
Optimization Methods for

Computational Biology

Prof. Renato Bruni

Department of Computer, Control, and Management Engineering (DIAG)

“Sapienza” University of Rome

bruni@dis.uniroma1.it

Bachelor’s degree in Bioinformatics

Brief outline of the course

� What is Optimization

� Types of Optimization models

� Solver for Optimization models

� Introduction to Data Mining and Machine Learning

� Heuristic Algorithms for Combinatorial Optimization

Material of the course

� Slides of the course, available from the home page

of the professor

(http://www.diag.uniroma1.it//~bruni/)

� On the same page you can find the zoom links for

the online lessons

Important Advices

� If you need to contact me, use bruni@diag.uniroma1.it and ALWAYS

use the subject Course on Optimization Methods

� Always try to understand what we will see, do not learn by heart

pretending that you understood

� The slides may be updated during the course, so be sure you are using

the latest version

Outline part 1

� What is Operations Research and Optimization

� Using Optimization Models

� Types of Optimization Models

� Linear Programming

� Duality in Linear Programming

� Modeling Techniques

� Operations Research: the application of a wide range of

mathematical techniques and methods to support decision-making

or improve efficiency. AKA Management Science

� The name comes after an “Operational Research Section” of the

Royal Air Force created in 1941 in UK to support military decisions

with scientific methods

� They were very successful during the course of World War II,

otherwise we would not even know their name

� Today it is applied in a very wide range of fields, for example:

Operations Research

� Production planning

� Investment selection

� Portfolio optimization

� Data mining

� Sequence analysis

� Personnel scheduling

� Network design

� ;

� Optimization: the selection of a best element (with regard to some

mathematical criterion) from some set of feasible alternatives

� We search for maximum or minimum (= optimal solutions) of

some objective function, that is a function expressing our criterion

� Usually we want to minimize costs or maximize gains or

performance

� Minimize costs – example: build a bridge that can be used by 100

cars every hour by selecting the geometry, the materials, etc. in

order to have minimum cost

� Maximize performance – example: build a bridge with a budget of

10 MEuro by selecting the geometry, the materials, etc. in order to

allow the maximum number of cars

Optimization

Why we need OR ?
� Consider the following example, due to George Dantzig (1914-2005),

one of the founders of Operations Research

� We have a company with 70 workers and 70 works waiting to be

done

� For each assignment work-worker, we have a measure of how good

is the assignment.

� Example: worker A � job 1 gives a value of 3,

� worker A � job 2 value 0.5,

� worker B � job 1 value 1, etc.

� We want to assign each worker a work, so that each has one, and we

want to maximize the total value of the assignment

Complete Enumeration
� Problem: assign 70 workers to 70 works

� This may look easy; let’s solve it by complete enumeration: we

compute the value of each solution and chose the best

� How many solutions? For the first worker we chose among 70 works,

for the second among 69, and so on.

� Total: 70 x 69 x ; x 1 = 70! (permutations of 70 elements, ≈10100)

� How long does it take to compute all the 70! solutions and chose

the best one?

Computation
� How long does it take to compute all solutions and chose the best? Dantzig

estimated this:

� If we try using a 1MHz computer (now obsolete, at that time
futuristic)

� So we take a 1THz supercomputer (yet to come) and give it all the
time form Big Bang up to now. Is it enough?

� So we cover the whole Earth of these supercomputers working in
parallel. Moreover, we give them all the time form Big Bang up to now.
Is it enough now?

� We start it. After a few days it has not finished, so we stop it

� Maybe we just need more time: let’s give it all the time from
Big Bang up to now. Has it finished now?

� So what do we need?? According to Dantzig, we need 1040 Earths covered
in supercomputers and working since the Big Bang!

No!

No!!

Again No!!

� So, the problem of 70 workers and 70 jobs is too difficult to be

solved? We just abandon all hopes?

� No. Similar problems are solved very easily now, by many

organizations

� How do they do? They do not use complete enumeration!

� Instead, they use the right models and algorithms

� Complete enumeration is computationally inapplicable, unless we

have very small problems;

� We will learn how to chose the right models and algorithms

� We will understand what is computational complexity

So how do we solve?

� What is an algorithm? Algorithms are what make it possible for

computers to solve problems.

� One possible definition:

� “An algorithm is a procedure, (a finite set of well-defined instructions)

for accomplishing some task which, given an initial state, will

terminate in a defined end-state”

� An algorithm must obviously be correct (= not giving wrong answers)

� But it should also be efficient (= not wasting computational

resources, which in computers are time and memory space)

� In many cases, a correct but inefficient algorithm cannot solve a

problem in practice

Algorithms

Using an optimization model
� When we have a problem, usually we can use 2 approaches

� 1) study the specific problem; invent an algorithm for that specific

problem; solve it

� 2) study the specific problem; make a model representing the

essential of that problem but forgetting about all inessential aspects;

study the model obtained; take a known algorithm to solve that

type of model, solve it.

� Which one is better? If we use 1) we need to start from scratch for

every new problem, and the algorithm we invent may be correct but

inefficient

� If we use 2) we can take advantage of the work of many researchers

worldwide and use an efficient algorithm, maybe even already

implemented in some programming language

How to make a model ?

Study the problem

Write the model

Study the model

� We may follow this approach:

� Real world relationships among quantities

are converted into mathematical

relationships

� The algorithm must be selected from the

ones available for that type of model

� When we compute a numerical solution, we

evaluate if it is reasonable. If it is not, we

probably forgot some essential aspect of the

problem in the definition of the model. We

need to go back to model definition and

solve again

� Example: we obtain a negative value for

something that must be >=0? We forgot to

specify non-negativity in the model

Select the algorithm

Numerical solution

Validate the model

Advantages of the model
� We use the power of mathematics to find a solution

� We may mathematically discover important properties of the

practical problem (for example, we discover that a quantity a is always

3.5 b, and this was previously unknown)

� We may use mathematical simulations (for example, we do need to

build a bridge and see whether it falls down or not, we simulate its

behavior)

� Criticisms to the use of mathematical models

� the quality of the answer depends on the quality of the data (garbage

in, garbage out) but this is inevitable

� Not everything can be quantified (for example, subjective

evaluations). However, we can do our best;

Optimization models
� The general form of an optimization model is

f is called objective function, it is a function f : Rn � R and represents

what we want to maximize or minimize

min f(x)

x∈S

x is the set of decision variables (typically a vector x1, …, xn), and

represents what we can decide of the problem

S is a set in the space of the x called feasible set, and represents all the

set of decisions (= all the points x) which are admissible

� We just write the minimization form because every maximization can be

expressed as a minimization: min f(x) = - max(- f(x))

Optimal Solutions

and the problem is said to have an optimal solution. In this case, it may

either have only one optimal solution, or more than one optimal solution,

which will however give the same optimal value to the objective function

(by definition)

If there exists at least one x* = x*1, …, x*n ∈ S such that f(x*) <= f(x)

for all x∈S , then:

Every x in the feasible set S is called feasible solution

x* = x*1, …, x*n is a global minimum, and it’s called optimal solution

min f(x)

x∈S

and f * = f(x*) is the optimal value of the objective function

Given

Do we always have optima?

� There exist problems without optimal solutions

If there is no optimal solution, then the problem may be:

� infeasible: there is not even one feasible solution, in other words

the set S is empty! (example: we want to build a bridge holding at

least 100 cars, and we have a budget of 3 Euro. Are there

solutions? Probably not)

� or unbounded: given any solution, there will always be a better

one, so it is impossible to say that one solution is optimal (example:

how much money do we want as a gift?)

Example 1
� A company makes 3 products called P1, P2, P3

� Each Kg of product needs some material, called M1 and M2,

according to the following table

M2M1

43P3

51P2

42P1

� Material M1 is only available in 50 kg per week, material M2 in 80 kg

per week

� P1 is sold at 10 euro/Kg, P2 at 14 euro/Kg, P3 at 18 euro/Kg

� We want to plan our production in order to maximize income

Building the first model 1/3

� How can we solve? The first step is understanding what we can decide

� Can we simply increase prices and earn a lot? No, the prices are fixed

by the market, if we increase them we just don’t sell

� We can only decide how much of P1, P2, P3 we produce, so we use

these 3 decision variables:

� x1 = Kg of P1 produced every week

� x2 = Kg of P2 produced every week

� x3 = Kg of P3 produced every week

� We use Kg per week since all numbers are expressed so, otherwise

we convert to any reasonable common measure

Building the first model 2/3

� Now, we write our objective as maximize our weekly income, but

expressed as a function of the unknown values of our production

max f(x) = max (10 x1 + 14 x2 + 18 x3)

� In other words, we don’t know how much we will earn every week,

because we still don’t know how much of each product we will produce,

but we can express it using our decision variables

� Now, are we done? To answer this question every time we are writing a

model, let’s try to solve the problem as it is now. What happens? The

problem seems unbounded. However, in reality it is clearly not so: we

cannot produce at will. We need to consider the limits on the materials

Building the first model 3/3

� We write that the amount of M1 used every week cannot be more

than 50 kg. Again, we do not know how much M1 we will use, because

we still don’t know how much of each product we will produce, but we

can express it using our decision variables

2 x1 + 1 x2 + 3 x3 ≤ 50

4 x1 + 5 x2 + 4 x3 ≤ 80

� Similarly, we write that the amount of M2 used every week cannot be

more than 80 kg

� Moreover, we need to say that the decision variables are in this

case real non-negative values (we can produce also fractions of

Kg but no negative values)

xi ≥ 0 for i = 1, 2, 3 xi ∈ R for i = 1, 2, 3

Our first model

� By using all the pieces we obtain our model of the problem

� All the expressions defining the feasible

set are called constraints

� Below the constraints, we write the

domain of the variables (for example real

values, integer numbers, etc.)

� when the domain is simply real numbers,

it is often omitted
x∈R3

4 x1 + 5 x2 + 4 x3 ≤ 80

2 x1 + 1 x2 + 3 x3 ≤ 50

max 10 x1 + 14 x2 + 18 x3

xi ≥ 0 for i = 1, 2, 3

� Note that this is not the solution; it is just the complete expression of

the essential elements of the practical problem

� Now we could select an algorithm for a model of this type (it is

called a linear programming model) and solve it to find x*1 x*2 x*3

Example 2
� We have a budget of 100.000 Euro and we need to invest it

� We find 4 possible investments A, B, C, D, each having a cost and a

revenue

40.000

30.000

B

40.000

15.000

C

70.000

50.000

DA

35.000revenue

20.000cost

� Each investment can either be fully done or not done, it cannot be

done partially and it cannot be done more than once

� We want to choose which investments we do in order to maximize

revenue

Building the second model 1/2
� With only 4 investments we could simply think and see the solution

� However, if we had 400 investments, we could not do that!

� So we need to build again a model

� What is the aspect we can decide? The revenue of each investment

is already estimated, we cannot change it

� For each investment, we can choose whether we do that or not

� The variables of our model will be

� xi =
1 if we do investment i

0 otherwise

� These variables cannot be real numbers, they must be

binary: either 1 or 0

Building the second model 2/2

� Now, we write our objective as maximize the total revenue,

expressed as usual as a function of the variables

max 35000 xA + 40000 xB + 40000 xC + 70000 xD

� Note that, when selecting the variables, we usually associate 1 to

action done, 0 otherwise, and not for example the other way around,

or +1 and -1, etc. This allows us to write the model as the above sum of

products, easily readable

� Do we have constraints? Yes, we need to say that we must respect

our budget: the total cost of investments done cannot exceed 100000

20000 xA + 30000 xB + 15000 xC + 50000 xD ≤ 100000

Our second model
� In conclusion, here is our second model

or xi ∈{0,1} for i = 1, 2, 3, 4

� This model is called binary linear programming and it is a subcase

of integer linear programming (ILP)

� This type of models are generally much more computationally

difficult than the corresponding linear programming (LP). They

require specific algorithms

x∈{0,1}4

max 35000 xA + 40000 xB + 40000 xC + 70000 xD

20000 xA + 30000 xB + 15000 xC + 50000 xD ≤ 100000

x ∈ B4

Note the binary variables! This domain can equivalently be written

The Solutions

x = (0,0,0,1)

� Since this is a very small example, it is easy to see which are the feasible
and the optimal solutions

� Of course, this cannot be done for real-world problems because they are
usually much larger

� The feasible set is composed of 15 binary points (only 1,1,1,1 is not feasible)

x∈{0,1}4

max 35000 xA + 40000 xB + 40000 xC + 70000 xD

20000 xA + 30000 xB + 15000 xC + 50000 xD ≤ 100000

x = (0,0,1,0)

x = (0,0,1,1)

x = (0,1,0,0)

x = (0,0,0,0)

x = (0,1,1,0)

x = (0,1,1,1)

x = (1,0,0,0)

x = (1,0,0,1)

x = (0,1,0,1)

x = (1,0,1,1)

x = (1,1,0,0)

x = (1,1,0,1)

x = (1,1,1,0)

x = (1,0,1,0)

� There is 1 optimal solution: x* = (0,1,1,1) with value f(x*) = 150000

Example 3

� We need to build a cylindrical silo inside a rectangular room. The room

is 10m x 20m and has a pitched roof that slopes down from 5m to 3m

� We have 200 mq of flat material to build the silo

� We want to design the silo in order to maximize its capacity

10m

20m

5m

3m

Building the third model 1/4
� As usual, we need to understand which our decisions are

� We realize that the silo must be attached to the short wall of the room

� So we only need to find the radius x of the base and the height y

of the silo (in meters)

� So we have only 2 variables, x and y . They can take real non-

negative values

side view from above

Building the third model 2/4

� Now, we write our objective as maximize the total volume, expressed

as usual as a function of the variables. The volume is obviously base

area times height, and the base is a circle with area π x2

max π x2 y

� Do we have constraints? Yes, and several types. First, we need to

say that the silo must be contained in the room, so the base diameter

cannot exceed 10m

2 x ≤ 10

Building the third model 3/4

� How high is the roof? It goes from 5m to 3m in 20m, so it goes

down 10cm per each horizontal meter of distance from the left

wall. The formula of the height of the roof is 5 – 0.1 (2 x) so we

have
y ≤ 5 - 0.2 x

� Then we need to say that the silo must be under the roof.

Actually, we just need that the corner of the silos cannot

be higher than the roof over it

20m

5m
3m

Building the third model 4/4

� Finally, the total area cannot be more than 200 mq, because we only

have 200 mq of material

� We compute the area as: base area x 2 plus lateral area

� Base area is π x2

� Lateral area is the circumference multiplied by the height: 2π x y

� The constraint is

2 π x2 + 2π x y ≤ 200

Our third model
� By moving variables in the left and doing some simplifications,

the complete third model is

2 π x2 + 2π x y ≤ 200

x ≥ 0 y ≥ 0

0.2 x + y ≤ 5

max π x2 y

x ≤ 5

� This is a non-linear programming model: the expressions of the

variables are not linear (we have variables multiplying other variables,

variables to the 2nd power, etc.)

� Non-linear models are more computationally difficult, they need

specific algorithm

� When possible, we always try to use linear models if the effects of

nonlinearities are small enough to be neglected

Many types of Models
� Continuous Optimization: the variable can take real values,

sometimes they must be non-negative. Example: kg of goods to be

produced, etc.

� Discrete Optimization: The variables can take only discrete values.

Usually they can be either integer or binary. Example: number of

persons, etc.

� Mixed Optimization: same variables are continuous and some are

discrete

� Linear or Non-linear: it depends on the expressions of the variables

� Constrained or Unconstrained: if we have constrains or not

� Single objective or Multi-objective: one or more objective functions

Linear Programming (LP)

� Objective and constraints are linear if they can be put in the following

form, where ci are constants (which can also have complicated

expressions but cannot contain variables)

c1 x1 + … + cn xn

� In LP there is a single linear Objective and a finite number of linear

constraints in the form of =, ≥, ≤

� The variables are continuous, and sometimes non-negative

� Example

x∈R3

4 x1 + 5 x2 + 4 x3 ≤ 80

2 x1 + 1 x2 + 3 x3 ≤ 50

max 10 x1 + 14 x2 + 18 x3

xi ≥ 0 for i = 1, 2, 3

Compact notation
� We call c the vector of coefficients in the objective function, we call A

the constraint matrix and b the right-hand side of the constraints

� The number of variables is called n, the number of constraints m

� We can write the problem on the left in compact notation or matrix from,

obtaining the problem on the right

x∈R3

4 x1 + 5 x2 + 4 x3 ≤ 80

2 x1 + 1 x2 + 3 x3 ≤ 50

max 10 x1 + 14 x2 + 18 x3

xi ≥ 0 for i = 1, 2, 3
x∈Rn

A x ≤ b

max c’ x

x ≥ 0n

More advanced example
� A plant produces a liquor using 5 possible ingredients: Alcohol 90°,

Fruit extract, Aroma1, Aroma2, Aroma3. The prices and the alcoholic

content of each ingredient is reported below

250

20°

A2

11°15°0°90°Alc. degrees

10

Fruit
extract

190

A1

220

A3Alcohol

2Cost per liter

� We want to produce 100 Kg of liquor per week. One liter weighs 0.91

kg. The alcoholic degree of the liquor must be between 30° and 33°.

To keep the flavor, the fruit extract must be at least 15% of the alcohol,

the aromas must be at least 3% of the total, and A1 cannot be more

than 1/3 of the sum of A2 and A3. We want to minimize the total cost

for the ingredients

Building the model 1/5

� What can we decide? The amount of each ingredient to be used, in

liters per week

xi = liters of ingredient i used every week,

� Objective: minimize total cost of the ingredients

min 2 x1 + 10 x2 + 190 x3 + 250 x4 + 220 x5

� Now we analyze every single requirements and write the

corresponding constraint(s)

� We want to produce 100 kg per week ≈ 110 liters

x1 + x2 + x3 + x4 + x5 ≥ 110

with i = Alcohol 90°, Fruit extract, Aroma1, Aroma2, Aroma3

Building the model 2/5
� The alcoholic degree of the liquor must be between 30° and 33°. To

write this constraint, think what happens if we mix just 1liter of alcohol

90° and 1 liter of water. What is the degree? 45°? How it is obtained?

90+0 / 2. What is 2? Is the total amount of mix, 1+1, NOT the number

of ingredients. For example, 1liter of alcohol 90° and 9 liters of water

gives 90+0 / 10 = 9°

� So, if we mix our 5 ingredients, the alcoholic degree of the mix will be

� This must be between

30 and 33

90 x1 + 0 x2 + 15 x3 + 20 x4 + 11 x5

x1 + x2 + x3 + x4 + x5

≤ 3330 ≤
90 x1 + 0 x2 + 15 x3 + 20 x4 + 11 x5

x1 + x2 + x3 + x4 + x5

Building the model 3/5

� Note that if we simply write

� that would be terribly wrong!! It would compare the total volume of

alcohol to 30 and 33, which are percentages. We must always

compare homogeneous quantities

� Another bad mistake is to take the table and simply write all its

number multiplied by the x. You need to understand what

information you are using and what you need to express

≤ 3330 ≤ 90 x1 + 0 x2 + 15 x3 + 20 x4 + 11 x5

Building the model 4/5
� The fruit extract must be at least 15% of the alcohol

x2 ≥ 0.15 x1

� The aromas must be at least 3% of the total

x3 + x4 + x5 ≥ 0.03 (x1 + x2 + x3 + x4 + x5)

� A1 cannot be more than 1/3 of the sum of A2 and A3

x3 ≤ 0.33 (x4 + x5)

� Finally, all variables here are real and non-negative. When this is

required, we cannot simply omit it, otherwise we may obtain a

solution with negative values which would be useless in practice

xi ≥ 0 xi ∈ R

Complete model

x2 ≥ 0.15 x1

x3 + x4 + x5 ≥ 0.03 (x1 + x2 + x3 + x4 + x5)

x3 ≤ 0.33 (x4 + x5)

� It is getting complex.. In real world problems we easily have

hundreds of variables and constraints. We need efficient solution

algorithms

xi ≥ 0

xi ∈ R

min 2 x1 + 10 x2 + 190 x3 + 250 x4 + 220 x5

x1 + x2 + x3 + x4 + x5 ≥ 110

≤ 33(x1 + x2 + x3 + x4 + x5)

≥ 30(x1 + x2 + x3 + x4 + x5)

90 x1 + 0 x2 + 15 x3 + 20 x4 + 11 x5

90 x1 + 0 x2 + 15 x3 + 20 x4 + 11 x5

Geometry of linear programming

xi ≥ 0

xi ∈ R When dealing with LP the real domain is often implicit

max 5 x1 + 10 x2

10 x1 + 5 x2 ≤ 25

4 x1 + 10 x2 ≤ 20

x1 + 1.5 x2 ≤ 4.5

0 x1

x2

� Let’s see what this means form

a geometrical point of view

Since xi ≥ 0 we are here

Geometry of linear programming

xi ≥ 0

max 5 x1 + 10 x2

10 x1 + 5 x2 ≤ 25

4 x1 + 10 x2 ≤ 20

x1 + 1.5 x2 ≤ 4.5

0 x1

x2

� First constraint: we examine the

associated straight line

10 x1 + 5 x2 = 25

x1 =0 � 5 x2 = 25 � x2 = 5

x2 =0 � 10 x1 = 25 � x1 = 2.5(0,5)

(2.5,0)

The constraint says we

must be on this side (just

check if the origin satisfies

the constraint)

Geometry of linear programming

xi ≥ 0

max 5 x1 + 10 x2

10 x1 + 5 x2 ≤ 25

4 x1 + 10 x2 ≤ 20

x1 + 1.5 x2 ≤ 4.5

0 x1

x2

� Second constraint: we examine

the associated straight line

4 x1 + 10 x2 = 20

x1 =0 � 10 x2 = 20 � x2 = 2

x2 =0 � 4 x1 = 20 � x1 = 5

(0,2)

(5,0)

The constraint says we

must be on this side (just

check if the origin satisfies

the constraint)

Geometry of linear programming

xi ≥ 0

max 5 x1 + 10 x2

10 x1 + 5 x2 ≤ 25

4 x1 + 10 x2 ≤ 20

x1 + 1.5 x2 ≤ 4.5

0 x1

x2

� Third constraint: we examine the

associated straight line

1 x1 + 1.5 x2 = 4.5

x1 =0 � 1.5 x2 = 4.5 � x2 = 3

x2 =0 � 1 x1 = 4.5 � x1 = 4.5

(0,3)

(4.5,0)

The constraint says we

must be on this side (just

check if the origin satisfies

the constraint)

Geometry of linear programming

xi ≥ 0

max 5 x1 + 10 x2

10 x1 + 5 x2 ≤ 25

4 x1 + 10 x2 ≤ 20

x1 + 1.5 x2 ≤ 4.5

0 x1

x2

� All constraints must be respected

at the same time

� The feasible set is:

(2.5,0)

(0,2) (1.875, 1.25)

Geometry of linear programming

0

� In general, the feasible set is a polyhedron: the intersection of a

finite number of hyperplanes (given by the equality constrains) and

closed half-spaces (given by inequality constraints)

� It is a convex set: the linear combination of any two points of the set

is still in the set

� It may be empty

(infeasible problem)

� It may go to infinity.

In this case,

sometimes the

problem is

unbounded

� An exterme point of

a polyherdon is

called vertex

Geometry of linear programming

xi ≥ 0

max 5 x1 + 10 x2

10 x1 + 5 x2 ≤ 25

4 x1 + 10 x2 ≤ 20

x1 + 1.5 x2 ≤ 4.5

0 x1

x2

� Within this set we want to find

the point(s) giving maximum

value to the objective function

� Let’s study how this function is

(2.5,0)

(0,2) (1.875, 1.25)

Geometry of linear programming

xi ≥ 0

max 5 x1 + 10 x2

10 x1 + 5 x2 ≤ 25

4 x1 + 10 x2 ≤ 20

x1 + 1.5 x2 ≤ 4.5

0 x1

x2

� A linear objective is constant over

straight lines

� For instance let’s find the line for

(2.5,0)

(0,2) (1.875, 1.25)

5 x1 + 10 x2 = 10

x1 =0 � 10 x2 = 10 � x2 = 1

x2 =0 � 5 x1 = 10 � x1 = 2

(0,1)

(2,0)

Geometry of linear programming

xi ≥ 0

max 5 x1 + 10 x2

10 x1 + 5 x2 ≤ 25

4 x1 + 10 x2 ≤ 20

x1 + 1.5 x2 ≤ 4.5

0 x1

x2

� In the same way we could see

which is the line for

(2.5,0)

(0,2) (1.875, 1.25)

5 x1 + 10 x2 = 11

(0,1)

(2,0)

5 x1 + 10 x2 = 12

5 x1 + 10 x2 = 13 and so on..

� We see that this objective is

increasing going up-right

Geometry of linear programming

xi ≥ 0

max 5 x1 + 10 x2

10 x1 + 5 x2 ≤ 25

4 x1 + 10 x2 ≤ 20

x1 + 1.5 x2 ≤ 4.5

0 x1

x2

� So which is the point intersecting

the line with the highest value? In

other words, which is the point

giving maximum value to the

objective?

(2.5,0)

(0,2) (1.875, 1.25)

� The most up-right point in the

feasible set, marked in red

Geometry of linear programming

xi ≥ 0

max 5 x1 + 10 x2

10 x1 + 5 x2 ≤ 25

4 x1 + 10 x2 ≤ 20

x1 + 1.5 x2 ≤ 4.5

0 x1

x2

� The coordinates of the red point are

obtained as the intersection

between two lines, if we compute it

we obtain x1 = 1.875, x2 = 1.25

(2.5,0)

(0,2) (1.875, 1.25)

� So the optimal solution is x* = (1.875,

1.25), which gives to the objective the

optimal value 5(1.875) + 10(1.25) = 23.75

Geometry of linear programming

xi ≥ 0

max 5 x1 + 10 x2

10 x1 + 5 x2 ≤ 25

4 x1 + 10 x2 ≤ 20

x1 + 1.5 x2 ≤ 4.5

0 x1

x2

� This problem has been solved

graphically

� This was possible because there are

only 2 variables and it is very simple

� In general we may have hundreds of

variables and constraints and it is

impossible to solve graphically

� We will use solution software!

(2.5,0)

(0,2) (1.875, 1.25)

Geometry of linear programming

0 x1

� When the problem is not infeasible nor unbounded, we have one (or

more than one) optimal solutions

� Due to the linearity of the objective, optimal solutions must stay on the

boundary of the polyhedron (or frontier), not in the inside

� If the feasible set contains vertices (the vast majority of the cases) and

the problem has optimal solution, we have at least one optimal vertex

� Therefore, we generally search for just one optimal vertex (other optimal

solutions, even if existing, cannot be better by definition)

(2.5,0)

(0,2) (1.875, 1.25)

� Given any LP, we can build another LP called its dual problem, and

the first one will be the primal problem

� The dual is very useful to obtain several information about the primal

� Let’s introduce its importance with a very simple example: A company

produces 2 products, called “standard” and “de luxe”. They are

obtained using 2 ingredients I1 and I2 and a machine. Each Kg of

product needs the following amount of resources. We want to plan our

production in order to maximize the income obtained from selling

Duality of linear programming

14

1

1

2

Standard

7002Machine hours

10004Kg of I2

1200

Weekly availabilityDe luxe

24Selling price

3Kg of I1

� We choose as variables the amount in Kg of each product to be

produced weekly. We have 2 variables: x1 and x2

� We know how to build the model and we obtain

The model of our example

14

1

1

2

Standard

7002Machine hours

10004Kg of I2

1200

Weekly availabilityDe luxe

24Selling price

3Kg of I1

x1 ≥ 0

max 24 x1 + 14 x2

3 x1 + 2 x2 ≤ 1200

4 x1 + 1 x2 ≤ 1000

2 x1 + 1 x2 ≤ 700

x2 ≥ 0

� We take this model and we solve with some solution software

� We find the optimal solution: x1 * =160, x2 * =360 with value 8880

� This means that we maximize income when we produce 160 Kg per

week of De Luxe and 360 Kg per week of Standard, and the weekly

income is 8880 Euro

� We come back to the owner of the company and explain him this “best

solution”

� Now, imagine that he says “No, 8880 is not enough, I want more!”

� What can we do??

Solving the model

x1 ≥ 0

max 24 x1 + 14 x2

3 x1 + 2 x2 ≤ 1200

4 x1 + 1 x2 ≤ 1000
2 x1 + 1 x2 ≤ 700

x2 ≥ 0

� So the owner says “No, 8880 is not enough, I want more!”

� We explain that this is the best solution, no other feasible solution can

have a higher value but the owner remains on his position

� He understands that, given the limitations in the resources (I1, I2,

machine time), no more products can be produced weekly

� But says: “I can take more ingredients or another machine, I can do

anything, but I want to earn more!”

� What do we have to do? Take more I1? Take more I2? Take another

machine?

� And since we need to pay for these resources, how much can we pay?

How much would we earn if we buy more of these resources?

� All these questions are answered by the dual

More than the best?

� Given a generic LP in compact form, with c∈ Rn, x∈ Rn , b∈ Rm , A∈ Rmxn

What is the dual problem?

min cT x
A x ≥ b

� Consider an optimal solution x*. For all u∈ Rm , u ≥ 0 , we have

≥ 0 ≤ 0

cT x* ≥ cT x* + uT (b - A x*)

≤ 0

= cT x* + bT u - uTA x* = bT u + (cT - uTA) x*

� If we use u such that ATu = c , this disappears and we have cT x* ≥ bT u

� In other words bTu is a lower bound for the optimal value cTx* . If we

want to take the closest lover bound, we solve this:
max bTu

ATu = c
u ≥ 0

� This is the dual: an LP representing the search

for the best lower bound of the primal

� The dual problem can be obtained for every LP using the table below

How to build the dual

ui ≥ 0 i∈J≥ bi i∈J

≤ cj j∈Mxj ≥ 0 j∈M
constraints

= ci i∈Nxj free i∈N

variables

variables
ui free i∈I= bi i∈I

constraints

objectivemax bT umin cT xobjective

dual [primal]primal [dual]

� If the primal is min with constraints = or ≥, then the dual is max and is the best

lower bound

� If the primal is max with constraints = or ≤, then the dual is min and is the best

upper bound

� If the primal is not in one of two “natural” forms, we put it in that form

� ;to the model seen before

Let’s apply the tableD

ui ≥ 0 i∈J≥ bi i∈J

≤ cj j∈Mxj ≥ 0 j∈M
constraints

= ci i∈Nxj free i∈N

variables

variables
ui free i∈I= bi i∈I

constraints

objectivemax bT umin cT xobjective

� We put the model in one of the 2 forms in the table. In this case, it is

max with ≤ constraints, so in the form on the right. Remember that the dual

of the dual is the primal

� This primal has 2 variables ≥ 0 and 3 constraints ≤ , its dual will have 2

constraints ≥ and 3 variables ≥ 0

x1 ≥ 0

max 24 x1 + 14 x2

3 x1 + 2 x2 ≤ 1200

4 x1 + 1 x2 ≤ 1000
2 x1 + 1 x2 ≤ 700

x2 ≥ 0

u1 ≥ 0

min .. u1 + .. u2 + .. u3

.. u1 + .. u2 + .. u3 ≥ …

u2 ≥ 0

.. u1 + .. u2 + .. u3 ≥ …

u3 ≥ 0

� We only have to fill the dots

� The primal always has 3 elements:

� constraint matrix, usually called A

� right-hand side of the constraints, usually called b

� objective coefficients, usually called c

And complete this dual

u1 ≥ 0

min 1200 u1 + 1000 u2 + 700 u3

3 u1 + 4 u2 + 2 u3 ≥ 24

u2 ≥ 0

2 u1 + 1 u2 + 1 u3 ≥ 14

u3 ≥ 0

� So we obtain the dual

obj cT x
A x ≥ b

� We use:

� AT for the constraint matrix of the dual

� c for the right-hand side of the dual constraints

� b for the dual objective coefficients

b = (1200 1000 700)T

3 2

4 1

2 1

A =

c = (24 14)T

� For construction, we have the Weak Duality theorem: for every feasible

solution of primal and dual we have

Duality implications

cT x ≥ bT u

max bTu

ATu ≤ c
u ≥ 0

� Therefore, to find the optimal value of the primal we can search for

the optimal value of the dual

� Given any primal-dual couple,

for example the following

min cTx

Ax ≥ c
x ≥ 0

cT x* = bT u*

� And the Strong Duality theorem: for the two optimal solutions of primal

and dual we have

(since the dual max was built to be the best lower bound to the primal)

We solve the dual

u1 ≥ 0

min 1200 u1 + 1000 u2 + 700 u3

3 u1 + 4 u2 + 2 u3 ≥ 24

u2 ≥ 0

2 u1 + 1 u2 + 1 u3 ≥ 14

u3 ≥ 0

and we obtain

u* = (6.4, 1.2, 0)T with value 8880

� Now, coming back to the owner of the company, what happens when

we buy more resources in the real world?

� We modify the right-hand side values of the primal

� This means we modify the objective coefficients in the dual

b = (1200 1000 700)T

� For variations small enough such that the optimal point u* remains the

same, the dual objective changes of uj * for each unit of resource

� Hence, the optimal solution of the primal changes of uj *

� Hence, one additional unit of resource j increases the income by uj *

� So, that is the maximum price we can pay for it (aka marginal value)

Which resource is useful?
� So, if we add 1 unit of I1, passing from 1200 to 1201, the objective

becomes 8880 + 6.4 Euro

� Hence, we could buy other I1 until the price is less than 6.4 per Kg

� If we add 1 unit of I2, passing from 1000 to 1001, the objective becomes

8880 + 1.2 Euro

� Hence, we could buy other I2 until the price is less than 1.2 per Kg

� Finally, if we add 1 hour of machine time, passing from 700 to 701, the

objective becomes 8880 + 0 Euro (remains the same)

� Hence, we there is no advantage in buying another machine! Actually,

we are not even using all machine hours. The optimal solution x* uses

160x2 + 360 = 680 hours

� So, we also discover which are the limiting resources, and which are

those that we are not using to the limit!

Which resource is limiting us?

� If we progressively increment the limiting resources, at a certain

point they will not be the limiting ones anymore

� Example: if we buy other 1000 kg of I1, that resource would cease to

be our limit

� We will be producing more, and the limitation will maybe become the

hours of machine time

� This means that the variations were not small, and the dual solution

has changed!

� So, by studying the dual solution, we can also discover to which extent

of variation a resource ceases to be the limit and another resource

becomes the new limiting one

Modeling Techniques 1
� In many cases, we may have a situation called mutual exclusivity

� For example, imagine a situation where we can either produce P1 or

P2, but not both! Mutual exclusivity is a common requirement for the

variables in some practical problems: only one of them may be > 0

� How do we model this with linear constraints?

� If we have binary variables x1 and x2 , it is easy:

� But if the variables are real (or integer non-binary) it is more difficult

� We need one additional binary variable y for each couple of mutually

exclusive variables x1 and x2

x2 ≤ M (1-y)

x1 + x2 ≤ 1

� And we add these constraints to the rest of the model, with M a

large number, greater than any possible value of x :
x1 ≤ M y

� If x1 is > 0, then y is 1 and x2 is forced to 0

� If x2 is > 0, then y is 0 and x1 is forced to 0

Modeling Techniques 2
� In many cases, we may have another situation called fixed cost

� For example, imagine a situation where we produce something and the

cost is a fixed setup cost f, paid only if we produce, plus a cost c for

each unit of product:

� and we add this constraint to the rest of the model, with M a

large number, greater than any possible value of x :
xi ≤ M y

� If xi is > 0, then y is 1 and we pay f in the cost

� If xi is = 0, then y can be 0 and we don’t have to pay f in the cost,

and we will not pay it, if the objective implies cost minimization

if xi = 0

c xi + f

0

if xi > 0
� How do we model this with linear constraints?

� For each variable xi having a fixed cost, we need one additional binary

variable y

� Then, we write the total cost as c xi + f y

Example
� A farmer may raise 4 types animals: horses, cows, pigs, poultry. Each

type of animal requires different structures and materials.

� Set-up costs are 200,000 E for horses, 160,000 E for cows, 120,000 E

for pigs, 80,000 E for poultry.

� A horse is raised at a cost of 200 E (in average), and can be sold at 300

E (in average). For cows this becomes 200 and 250; for pigs 50 and

150, for poultry 2 and 3.

� The maximum population that can live in the farm is 500 in case of

horses. Each cow counts as 0.8 horses, each pig as 0.4 horses, each

unit of poultry as 0.01 horses. The land is not enough to build facilities

for both horses and cows.

� We want to determine a “target composition” in order to maximize

earnings, so that the farmer can plan the raising.

Example

� These variables are conceptually integer, but since we are

pointing to a target composition and the numbers are not small,

we may also use real non-negative variables and the model would

be easier to solve

xi = number of heads in the “target composition”,

with i = horses, cows, pigs, poultry

yi = presence of animal i in the “target composition”,

with i = horses, cows, pigs, poultry

� These variables are binary, they make the model more difficult to

solve, but we need them to express fixed costs and mutual

exclusivity

Example

� Maximum population

� Objective

max (300-200) x1 + (250-200) x2 + (150-50) x3 + (3-2) x4 –

200,000 y1 – 160,000 y2 – 120,000 y3 – 80,000 y4

x1 + 0.8 x2 + 0.4 x3 + 0.01 x4 ≤ 500

� Link between x and y (otherwise we simply have all y at 0 even if

the corresponding x may be positive)

x1 ≤ 10000 y 1

x3 ≤ 10000 y 3

x2 ≤ 10000 y 2

x4 ≤ 100000 y 4

Example

x2 ≤ M (1-z)

� However, here we can use the binary variables y and we obtain a

simpler model

x1 ≤ M z

� Mutual exclusivity: in general, we would need to add another binary

variable z and 2 constraints of this type

y1 + y2 ≤ 1

Solution Algorithms

� For integer (and binary) linear programming we have: branch-and-

bound and its variants (branch-and-cut, ;), cutting planes, ;

� For Linear programming we have: simplex algorithm (most used),

barrier algorithm, interior point algorithm, ;

The Simplex Algorithm

� This algorithm is in practice very efficient, and can solve problems

with thousands of variables in seconds

� We know that for LP the feasible set is a polyhedron, and that, if

there are vertices and the problem has optimal solution, then there

is an optimal vertex

� Therefore, we can limit our search to the vertices of the polyhedron

� We initially find a vertex, and we test whether it is optimal or not

� If that is not the optimal vertex, we do some operations to reach an

adjacent vertex where the objective is better

� We continue until we find the optimal vertex, where we stop, or we

prove the problem unbounded

� Since the number of vertices is finite, the algorithm stops

Integer (or Binary) Lin Prog

min cTx

Given an Integer (or Binary) linear programming problem,

we want to find in the feasible set S, the optimal point x*

P

x ∈ S

S is often expressed as the set of integer points (or binary points) within

a polyhedron P, called formulation (S = P ∩ Zn
)

x ∈ P (e.g. Ax ≥ b)

x ∈ Z
n

(or x ∈ {0,1}n)

min cTx

How to solve?

� Since the number of feasible points is finite, one may think of some

enumeration

� However, for real-world problems the number of feasible points is

generally huge: complete enumeration cannot be used

� We will use a kind of implicit enumeration;

P

� Notice: rounding at the nearest integer the

solution of the linear problem does not

guarantee optimality and not even feasibility

(especially for binary problems)

Basic ideas for Branch & Bound

Basic ideas:

� Branching: partition the feasible set P in smaller

subproblems Pi . They are easier to solve! ∪i Pi = P

Pi ∩ Pj = ∅ i ≠ j

� Bounding: find a feasible solution (current solution, for example

solving one subproblem or by using approximation) and use it to close

the subproblems for which the best obtainable solution is not better

than the current solution that we already have. This saves time!

Bounding

� Linear relaxation (most used): remove the intgrality constraints from

the generic subproblem Pi obtaining linear programming, easily

solvable

� The minimum of cTx over all points (integers or not) is ≤ of the

minimum of the same function choosing only over integer points

� Moreover, in some lucky cases, that minimum may already be integer

� There exist other bounding techniques, but are less used and we do

not see them

Si
Si

Pi Pi’

Branching

� Binary to the closest integers (most used): when we solve the linear

relaxation and we find a solution x with some non-integer components

(= fractionary), for example xk with value vk

� So we also remove a stripe of Pi not containing integer solutions: with

these cuts we will sooner or later obtain integer sol. to the linear relaxations

Pi was a subset not easy enough � we partition it in Pi+1 and Pi+2

Pi+1 = Pi ∩ {x: xk ≤ vk } Pi+1 Pi+2

vk

xk

Pi+2 = Pi ∩ {x: xk ≥ vk  }

vk vk 

� For binary problems we simply fix the variable to 0 or to 1

Putting all together

� Now we can write the Branch & Bound scheme for problems in this

shape

Denote by L the list of open subproblems Pi

by xo the current optimum, by UB (upper bound) the value cTxo ≥ cTx*

by LBi and x(Pi) the lower bound obtained for subproblem Pi and

the corresponding solution

x ∈ P

x ∈ Z
n

(o x ∈ {0,1}n)

min cTx

Branch & Bound (written for min)

inizialization: L= P0, x° undef., UB= +inf.

x° is the optimum x* ,STOP
yes

L = ∅ ?

no

choose Pi∈ L find LBi and x(Pi) with Lin. Rel.

Choose a fractionary

xk for branching

L = L ∪{Pi+1 , Pi+2} yes

no

x(Pi) integer ?

update UB:=LBi e x° := x(Pi)

yes

LBi < UB ?
no

Observations

� It is an exact algorithm, that is, it guarantees, given enough time and up

to the numerical precision used, to find the optimum if it exists

� For max problems all is inverted: from linear relaxations we have UBi ;

current optimum is an LB, initialized to –inf ; the check is UBi > LB

� The evolution of the algorithm can be seen as a tree (a special kind of

graph)

� It need to solve a large number of linear relaxations: integer linear

programming is more difficult than linear programming

� However, if the solution of the first linear relaxation is already integer, we

obtain the optimal solution without any branching (hence rapidly). This

happens when we have a very good formulation of the problem;

Example 1

x
1

x
2

UB0 = 7/2

x(P0)
max –x1 + 2x2

-4x1 + 6x2 ≤ 9

x1 + x2 ≤ 4

x1 , x2 ≥ 0

x1 , x2 ∈ Z

x1 = 3/2
x2 = 5/2

P0

x1 ≥ 2

x1 ≤ 1

P1

P2

x1

Fractionary solution, no current
optimum, we need banching, for

example on x1

3/2

4

constraint 2

constraint 1

objective

x(P0)

x
1

x
2

Integer solution, update current

optimum, no branching

UB2 = 2

max –x1 + 2x2

-4x1 + 6x2 ≤ 9

x1 + x2 ≤ 4

x1 , x2 ≥ 0

x1 , x2 ∈ Z

x1 = 2
x2 = 2

P2

x1 ≥ 2

x(P2)

x(P2)

Example 1

x
1

x
2

UB1 > current optimum, we
cannot close, fractionary solution,
we need branching

UB1 = 10/3

max –x1 + 2x2

-4x1 + 6x2 ≤ 9

x1 + x2 ≤ 4

x1 , x2 ≥ 0

x1 , x2 ∈ Z

x1 = 1
x2 = 13/6

P1

x1 ≤ 1

x2 ≥ 3

x2 ≤ 2

P3

P4

x2

x(P1)

x(P1)

Example 1

x
1

x
2

Infeasible problem, we close it

max –x1 + 2x2

-4x1 + 6x2 ≤ 9

x1 + x2 ≤ 4

x1 , x2 ≥ 0

x1 , x2 ∈ Z

P4
x1 ≤ 1

x2 ≥ 3

Example 1

x
1

x
2

UB3 > current optimum, we
cannot close, fractionary solution,
we need branching

UB3 = 13/4

max –x1 + 2x2

-4x1 + 6x2 ≤ 9

x1 + x2 ≤ 4

x1 , x2 ≥ 0

x1 , x2 ∈ Z

x1 = 3/4
x2 = 2

P3
x1 ≤ 1

x1 ≥ 1

x1 ≤ 0

P5

P6

x1

x2 ≤ 2

x(P3)

x(P3)

Example 1

x
1

x
2

UB6 > current optimum, we
cannot close, integer solution,
update current optimum

UB6 = 3

max –x1 + 2x2

-4x1 + 6x2 ≤ 9
x1 + x2 ≤ 4

x1 , x2 ≥ 0

x1 , x2 ∈ Z

x1 = 1
x2 = 2

P6x1 ≤ 1

x2 ≤ 2
x1 ≥ 1

x(P6)

x(P6)

Example 1

x
1

x
2

UB5 ≤ current optimum, we can close
it. There are no more open problems
and curent optimum x(P6) is the final
optimum

UB5 = 3

max –x1 + 2x2

-4x1 + 6x2 ≤ 9
x1 + x2 ≤ 4

x1 , x2 ≥ 0

x1 , x2 ∈ Z

x1 = 0
x2 = 3/2

P5x1 ≤ 1

x2 ≤ 2
x1 ≤ 0

x(P5)

x(P5)

Example 1

Branching tree

The evolution of the algorithm can be seen as this tree

P0

x =(3/2; 5/2) z =7/2

P1

x =(1; 13/6) z =10/3

P2

x =(2; 2) z =2

P3

x =(3/4; 2) z =13/4

P4

inammissibile

P5

x =(0; 3/2) z =3

P6

x =(1; 2) z =3

Example 2













∈

≥≥

≤+

≤+−

+

2

21

21

21

21

00

1322

54

4max

Zx

xx

xx

xx

xx

x
1

x
2

1

1,25

6,55

x
1
≥ 5

4

x
1
≤ 4

x
1B





=

=

2ˆ

3ˆ

2

1

x

x
B LB = 11

A





=

=

3,2ˆ

2,4ˆ

2

1

x

x
A UB0 = 13,4

P0

P1

P2

In this case we also have a feasible solution B

constraint 2
constraint 1

objective

Example 2















∈

≥

≥≥

≤+

≤+−

+

2

1

21

21

21

21

5

00

1322

54

4max

Zx

x

xx

xx

xx

xx

x
1

x
2

1

1,25

6,54 5

LB = 11

C





=

=

5,1ˆ

5ˆ

2

1

x

x
C UB2 = 11

P2

We close it because it is not better than LB

Example 2















∈

≤

≥≥

≤+

≤+−

+

2

1

21

21

21

21

4

00

1322

54

4max

Zx

x

xx

xx

xx

xx
LB = 11

D





=

=

25,2ˆ

4ˆ

2

1

x

x
D UB1 = 13

x
1

x
2

1

1,25

6,54 5

2

x2 ≥ 3

x2 ≤ 2

x
2

3

empty

P1

P3

P4

Example 2
















∈

≤

≤

≥≥

≤+

≤+−

+

2

2

1

21

21

21

21

2

4

00

1322

54

4max

Zx

x

x

xx

xx

xx

xx
LB = 11

E





=

=

2ˆ

4ˆ

2

1

x

x
E

UB3 = 12

x
1

x
2

1

1,25

6,54 5

2

3

update LB

x optimum

x integer
P3

Branching tree

P0

x =(4,2; 2,3) z =13,4

P1

x =(4; 2,25) z =13

P2

x =(5; 1,5) z =11

P3

x =(4; 2) z =12

P4

infeasible

The evolution of the algorithm can be seen as this tree

