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Important Advices

� If you need to contact me, use bruni@diag.uniroma1.it and ALWAYS 

use the subject Principles of Maths (or PM course)

� If you use a different subject your email may be mistaken for spam

� Always try to understand what we will see, do not learn by heart 

pretending that you understood

� The slides may be updated during the course, so be sure you are using 

the latest version

� To do the exams, you need to register first. Reservetion must be done

during the reservation period, usually from 2 to 1 week in advance!



POM1 and POM2

� The course Principles of Mathematics is divided in 2 modules: 

Principles of Mathematics 1 and Principles of Mathematics 2

� POM1 is in the first semester, POM2 in the second semester

� The 2 modules will be taught by 2 different professors, and you will take 

2 different exams, each organized by one professor. I organize POM1.

� After completion of the 2 modules, the full exam of Principles of 

Mathematics 12 credits will be verbalized on Infostud

� Thus, POM1 alone will not be on Infostud: dates, reservations for the 

exam and grades will appear only in Moodle! 

(https://elearning.uniroma1.it/) 



Brief outline of the course POM1

� Numbers and Functions

� Types of Functions

� Limits of a function

� Continuity of a function

� Derivatives

� Integrals



Material of the course POM1

� Books for extensive study, they contain more than the program of this 

course:

� Biocalculus: Calculus for Life Sciences, authors James Stewart, 

Troy Day – Cengage Learning 2015 

� Calculus For Biology and Medicine, author Claudia Neuhauser -

Pearson 2014 

� Slides of the course, available from the home page of the professor 

(http://www.diag.uniroma1.it//~bruni/). They contain everything that is 

needed, if they are well studied and understood 



Real Numbers and Functions

Prof. Renato Bruni

Department of Computer, Control, and Management Engineering (DIAG)
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Bachelor’s degree in Bioinformatics



{1, 2, 3, 4, . . . }

If you count, the numbers you use are called counting 

numbers, or natural numbers. These numbers can be 

expressed using set notation

{0, 1, 2, 3, 4, . . . }If we include 0 we have the 

set of whole numbers

{ ?, -3, -2, -1, 0, 1, 2, 3, . . . }

If we include also the opposites of the natural numbers we 

have the set of integer numbers, or simply integers

Sets of Numbers



Rational Numbers

rational numbers

integer numbers

whole numbers

natural numbers

If we consider a new set of the numbers obtainable as quotient 

of two integers (except /0), we have the set  

of rational numbers This means to 

divide one integer 

by another or 

“make a fraction”

Es: ½, ¾, ?



Real Numbers

However, there are numbers that cannot be 

expressed as the quotient of two integers. These 

are called irrational numbers

Examples are π 2

The rational numbers together with the irrational 

numbers make the set of real numbers



The Line of Real Numbers

1 20-1-2 3 ??

a b

a and b are two real numbers and, since a is on the left 

of  b, we have  a < b

The line of real numbers is a graphical representation of 

the continuity of real numbers: every point of the line 

corresponds to a real number

In each interval of the real line there is an infinity of points, 

hence an infinity of real numbers



Sets
� Sets of real numbers are typically denoted by the capital letters A, B, C, 

etc. To describe a set A, we either write all the numbers in it (may be 

cumbersome), or we write          

� A = {x : condition}

� where “condition” defines which numbers are in A. We may read it as

the set of all real numbers x such that condition is verified

� Example: the set of even numbers is   {x: x divisible by 2} 



Intervals
� An important type of sets are intervals. Given two numbers a < b, then

� this is an open interval (a, b) = {x : a < x < b} 

(it does not contain its extremes a  and b )

� this is a closed interval [a, b] = {x : a ≤ x ≤ b}  

(it contains also its extremes)

� We can also use half-open intervals:

� [a, b) = {x : a ≤ x < b}    and (a, b] = {x : a < x ≤ b}



Unbounded Intervals
� Some intervals may be unbounded, in other words they are sets of 

the form {x : x > a}. Here are the possible cases:

� [a, ∞)   =  {x : x ≥ a}

� (−∞, a] =  {x : x ≤ a}

� (a, ∞)   =  {x : x > a}

� (−∞, a) =  {x : x < a}

� Since ∞ is generally considered not a real number, we cannot use 

intervals closed over the ∞

� The real number line can be expressed as R= (−∞, ∞)



� Science often studies relationships between quantities (for instance, 

how the measure of a tree is related to its age, etc.). To describe such 

relationships mathematically, we use functions

DEFINITION 

� A function f is a rule that assigns to each element  x in the set  A  

exactly one element  y in the set  B

� The element  y is called the image or value of  x under  f and is 

denoted by  f (x) (read “ f  of  x”)

� The set  A is called the domain of  f , the set  B is called the 

codomain of  f

� The set   f (A) = {y : y = f (x) for x ∈ A} is called the range of  f   (all the 

values taken by  y as  x varies all over the domain) 

� Example: The area  a of a circle depends on the radius  r  of the circle. 

The rule that connects  r and  a is given by the equation  a = π r 2. For 
each value of  r there is a value of  a, so  a is a function of  r

Functions



Since the concept of function is so widespread, it can be 

viewed in several ways. One can think of a function as a 

machine, and we have the machine diagram of a function

Functions

x is also known as the independent variable and  y = f(x)

as the dependent variable.



Another way to picture a function is by an arrow diagram

Each arrow connects an element of the domain D to an element of the 

codomain E.  For example, f (x) is associated with x, f (a) is associated 

with a, and so on. We often write something like this to describe a 

function

� f : D → E

x → f (x)

Functions



There are several possible ways to provide a function. For 

example:

� numerically (by giving a table of values)

� algebraically (by giving a formula – more used)

� visually (by giving a graph – more used)

� verbally (by giving a description in words)

Functions



Example. The human population of the world P changes with  time t. 

The table gives estimates of the world population P (t) at time t, for 

certain years. For instance,

P(1950) ≈ 2,560,000,000

Since for each value of the time t

there is a corresponding value 

of P, and we can say that P is a                                                 

function of t

Function given by a table

� We define a function by providing a table with all pairs x and f(x), 

or at least some (for example, those that could be measured) 



Function given by a formula

� Example: The area  a of a circle depends on the radius  r  of the 

circle. The rule that connects  r and  a is given by the equation  

a = π r 2

� We define a function by providing the mathematical rule 

connecting each pair x and f(x)

r

a



The most common method for visualizing a function is its graph. If  f

is a function with domain D, then its graph is the set of ordered pairs

{(x, f (x)) | x ∈ D}

In other words, the graph of  f consists of all points (x, y)

in the coordinate plane such that  y = f (x) and x is in the domain 

of  f

The graph of a function gives us a complete picture of the behavior of 

the function

Graph of a function



On the coordinate plan x y, we consider the line (not necessarily straight 

neither necessarily continuous) composed of the points (x, y) such that 

each y = f(x)

In other words, for each value of x, we can read the corresponding 

value of f(x) from the graph as the height of the graph above the point x

Graph of a function



The graph of  f also allows to see the domain of  f on the 

x-axis and its range on the y-axis

Graph of a function



Example 1

The graph of a function  f is shown in the figure

(a) Find the values of  f(1) and f(5)

(b) What are the domain and range of f ?



Example 1 – Solution  

(a) f(1) = 3  and  f(5) = -0.7

(b) the domain of  f is [0,7], the range of  f is [-2, 4]



The graph of a function is a curve in the xy-plane. But which curves in 

the xy-plane are graphs of functions? We have a test:

Test for the graph

Indeed, if each vertical line x = a intersects the graph only once, then 

exactly one functional value is defined for f (a)

On the contrary, if a line x = a intersects the curve twice (or more) then 

the curve can’t represent a function because a function can’t assign two 

different values to a



Linear Functions

In many cases, the relationship represented by a function is linear, 

in the sense that it is given by a linear equation, and the graph is a 

straight line

The amount of fuel  y in liters consumed by a car can be seen 

as a linear function of the distance  x in kilometers. 

The function  would be  y = c x   with c  equal for example to 1/20 

Note that, in many cases, reality can be seen as linear by 

allowing some approximation!

Example

x

y= f(x)



Linear Functions

In general, a linear function is

where m is the slope and b is the y-intercept, which is the point of 

intersection of the line with the y-axis which has coordinates (0, b)

x

y= m x +b 

y= f(x)

b 



Linear Functions

Example

x

y= 2 x - 1

y= f(x)

1 2 3

0

1

-1

2

4

3

5

f(0)= 2 * 0  -1 = -1

f(1)= 2 * 1  -1 = 1 

f(2)= 2 * 2  -1 = 3 

f(3)= 2 * 3  -1 = 5 



Linear Functions

Example

x

y= - 1/2 x + 2

y= f(x)

1 2 3

0

1

-1

2

4 5

f(0)= - 0.5 * 0 + 2 = 2 

f(1)= - 0.5 * 1 + 2 = 1.5 

f(2)= - 0.5 * 2 + 2 = 1 

f(3)= - 0.5 * 3 + 2 = 0.5 

f(4)= - 0.5 * 4 + 2 = 0 



Piecewise Defined Functions

Some functions have a graph composed of several parts, and not

of a single line or curve. These functions are called Piecewise 

Functions

A function  f is defined by

1 – x  if x ≤ –1

x2 if x > –1

Evaluate f(–2), f(–1), and f(0) and sketch the graph

Example



Example

Solution:

Remember that a function is a rule. For this particular 

function the rule is the following: 

First look at the value of the input x. If it happens that            

x ≤ –1, then the value of  f(x)  is  1 – x

On the other hand, if  x > –1, then the value of  f(x) is  x2

1 – x  if x ≤ –1

x2 if x > –1



Example – Solution  

Since –2 ≤ –1, we have f(–2) = 1 – (–2) = 3

Since –1 ≤ –1, we have f(–1) = 1 – (–1) = 2

Since 0 > –1, we have f(0) = 02 = 0

How do we draw the graph of f ? We observe that if x ≤ –1, 

then f(x) = 1 – x, so the part of the graph of f that lies to the 

left of the vertical line x = –1 must coincide with the line           

y = 1 – x, which has slope –1  and  y-intercept 1



Example – Solution  

If x > –1, then f(x) = x2, so the part of the graph of f that lies 

to the right of the line x = –1 must coincide with the graph 

of y = x2, which is a parabola. Hence:

The solid dot indicates that the point (–1, 2) is included in 

the graph; the open dot indicates that the point (–1, 1) is 

excluded from the graph 



Another example of a piecewise defined function is the 

absolute value function. Recall that the absolute value of a 

number a, denoted by |a |, is the distance from a to 0 on the 

real number line. Distances are always positive or 0, so we 

have

|a | ≥ 0          for every number a

For example,

|3| = 3     |–3| = 3     |0| = 0     |       –1| = – 1

|3 – π | = π – 3

Piecewise Defined Functions



In general, for the absolute value we have

(Remember that if a is negative, then –a is positive)

Piecewise Defined Functions



Sketch the graph of the absolute value function f(x) = |x|

Solution: From the preceding discussion we know that

x if x ≥ 0

|x| =

– x if x < 0

The graph of  f coincides 

with the line  y = x to the 

right of the y-axis and 

coincides with the line  y = –x

to the left of the y-axis 

Example



consider the cost C(w) of mailing a large envelope with 

weight w

In effect, this is a piecewise defined function because, for

each interval of weight there is a different cost, as follows

(note that the numbers are just examples)

0.88 Euro if 0 < w ≤ 1

1.05 Euro if 1 < w ≤ 2

C(w) = 1.22 Euro if 2 < w ≤ 3

1.39 Euro if 3 < w ≤ 4

Example



The graph is the following

You can see why functions similar to this one are called 

step functions—they jump from one value to the next 

cont’d
Example



If a function f satisfies f(–x) = f(x) for every number x in its 

domain, then f is called an even function. For instance, 

the function f(x) = x2 is even

Geometrically, this means its graph is 

symmetric with respect to the y-axis

An even function

Symmetry

So, if we have plotted the graph of  f

for x ≥ 0, we obtain the entire graph 

simply by reflecting this portion about 

the y-axis



The graph of an odd function is symmetric about the origin

An odd function

Symmetry

If we already have the graph of  

f for x ≥ 0, we can obtain the 

entire graph by rotating this 

portion through 180° about the 

origin

On the contrary, if  f satisfies  f(–x) = –f(x)  for every 

number  x in its domain, then  f is called an odd function. 

For example, the function    f(x) = x3  is odd



Example

Determine whether each of the following functions is even, 

odd, or neither even nor odd

(a) f(x) = x5 + x (b) g(x) = 1 – x4 (c) h(x) = 2x – x2

Solution:

(a) f(–x) = (–x)5 + (–x)  =  (–1)5x5 + (–x)

= –x5 – x =  –(x5 + x)

= –f(x) 

Therefore  f is an odd function



Example – Solution  

(b) g(–x) = 1 – (–x)4 = 1 – x4 = g(x)

So g is even

(c) h(–x) = 2(–x) – (–x)2 = –2x – x2

Since h(–x) ≠ h(x) and h(–x) ≠ –h(x), we conclude that h

is neither even nor odd

cont’d



These are the graphs of the functions examined before. 

Notice that the graph of h is symmetric neither about the 

y-axis nor about the origin

(b) (c)(a)

Example – Solution  



The graph shown here rises from A to B, falls from   B to C, 

and rises again from C to D. The function f is said to be 

increasing on the interval [a, b], decreasing on [b, c], and 

increasing again on [c, d].

Increasing & decreasing functions



Notice that if x1 and x2 are any two numbers between           

a and b with x1 < x2, then f(x1) < f(x2)

We use this as the defining property of an increasing 

function

Increasing & decreasing functions



In the definition of an increasing function it is important to 

realize that the inequality f(x1) < f(x2) must be satisfied for 

every pair of numbers x1 and x2 in I with x1 < x2

For example the function f(x) = x2 is 

decreasing on the interval (– , 0]

and increasing on the interval

[0,    )

Increasing & decreasing functions



� There exist many types of functions, we will review some of the most 

common

� In many cases, functions are created to build mathematical models of 

something we want to study

� A mathematical model is a mathematical description (often by means 

of a function or an equation) of a real-world phenomenon such as the 

size of a population, the demand for a product, the speed of a falling 

object, the concentration of a product in a chemical reaction, the life 

expectancy of a person at birth, etc.

� The purpose of the model is to understand the phenomenon and 

perhaps to make predictions about future behavior

Functions and models



How to make a model ?

Study the problem

Write the model

Study and solve the model

� Real world relationships among quantities 

are represented by mathematical 

relationships (=functions)

� A model must contain all and only the 

essential aspects of the phenomenon

� When we compute a matematical solution, 

we evaluate if it is reasonable. If it is not, 

we probably forgot some essential aspect of 

the problem in the definition of the model. We 

need to go back to model definition and 

solve again

� Example: we obtain a negative value for  

something that must be >=0? We forgot to 

specify non-negativity in the model

Mathematical solution

Real-world predictions

Validate the model



Advantages of the model
� We use the power of mathematics to find a solution 

� We may mathematically discover important properties of the 

practical problem (for example, we discover that a quantity a is always 

double than b, and this was previously unknown)

� We may use mathematical simulations (for example, we do need to 

build a bridge and see whether it falls down or not, we simulate its 

behavior) 

� Criticisms to the use of mathematical models 

� the quality of the answer depends on the quality of the data (garbage 

in, garbage out) but this is inevitable

� Not everything can be quantified (for example, subjective 

evaluations). However, we can do our best?



A mathematical model is often a not completely accurate 

representation of a physical reality, especially if the reality is 

complex — it is an idealization. A good model simplifies 

reality enough to permit mathematical calculations but is 

accurate enough to provide valuable conclusions

Accuracy of models

If there is no physical law or principle to help us formulate a 

model, we construct an empirical model, which is based 

entirely on collected data

We seek a curve that “fits” the data in the sense that it 

captures the basic trend of the data points



Example 1 

(a) As dry air moves upward, it expands and cools. If the 

ground temperature is 20°C and the temperature at a 

height of 1 km is 10°C, express the temperature                             

T (in °C) as a function of the height h (in kilometers), 

assuming that a linear model is appropriate.

(b) Draw the graph of the function in part (a). What does 

the slope represent?

(c) What is the temperature at a height of 2.5 km?



Example 1(a) – Solution

Because we are assuming that T is a linear function of h, 

we can write

T = mh + b

We are given that T = 20 when h = 0, so

20 = m • 0 + b = b

In other words, the y-intercept is b = 20.

We are also given that T = 10 when h = 1, so

10 = m • 1 + 20

The slope of the line is therefore m = 10 – 20 = –10 and the

required linear function is

T = –10h + 20



Example 1(b) – Solution

The graph is sketched in Figure

The slope is m = –10°C/km, and this represents the rate of 

change of temperature with respect to height.

cont’d



Example 1(c) – Solution

At a height of h = 2.5 km, the temperature is

T = –10(2.5) + 20 = –5°C

cont’d



A function P is called a polynomial if

P(x) = anx
n + an–1x

n–1 + . . . + a2x
2 + a1x + a0

where n is a nonnegative integer and the numbers 

a0, a1, a2, . . ., an are constants called the coefficients of 

the polynomial 

The domain of any polynomial is                      The degree 

of the polynomial is given by the leading coefficient an ≠ 0. 

For example, the function

is a polynomial of degree 6

Polynomial functions



A polynomial of degree 1 is of the form P(x) = mx + b and 

so it is a linear function

A polynomial of degree 2 is of the form P(x) = ax2 + bx + c

and is called a quadratic function

Polynomial functions



The graph of a quadratic function is always a parabola, 

obtained by shifting the parabola y = ax2. The parabola 

opens upward if a > 0 and downward if a < 0

The graphs of quadratic functions are parabolas

Quadratic functions



A polynomial of degree 3 is of the form

P(x) = ax3 + bx2 + cx + d a ≠ 0

and is called a cubic function. We have the graph of a 

cubic function in part (a) and graphs of polynomials of 

degrees 4 and 5 in parts (b) and (c) 

Cubic functions



Example 

A ball is dropped from the top of a skyscraper, 450m above 

the ground, and its height h above the ground is recorded 

at 1-second intervals in Table 2 

Find a model to fit the data 

and use the model to predict 

the time at which the ball hits

the ground



Example  – Solution

We draw a scatter plot of the data and observe that a linear 

model is inappropriate 

Scatter plot for a falling ball



Example  – Solution

But it looks as if the data points might lie on a parabola, so 

we try a quadratic model instead 

Using a graphing calculator or computer algebra system 

(which uses the least squares method), we obtain the 

following quadratic model:

h = 449.36 + 0.96t – 4.90t2

cont’d



Example  – Solution

We plot the graph of the quadratic function together with 

the data points and see that the quadratic model gives a 

very good fit:

The ball hits the ground when h = 0, so we solve the 

quadratic equation

–4.90t2 + 0.96t + 449.36 = 0

Quadratic model for a falling ball

cont’d



Example  – Solution

The formula for second degree equations     –b ±√ b2 -4ac      

gives

There are 2 solutions, but only one is positive, so only one 

is acceptable. That is t ≈ 9.67 , so we predict that the ball 

will hit the ground after about 9.7 seconds

cont’d

2a



A function of the form f(x) = xa, where a is a constant, is 

called a power function. We consider several cases

(i) a = n, where n is a positive integer

The graphs of   f(x) = xn for n = 1, 2, 3, 4, and 5 are shown 

in the next slide. (These are polynomials with only one 

term) 

We already know the shape of the graphs of y = x (a line 

through the origin with slope 1) and y = x2 (a parabola)

Power functions



Graphs of f(x) = xn for n = 1, 2, 3, 4, 5

Power functions



The general shape of the graph of  f(x) = xn depends on 

whether n is even or odd

If  n is even, then f(x) = xn is an even function and its graph 

is similar to the parabola y = x2

If  n is odd, then f(x) = xn is an odd function and its graph is 

similar to that of y = x3

Power functions



Notice, however, that as n increases, the graph of y = xn

becomes flatter near 0 and steeper when |x | ≥ 1. 

(If x is smaller than 1, then x2 is smaller, x3 is even smaller,

and so on. If x is larger than 1, then x2 is larger, etc.)

Families of power functions

Power functions



(ii) a = 1/n, where n is a positive integer

The function                              is a root function. For n = 2 

it is the square root function                    whose domain is 

[0,    ) and whose graph is the upper half of the

parabola x = y2

Graph of root function

Power functions



For other even values of n, the graph of               is similar 

to that of 

For n = 3 we have the cube root function                   whose 

domain is     (recall that every real number has a cube root) 

The graph of             

for n odd (n > 3) is similar to that of 

Graph of root function

Power functions



(iii) a = –1

The graph of the reciprocal function  f(x) = x–1 = 1/x is 

shown here. It has equation  y = 1/x,  or  xy = 1, and it is a 

hyperbola with the coordinate axes as its asymptotes

The reciprocal function

Power functions



This function arises for example in physics and chemistry in 

connection with Boyle’s Law, which says that, when the 

temperature is constant, the volume V of a gas is inversely 

proportional to the pressure P:

where C is a constant

Volume as a function of pressure

at constant temperature

Example of reciprocal function



A function f is called an algebraic function if it can be 

constructed using algebraic operations (such as addition, 

subtraction, multiplication, division, and taking roots) 

starting with polynomials

Here are two examples:

Algebraic functions



The graphs of algebraic functions can assume a variety of 

shapes. Here are some of the possibilities.

Algebraic functions



(b) g(x) = cos x

(a) ƒ(x) = sin x

Trigonometric functions
Trigonometric functions are those using sin(x), cos(x), tan(x), etc

For example, when we use the function f (x) = sin x, it is

understood that sin x means the sine of  the angle whose

radian measure is x



Notice that for both the sine and cosine functions the domain

is (       ,     ) and the range is the closed interval [–1, 1]

Thus, for all values of x, we have

or, in terms of absolute values,

|sin x| ≤ 1 |cos x| ≤ 1

Trigonometric functions



Also, the zeros of the sine function occur at the integer 

multiples of π ; that is,

sin x = 0 when x = nπ n an integer

An important property of the sine and cosine functions is 

that they are periodic functions and have period 2π

This means that, for all values of x,

Trigonometric functions



The tangent function is related to the sine and cosine 

functions by the equation

Note that it is undefined 

whenever cos x = 0, that is, 

when x = ±π /2, ±3π /2, . . . .

Its range is ( , ) y = tan x

Trigonometric functions



Notice that the tangent function has period π :

tan(x + π) = tan x for all x

The remaining three trigonometric functions (cosecant, 

secant, and cotangent) are the reciprocals of the sine, 

cosine, and tangent functions

Trigonometric functions



The exponential functions are the functions of the form  f (x) = ax, where 

the base  a is a positive constant and the independent variable  x is its 

power

Note the difference with power functions: here x is the exponent, not the 

base!

Consider the graphs of y = 2x and  y = (0.5)x

In both cases the domain is ( -∞, ∞ ) and the range is (0, ∞)

(a) y = 2x (b) y = (o.5)x

Exponential functions

They all pass by the point 

(0,1) since any base with 

exponent 0 gives 1



Exponential functions are useful for modeling many natural 

phenomena

If a > 1 they can model something increasing, where the 

more we have, the faster it increases, such as population 

growth 

If a < 1 they can model something decreasing, where the 

less we have, the slower it decreases, such as radioactive 

decay  

Exponential functions



Example:

Applications of Exponential Functions

� The exponential function occurs very frequently in mathematical 

models of nature and society. Here we indicate briefly how it 

arises in the description of population growth. 

� First we consider a population of bacteria in a homogeneous 

nutrient medium. Suppose that by sampling the population at 

certain intervals it is determined that the population doubles 

every hour.



If the number of bacteria at time t is p (t), where t is measured in 

hours, and the initial population is p(0) = 1000, then we have

� p(1) = 2p(0) = 2 × 1000

� p(2) = 2p(1) = 22 × 1000

� p(3) = 2p(2) = 23 × 1000

From this pattern, we infer that the population is a constant 
multiple of the exponential function y = 2t

� p (t) = 2t × 1000 = (1000)2t

Example:

Applications of Exponential Functions



� Of all possible bases for an exponential function, there is 

one that is particularly convenient. The choice of a base a 

is influenced by the way the graph of y = ax crosses the y-

axis. Figures show the tangent lines to the graphs of y = 2x

and y = 3x at the point (0, 1) and the slope m

The number  e



� It turns out that some of the formulas of calculus will be 

greatly simplified if we choose the base a so that the slope 

of the tangent line to y = ax at  (0, 1)  is exactly 1

The natural exponential function crosses the y-axis with a slope of 1

The number  e



� This number exists, and it is called e. It lies between 2 and 3 and the 

graph of y = ex lies between the graphs of y = 2x and y = 3x

� The value of e, correct to 5 

decimal places, is  e ≈ 2.71828

� We call the function f (x) = ex

the natural exponential function

The number  e



A logarithmic function is f(x) = logax, where the base  a is 

a positive constant, and is the inverse functions of the 

exponential functions. Recall that   logax means: the 

exponent that we must give to the base  a to obtain  x

In each case the domain is 

(0, ∞), the range is (-∞, ∞), 

and the function increases 

slowly when x > 1

They all pass by the point (1,0)

since to obtain 1 we give to 

any base exponent 0

Logarithmic functions



Example 

Classify the following functions as one of the types of 

functions that we have discussed

(a) f(x) = 5x

(b) g(x) = x5

(c)

(d) u(t) = 1 – t + 5t4



Example – Solution

(a) f(x) = 5x is an exponential function ( x is the exponent)

(b) g(x) = x5 is a power function ( x is the base)

We could also consider it to be a polynomial of degree 5

(c) is an algebraic function

(d) u(t) = 1 – t + 5t4 is a polynomial of degree 4



Two functions f and g can be combined to form new 

functions f + g, f – g, fg, and f/g in a manner similar to the 

way we add, subtract, multiply, and divide real numbers. 

The sum and difference functions are defined by

(f + g)(x) = f(x) + g(x) (f – g)(x) = f(x) – g(x)

If the domain of f is A and the domain of g is B, then the 

domain of f + g is the intersection A ∩ B because both 

f(x) and g(x) have to be defined

For example, the domain of                  is A = [0,     ) and the 

domain of                         is B = (       , 2], so the domain of 

is A ∩ B = [0, 2]

Combinations of functions



Similarly, the product and quotient functions are defined by

The domain of fg is A ∩ B, but we can’t divide by 0 and so 

the domain of f/g is {x ∈ A ∩ B| g(x) ≠ 0}. 

For instance, if f(x) = x2 and g(x) = x – 1, then the domain of 

the rational function (f/g)(x) = x2/(x – 1) is {x |x ≠ 1}, 

or (       , 1) U (1,    ).

Combinations of functions



There is another way of combining two functions to obtain a 

new function. For example, suppose that y = f(u) = 

and u = g(x) = x2 + 1

Since y is a function of u and u is, in turn, a function of x, it 

follows that y is ultimately a function of x. We compute

this by substitution:

y = f(u) = f(g(x)) = f(x2 + 1) = 

The procedure is called composition because the new 

function is composed of the two given functions f and g.

Combinations of functions



The result is a new function h(x) = f(g(x)) obtained by 

substituting g into f. It is called the composition 

(or composite) of f and g and is denoted by f ° g (“f circle g”)

Combinations of functions

The domain of f ° g is the set of all x in the domain of g such 

that g(x) is in the domain of f

In other words, (f ° g)(x) is defined whenever both g(x) and 

f(g(x)) are defined 



Example 

If f(x) = x2 and g(x) = x – 3, find the composite functions

f ° g and g ° f

Solution:

We have

(f ° g)(x) = f(g(x))

(g ° f)(x) = g(f(x))

= f(x – 3) = (x – 3)2

= g(x2) = x2 – 3


