a lower value,
specifically %J = %18.0 (see Table I for optimum design
variables). Moreover, if we use the redesigned helicopter
in [10], and design a OVC controller for the new
constraint (i.e. σ 2 = 10−6[ 1 1 1 ]) the corresponding
relative energy saving is %J = %13.5. This set of results
confirms the fact that a substantial trade-off in terms of

TABLE I
Optimum Design Variables

Using Old Variance Bounds [10] Using New Variance Bounds

Optimum
Value

Change
��pi

/�pi

Optimum
Value

Change
��pi

/�pi

cb 0.5158 m −0.04506 0.5671 m 0.04997
Kβ 50554.0426

Nm/rad
0.04995 50555.9685

Nm/rad
0.04999

m 9.5544 kg/m 0.04993 8.6458 kg/m −0.04991
R 7.1265 m −0.04980 7.1425 m −0.04730

θtw −0.1470 rad 0.04981 −0.1336 rad −0.04525
� 25.6111 rad/s −0.04996 25.6740 rad/s −0.04911

Fig. 1. Closed-loop responses of some perturbed states and controls
using passive helicopter morphing for different variance bounds (comfort

version-I).

control energy must be made to satisfy stringent comfort
requirements: the control energy saving went down from
%J = %33.3 for σ 2 = 10−4[ 1 1 0.1 ] to %J = %18.0
and %J = %13.5 for σ 2 = 10−6[ 1 1 1 ] for two different
helicopters.

For numerical simulations, several closed-loop
systems are created as described next. The first
closed-loop system is created using OVC designed with
σ 2 = 10−6[ 1 1 1 ] for the redesigned helicopter and
coupling it to the redesigned helicopter obtained using
passive morphing with σ 2 = 10−6[ 1 1 1 ]. The second
closed-loop system is created using the OVC designed
with σ 2 = 10−4[ 1 1 0.1 ] for the redesigned helicopter
and coupling it to the redesigned helicopter obtained for
σ 2 = 10−4[ 1 1 0.1 ]. The third closed-loop system is
created using OVC designed with σ 2 = 10−6[ 1 1 1 ] for
the nominal helicopter and coupling it to the nominal
helicopter (i.e., for which passive morphing is not used).

In Fig. 1 response of one of the helicopter Euler angle
states (φA: roll angle), collective cyclic main rotor blade
pitch angle and longitudinal linear velocity state (u) are
given when the first closed-loop system (solid black line)
and second closed-loop system (dotted black line) are both
excited by white noise perturbations. From this figure it
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Fig. 2. Closed-loop responses of some perturbed states and controls
using passive morphing versus nominal helicopter (comfort version-I).

can be easily seen that the variations of the Euler angles
for the first closed-loop system are smaller than the ones
for the second closed-loop system. This can be explained
by the fact that the prescribed output variance bounds of
the first closed-loop system are smaller than the ones of
the second closed-loop system. It is worth mentioning that
the very small values of these angles are expected because
we enforced very small values on their variances in OVC
design. Of course if larger values for the noise intensities
are used in simulations, larger variations of the Euler
angles are observed (here we used Wp = 10−7I25,
V = 10−7I9 for consistency with other results). Similarly,
large angle variations can be obtained if larger values for
the output variance constraints are used in OVC design.
However, in any case the observed pattern is qualitatively
similar with the one in Fig. 1.

It can also be seen that the control variations (e.g. θ0)
from their trim values increase after using new bounds
(i.e. σ 2 = 10−6[ 1 1 1 ]) which are smaller than previous
bounds (i.e. σ 2 = 10−4[ 1 1 0.1 ]). This result confirms the
expectation that smaller output variance bounds
satisfaction requires larger control inputs. From this figure
it can be also ascertained that other outputs (e.g. u) do not
experience catastrophic behavior.

In Fig. 2 response of one of the helicopter Euler angle
states (i.e. φA), and one of the main rotor controls (e.g. θ0)
are given when the first closed-loop system (solid black
line) and third closed-loop system (dotted black line) are
both excited by white noise perturbations. From this figure
it can be easily seen that before and after redesign, the
qualitative (i.e., shape of the response) and quantitative
(i.e. magnitude of the response) behaviors of helicopter
Euler angles are practically the same. This is explained by
the fact that the variances of outputs of interest (i.e.,
helicopter Euler angles) are very close and satisfy the
same constraints (i.e. σ 2 = 10−6[ 1 1 1 ]). On the other
hand, the variations of the controls decrease after using the
redesigned helicopter, explaining the reduction in control
energy when passive morphing is used.

B. Active Morphing

For the active morphing scenario only %5 change in
trim values is permitted. For active morphing, in [12]
helicopter models linearized around VA = 40 kts straight

TABLE II
Optimum Trim Variables

Using Old Variance Bounds [12] Using New Bounds

Optimum
Value

Change
��ai/�ai

Optimum
Value

Change
��ai/�ai

cb 0.5664 m 0.04873 0.5644 m 0.04501
R 7.1250 m −0.04999 7.1250 m −0.04999

θtw −0.1366 rad −0.02455 −0.1467 rad 0.04785
� 25.6844 rad/s −0.04873 25.7810 rad/s −0.04515

level flight and some other flight conditions were used and
the prescribed variance bounds on Euler angles were
σ 2 = 10−4[ 1 1 0.1 ]. The inputs of interest were all the
conventional helicopter controls and the morphing
controls. In this study we use σ 2 = 10−6[ 1 1 1 ] as
prescribed variance constraints on Euler angles. After
applying the active morphing design procedure, the
relative energy saving is %J = %84.1 (also see Table II
for optimal trim values). We remark that the value of the
relative energy saving using active morphing was
%J = %84.6 in [12]. Furthermore, using the actively
morphing helicopter in [12] for the new OVC bounds (i.e.
σ 2 = 10−6[ 1 1 1 ]) the relative energy saving is
%J = %84.3. These results illustrate two advantages of
active morphing with respect to passive morphing. First,
the relative energy savings are much higher when active
morphing is used. Second, when active morphing is used
the relative energy savings are very similar when different
variance bounds for OVC are used. Therefore, the
trade-off between relative control energy saving and
satisfaction of more stringent comfort related variance
constraints that we have seen when passive morphing was
used is alleviated by active morphing.

For numerical simulations, the fourth closed-loop
system is created using OVC designed with
σ 2 = 10−6[ 1 1 1 ] for the actively morphing helicopter
and coupling it to the corresponding actively morphing
helicopter. Likewise, the fifth closed-loop system is
created using OVC designed with σ 2 = 10−4[ 1 1 0.1 ] for
the actively morphing helicopter and coupling it to the
corresponding actively morphing helicopter. Lastly, the
sixth closed-loop system is created using OVC designed
with σ 2 = 10−6[ 1 1 1 ] for the nominal helicopter and
coupling it to the nominal helicopter.

In Fig. 3, responses of φA, θ0, and one of the morphing
controls (i.e. R) are given when the fourth closed-loop
system (solid black line) and fifth closed-loop system
(dotted black line) are both excited by white noise
perturbations. From this figure it can be easily seen that
the variations of the Euler angles for the fourth
closed-loop system are smaller than the ones for the fifth
closed-loop system. This can be explained by the fact that
the variance bounds of the fourth closed-loop system are
smaller than the ones of the fifth closed-loop system. Note
also that, similarly with the situation in Fig. 1, the
variations of the Euler angles from their trim values are
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Fig. 3. Closed-loop responses of some perturbed states and controls
using active morphing with different variance bounds (comfort version-I).

Fig. 4. Closed-loop responses of some perturbed states and controls
using active morphing versus nominal helicopter (comfort version-I).

very small. It can also be seen that the control variations
(e.g. θ0) from their trim values increase after using new
bounds (i.e. σ 2 = 10−6[ 1 1 1 ]) since they are smaller
than the old bounds (i.e. σ 2 = 10−4[ 1 1 0.1 ]). This result
confirms the fact that smaller variance bounds can be
achieved with larger control inputs. The variations of
morphing controls also increase when the variance bounds
decrease. We remark by comparing Figs. 2 and 3 that the
control effort required from the conventional controls
decreases when active morphing is introduced because the
morphing controls are now helping meet the objectives.
We also note that the previous calculations refer to the
relative control energy saving %J , with respect to the
nominal helicopter equipped with OVC designed to
satisfy the respective output variance bounds (i.e.
σ 2 = 10−6[ 1 1 1 ] and σ 2 = 10−4[ 1 1 0.1 ]). Therefore,
no confusion should arise from the fact that the relative
control energy savings are similar whereas the control
responses in Fig. 3 are different (the baseline for energy
saving computation is different).

In Fig. 4, responses of φA, θ0, and u are given when the
fourth closed-loop system (solid black line) and sixth

closed-loop system (dotted black line) are both excited by
white noise perturbations. From this figure it can be seen
that with and without active morphing, the qualitative (i.e.,
shape of the response) and quantitative (i.e. magnitude of
the response) behaviors of helicopter Euler angles are
practically the same. This is explained by the fact that the
variances of outputs of interest (i.e., helicopter Euler
angles) are very close and satisfy the same constraints.
The variations of the controls decrease for the actively
morphing helicopter. From Fig. 4 we also ascertain that
other outputs (e.g. u) do not experience catastrophic
behavior and their qualitative behavior is similar. This
good behavior is explained by the exponentially
stabilizing effect of OVC (see [9]).

V. VIBRATION/NOISE REDUCTION (COMFORT
VERSION-II)

Amplitudes of flapping, lagging, and control angles
are effective on comfortable helicopter flight, which
becomes less noisy and less vibratory when these
amplitudes are reduced. Therefore, in this section OVCs
are designed for this purpose. The outputs of interest are
three main flapping angles (i.e. collective and two cyclics)
and three main lagging angles (i.e. collective and two
cyclics). The inputs of interest are all helicopter controls.
The number of inputs of interest is four for conventional
helicopter and eight for the actively morphing helicopter.
The output variance bounds on related angles are
σ 2 = a ∗ 10−5[ 1 1 1 1 1 1 ] where a = 1 for the
conventional helicopter. Note that the selection of a = 1
was dictated by our numerical experiments. Specifically, it
was impossible to satisfy output variance bounds with
a < 1. However, it was possible to reduce that value of a
in the case of the actively morphing helicopter, when a
was chosen a = 0.5. This is expected because the actively
morphing helicopter has more controls (eight) compared
with the conventional one (four). The larger number of
controls can be more effective both in satisfying output
variance constraints and in reducing the control energy.
Indeed, the energy saving after applying the active
morphing idea is %J = %97.6 which is calculated
using100(0.9298 − 0.02125)/0.9298.

For the vibration/noise reduction study two more
closed-loop systems are created. The seventh closed-loop
system is created using OVC designed with
σ 2 = 10−5[ 1 1 1 1 1 1 ] for the nominal (i.e.
nonmorphing) helicopter and coupling it to the nominal
helicopter. The eighth closed-loop system is created using
OVC designed with σ 2 = 0.5 ∗ 10−5[ 1 1 1 1 1 1 ] for the
actively morphing helicopter and coupling it to the
actively morphing helicopter.

In Fig. 5 responses of some of the outputs of interest
are given when the seventh closed-loop system (solid
black line) and eighth closed-loop system (dotted black
line) are both excited by white noise perturbations. From
this figure the ability of OVC to practically suppress the
new outputs can be ascertained: the variations of blade
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Fig. 5. Closed-loop responses of outputs of interest for nonmorphing vs
actively morphing helicopter (comfort version-II).

Fig. 6. Closed-loop responses of inputs of interest for nonmorphing vs
actively morphing helicopters (comfort version-II).

flapping and lead-lagging angles from their trim values are
very small because we used very small values for the
output variance constraints in OVC design. Note also that
because the difference between the output variance
constraints is not as significant as in Figs. 1 and 2, the
ranges of these variations are similar. In Fig. 6 responses
of some inputs of interest are given when the seventh and
eighth closed-loop systems are both excited by white noise
perturbations. It can be seen that, in general, the variations
of the conventional controls for the active morphing
helicopter are smaller than the ones for the nonmorphing
helicopter (only the blade pitch collective control behavior
is in the same range as for the nonmorphing helicopter).
However, our extensive analysis shows that the most
important observation is related to the tail rotor control.
For the nonmorphing helicopter, the tail rotor control
exhibits much larger variations than all of the other
controls. Therefore, for the nominal, nonmorphing
helicopter, the tail rotor control is the dominant factor in
the value of the control energy. However, when active
morphing is used, the control effort required from the tail
rotor decreases dramatically. Importantly, this is consistent
with the physical intuition: in the nonmorphing helicopter
the tail rotor control has to work, together with the other
three conventional controls, towards a task it is not
effective at: reducing the main rotor blade flapping and
lead-lagging angles. However, when active morphing is
used additional controls that act on the main rotor blade
(and so are more effective at controlling blade flapping
and lead lagging) are introduced. Therefore, these new
controls relieve the tail rotor control from a task it is not
adequate for. Moreover, additional controls due to active

morphing do not experience large variations. This fact, in
conjunction with the observation that the tail rotor control
was the main contributor to the control energy in the
nonmorphing helicopter, explains the large energy saving
achieved via active morphing.

VI. CONCLUSIONS

Comfortable helicopter flight via passive/active
morphing is investigated. Two comfortable flight types are
considered. For the first comfort version, there are strict
variance constraints on fuselage Euler angles that must be
satisfied. For the second comfort version, strict variance
constraints on blade flapping and lead-lagging angles must
be satisfied.

For the first comfort version, when values very close to
the achievable OVC variance bounds are used on Euler
angles in passive morphing design, the control effort
required is very large. Hence, while it is desired to use as
small as possible bounds for improved comfort, a trade-off
must be made between the control energy used for this
purpose and the level of comfort achieved. When small but
different output variance bounds are used in passive
morphing design, a significant trade-off between the
relative control energy saving obtained and level of
comfort achieved is observed: satisfaction of stringent
variance bounds leads to lower relative energy savings
compared with the situation when less stringent bounds
are satisfied. When active morphing is used for the same
purpose (i.e., satisfaction of prescribed variance
constraints on Euler angles) a much larger relative saving
in control energy is observed. It is also observed that the
trade-off between relative energy savings and the level of
comfort is alleviated with respect to the passive morphing
scenario.

For the second comfort version, when output variance
constraints are prescribed on flapping and lead-lagging
angles, active morphing results in a large relative energy
saving with respect to the situation when morphing is not
used (i.e. nonmorphing helicopter). Also, introduction of
active morphing enables satisfaction of lower variance
constraints on these angles. Importantly, introduction of
active morphing controls results in a significant reduction
of the tail rotor control effort, while not leading to large
variations in the morphing controls, which explains the
large energy saving observed when active morphing is
used. Effectively the active morphing controls relieve the
tail rotor from a task it is not effective at (i.e. main rotor
blade flapping and lead-lagging control) at a relatively low
control energy cost.

Numerical simulations of the closed-loop system
responses for all scenarios considered indicated that the
outputs of interest (i.e. Euler angles or blade flapping and
lead-lagging angles) are practically suppressed when the
closed-loop systems are excited by perturbations
compatible with the ones used in the control design
process. This is expected because very small values for
output variance constraints are used in OVC design. It was
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also observed that other outputs did not experience
catastrophic behavior.
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