
Heuristic Algorithms for

Combinatorial Optimization

Prof. Renato Bruni

Department of Computer, Control, and Management Engineering

(DIAG)

“Sapienza” University of Rome

bruni@dis.uniroma1.it

Bachelor’s degree in Bioinformatics

• There is a Base set: B={b1 ,…, bn}

(elementary decisions, ex: project i activated, connection j established, etc.)

Combinatorial Optimization

Combinatorial Optimization is a vast class of problems arising in many

practical fields. They all share the following basic mathematical structure:

• Every feasible solution is a subset S ⊆ B (set of elementary decisions

which meet the feasibility conditions, that is, can be taken together)

• The set of feasible solutions is S={S1 ,…, Sm} ⊆ P(B) (cardinality 2n)

• Every element bi of B has its cost (if min) or its value (if max) ci

min {c(S): S∈S} S3

S1

S2

B ={1,2,…,9}

1

2
3

6
4

8 9

5

7

• Cost function c: S → R (often linear, and we speak of CO with linear

objective: the sum of the ci of the elements bi in S)

c(S1)= ∑ cic(S1)= ∑ ci
i ∈S1

We want to find:

Very easy example

• We have a budget of 100.000 Euro and we need to invest it

• We find 4 possible investments A, B, C, D, each having a cost and a revenue

40.000

30.000

B

40.000

15.000

C

70.000

50.000

DA

35.000revenue

20.000cost

• Each investment can either be fully done or not done, it cannot be done

partially and it cannot be done more than once

• We want to choose which investments we do in order to maximize revenue

Our second example was a Combinatorial Optimization problem:

• The base set B has 4 elements corresponding to the 4 investments

• Every feasible sol. is a subset of B respecting the constraints (the budget)

• Every element of B has its value (the revenue)

• The value of a solution is the sum of the values of its components

c(S)

• We represent S with a binary

vector called incidence vector

• For example, the base set is Β ={1,2,…,9}

1

2

3

9

5

6
7 8

4

S
• a feasible solution is S={1,2,3,9}∈S

xS=



































1

0

0

0

0

0

1

1

1

Then we have

{subsets}=S

min {cΤx : x∈V ⊆ {0,1}n }min {c(S): S∈S}

OC can be modeled with 01LP

Every OC with linear obj can be written as 01LP

OC with linear objective and 01LP

{incidence vectors}=V

cTx

• A CO problem is the Traveling Salesman Problem (TSP): visit all

costumers and come back to the origin following the less

expensive route

• Many practical problems share this structure (ex: move a robot or a

machinery to work on several points, pass a wire to connect several

points, etc.)

Example: Traveling Salesman Problem

5

34

2

1

3

4

2

1

155

3

7 5

5

• We have a cost for every possible

“connection”. It must represent what we

really want to minimize (distance, time, etc.)

• The cost of the cycle is the sum of the costs

of the used connections (in the example

7+5+2+5+1 = 20)

Minimum cost Hamiltonian Cycle

• A Hamiltonian cycle is a cycle passing once for each node. The cost of

the cycle is the sum of the costs of its arcs

• The Traveling Salesman Problem, TSP consists in finding a

Hamiltonian cycle with minimum cost

• It is a computationally difficult problem (NP-hard) and it is usually solved

by approximate methods called heuristics

• Heuristics cannot guarantee to find the optimal solution, they find a

feasible solution which should be near to the optimum but there is no

guarantee. However, this techniques are fast

• When a problem is too difficult (=requires too much computational

time) to be solved by exact algorithms (= algorithms which guarantee

to find the optimal solution) we can use heuristics (better than nothing)

• Defined over a complete graph G(N,E) with costs associated to

arcs

5

34

2

1

3

4

2

1

155

3

7 5

5

5

34

2

1

3

4

2

1

155

3

7 5

5

T = {(1,4), (4,2), (2,3), (3,5), (5,1)}

c(T) = 5+2+5+1+7 = 20

G(V, E)

TSP is CO with linear objective

It is a combinatorial optimization problem:

• the base set is the set of arcs

• every feasible solution (Hamiltonian cycle) is a

subset of the base set

• the cost of a solution is the sum of the costs of

its components

• Cost of a partial solution H =

• We know the base set B ={1,2,…,n}

• We can check if a solution is feasible S ={T1, T2, …,Tm} (T ⊆ B)

We define “partial solution” a set of elements which can become a feasible

solution by only adding elements: H ⊆ T

Build a sequence of partial solutions H0 H1 H2 H3 ... :

c. Stop when the partial solution becomes a feasible solution (or when it

worsens, for problems where the empty solution is already feasible)

b. Adding, at each step, the less expensive element such that: it is not already

taken and it still produces a partial solution

Greedy Algorithm (can be adapted to every CO problem)

a. Starting from the empty set (partial solution H0)

∑
∈

=
He

ecHc)()(

Greedy Algorithm (for min)

5

34

2

1

3

4

2

1

155

3

7 5

5

5

34

2

1

1

5

34

2

1

1

2

5

34

2

1

1
2

3

5

34

2

1

1
2

3

5

34

2

1

1
2

15

c(T) = 26

5 5

3

Example: Greedy algorithm for TSP

• It is a constructive heuristic (it builds a solution)

• When an element is selected, it can never be abandoned

• This makes the algorithm fast, however choosing at each step the

cheaper element may force to take costly elements later on (in the

example, we are forced in the end to take 15, the most costly arc in

the graph)

• So, no guarantee of optimality. Sometimes we are lucky and we

have an optimal (but without knowing it) or almost optimal solution. In

other cases, we may obtain poor solutions, but at least they are

feasible ones (better than nothing)

Observations on Greedy

Another example: Min. Spanning Tree

• Another important example of Combinatorial Optimization with

linear objective function is the problem of Minimum Spanning Tree

(MST): reach each customer by using the less expensive

connections. This problem also represents many practical problems

(e.g., pass electric wires, etc)

• Can be seen on a graph G=(V,E) with costs ci

associated to arcs

• It is another CO problem, the base set is E

• A feasible solution S is a spanning tree (connected

and acyclic subgraph reaching all nodes)

• The cost function is (in the example 10)

5

34

2

1

5

4

6
2

43

3

2 5

4

i∈Tk

Σ ci

Greedy for the MST

A version of the Greedy algorithm called Kruskal algorithm:

• Order the arcs by increasing cost

• At every iteration, take an arc. If it does not creates cycles along with

the arcs already selected, add it to the partial solution

• Stop when all nodes have been reached (= we have |V | -1 arcs)

Example: select (1,5), (3,5), (1,4), (2,5) now we have 4 arcs: stop c(S) = 10

• MST has a particular mathematical

structure called matroid. In this cases,

greedy algorithm guarantees

optimality!

• There exist other problems with this

nice feature

5

34

2

1

5

4

6
2

43

3

2 5

4

• Consider the set of feasible solutions S ={T1, T2, …, Tm} (Ti ⊆ Β)

c. Stop when the best solution Tk of the neighborhood N(Tk-1) is worse

(greater) than Tk-1 , that means c(Tk-1) < c(Tk)

b. At every step k, we select the best solution Tk (the one with minimum

value) in the neighborhood N(Tk-1) of the current solution Tk-1

Build a sequence of feasible solutions T0 ,T1, T2 , T3 ... :

a. Starting from an initial feasible solution T0

• For every feasible solution T we define a neighborhood N(T) ⊆ S

(a set of feasible solutions similar to T)

T0
T1 T2

T3

N(T0)

N(T1)

N(T2)

Local Search (for min)

F1

F3

9

5

4

2
3

1

6
7

8

F2

F4

N(F1)={F2, F4} N(F2)={F1, F4}

N(F3)={F2} N(F4)={F1, F2, F3}

F∈ N+ (Fi) ⇔ F= Fi ∪ k : k∉ Fi , F∈S greedy” neighborhood

“reverse greedy”F∈ N- (Fi) ⇔ F=Fi − k : k ∈Fi , F∈S

“exchange”F∈ Ns (Fi) ⇔ Fi − {k } ∪ { j } : k∈Fi , j∉ Fi , F∈S

“2-exchange”F∈ Ns (Fi) ⇔ Fi − {h,k } ∪ { j,i } : h,k∈Fi , j,i∉ Fi , F∈S

Neighborhood relations

• We need to define a neighborhood system,

that is a criterion to obtain solutions similar

to a given one. There exist many of them:

Examples

F* global minimum ⇔ c(F*) < c(F) for every F∈S

Nε (x’) = {x: | x -x’| < ε}

F* local minimum ⇔ c(F*) < c(F) for every F∈ N (F*)

Local Search stops in a local minimum

Local minima Global minimum

Global and Local minima

x

y = f(x)

Which neighborhood for TSP?

When we have a Hamiltonian cycle, how can we build other similar

Hamiltonian cycles?

•If we add an arc to a Hamiltonian cycle, we don’t have another Hamilt.cycle

•If we remove an arc, again we don’t obtain an Hamiltonian cycle

•If we remove one arc and add another arc, again we don’t obtain it. We

have a Hamiltonian cycle only if we add the same arc that was removed, but

that is not a neighborhood: it’s the same solution!

1 2
1 2

• So how can we build a neighborhood for TSP ?

1

3 4

2

2-exchange neighborhood for TSP

If we remove 2 arcs non contiguous and add the other 2 arcs

cross-connecting the free extremes, then we have a different

(and similar) Hamiltonian cycle!

This can be done in several ways: for each couple of non-

contiguous arcs

1

3 4

2

5

34

2

1

3
2

1

15

5

1

5

34

2

3
2

1

15
5

1

5

34

23
21

155

1

5

34

2

3
2

1

15
5

1

5

34

2

3

2

15

5

5

34

2

1

3

4

2
1

155

3

7 5

5

7

c(T) =26

c(T2) =26

c(T1) =32

5

34

2

1

2
1

5

3

15
5

34

2

1

5

1

5

3

5

c(T3) =19

T1

T2

T3

2-exchange (1/2)

5

34

2

1

3
2

1

15

5

5

34

2

1

3

4

2
1

155

3

7 5

5

c(T) =26

5

34

2

1

2
1

5

3

15

5

34

2

1

21

57

4

5

34

2

1

2
1

5

c(T4) =19

5

34

2

1
5

3 15

3

4

c(T5) =30

• Best solution in N(T) is T4 (or T3 , they are equivalent)

T4

T5

2-exchange (2/2)

No other possibilities for 2-exchange

(AKA 2-opt): this is all N(T)

• It is an improvement heuristic (needs an initial solution)

• Hence, often used after Greedy

• If the neighborhood is small, exploring it is fast but the probability of

improvement is small

• On the contrary, If the neighborhood is large, the probability of

improvement is high but exploring the neighborhood may be slow

• The choice also depends on the time we can invest in solving our

problem

Observations on Local Search

Improving Local Search?

• What if we don’t stop when the best solution T’ in the neighborhood N(T) is

worse than the current solution T ?

• We could do this, hoping to find something even better later on…

• It would take more time but may provide a better solution

• However, there is a problem: the best solution in the neighborhood N(T’) is

very likely to be T , so we keep bouncing between solution T and solution T’

What can be done to avoid being trapped?

The so-called Taboo search

T T’

N(T)
N(T’)

Taboo Search

• Taboo Search

Identify the operation (move) used to pass from one solution to the next one

(example, from T to T’). Then, undoing that move becomes forbidden (taboo)

Not forever, otherwise we are too constrained in the end, but for a certain

number of steps (we have a taboo list)

How long must the taboo list be? Depends on the problem, we must find good

values by doing experiments for our case…

Again, several modifications can be introduced

Now, we can accept moving on worse solutions, under suitable conditions, in

order to avoid the trap of local minima

But we need the taboo to keep exploring the solution space

T T’ T’’

N(T)
N(T’)

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

x

y

Example of application on TSP

TSP example with 30 cities

Example of application on TSP

A solution with total distance= 941

TSP30 (Performance = 941)

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

x

y

Example of application on TSP

A solution with total distance= 800

44

62

69

67

78

64

62

54

42

50

40

40

38

21

35

67

60

60

40

42

50

99

TSP30 (Performance = 800)

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

x

y

Example of application on TSP

A solution with total distance= 652

TSP30 (Performance = 652)

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

x

y

Example of application on TSP

The best solution with total distance= 420

42

38

35

26

21

35

32

7

38

46

44

58

60

69

76

78

71

69

67

62

84

94

TSP30 Solution (Performance = 420)

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

x

y

