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Some of the most important applications of differential 
calculus are optimization problems, in which we want to 
find the optimal (best) way of doing something. This is done 
by finding the maximum or minimum values of a function

What are maximum and minimum? In this example, the 
largest value of   f is f(3) = 5  and the smallest  value is   f
(6) = 2

We say that  f(3) = 5  is the 

absolute maximum of  f and  
f(6) = 2  is the absolute minimum

Maximum and Minimum
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Global Maximum and Minimum

An absolute maximum or minimum is also called a global

maximum or minimum

The maximum and minimum values of  f are called 
extreme values of  f
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Local Maximum and Minimum

Considering this graph, (d, f(d)) is the highest point on the 
graph (global maximum) and (a, f(a)) is the lowest point 
(global minimum)

However, if we consider only 
values of  x near  b [for instance,
if we restrict our attention to the
interval (a, c)], then  f (b)  is the 
largest of those values of  f (x) 

and is called a local maximum

of  f

min f (a), max f (d )
loc min f (c) and f (e),  loc max f (b) and f (d )
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Local Maximum and Minimum

Likewise, f(c) is called a local minimum value of  f because
f(c) ≤ f(x) for x near c [in the interval (b, d), for instance]

The function f also has a local minimum at e

In general, we have the following definition

In general, if we say that something is true near c, we 
mean that it is true on some open interval containing  c
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Maximum and Minimum Values
In this example we see that f (4) = 5 is a local minimum because it’s the 
smallest value of  f on the interval I

It’s not the absolute minimum because f (x) takes smaller values when 
x is near 12 (in the interval K, for instance)

f (12) = 3 is both a local minimum and the absolute minimum 

f (8) = 7 is a local maximum, but not the absolute maximum because f

takes larger values near 1
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Example 

The function f(x) = cos x takes on its (local and absolute) 
maximum value of 1 infinitely many times, since 
cos 2nπ = 1  for any integer  n and  –1 ≤ cos x ≤ 1  for all x

Likewise,  cos(2n + 1)π = –1  is its minimum value, where n
is any integer
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Extreme Value Theorem

When is a function guaranteed to possess extreme values?

Note that an extreme value can be taken on more than 
once
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Absence of Maximum or Minimum

If the function is not continuous or the interval is not closed, 
then it may not have minimum and/or maximum

This non continuous function has 
minimum value f (2) = 0, 
but no maximum value 
(the value 3 is never reached)

This function g is continuous 
but on the open interval (0, 2): it has
no maximum or minimum, 

the range is (1, ∞) but it never reaches 
these two values
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Finding Maximum and Minimum

The Extreme Value Theorem says that a continuous 
function on a closed interval has a maximum value and a 
minimum value, but it does not say how to find these 
extreme values. We start by looking for local extreme 
values

For example, we want 

to find the 

local maximum at c and 

the local minimum at d
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Using horizontal tangent

At the maximum and minimum points the tangent lines are 
horizontal and therefore each has slope 0, so it appears that  
f ′(c) = 0  and  f ′(d) = 0

This is always true for differentiable functions – as long as c
or d are not endpoints of the domain

However, horizontal tangent does not always imply maximum 
or minimum

Fermat’s Theorem: 

Consider a function f defined on an interval I, and c not an endpoint of I.

If  f has a local maximum or minimum at c, and if  f'(c) exists, then

f'(c)=0
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Example 1
If f(x) = x3, then f ′(x) = 3x2, so f ′(0) = 0

But  f has no maximum or minimum at 0

If f (x) = x3, then f ′(0) = 0 but it is not maximum or minimum
Note that this ƒ has no maximum or minimum

In this case, f ′(0) = 0  simply means that the curve y = x3

has a horizontal tangent in the point (0, 0)
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Example 2

The function f(x) = |x | has its (local and absolute) 
minimum value at 0, but that value can’t be found by 
searching for  f ′(x) = 0 because, f ′(0) does not exist

If f(x) = |x |, then f(0) = 0 is a minimum 
value, but f ′(0) does not exist.
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Examples 1 and 2 show that we must be careful when 

using Fermat’s Theorem

As in Example 1, even if f ′(c) = 0,  f doesn’t necessarily 

have a maximum or minimum at c

In other words, the converse of Fermat’s Theorem is false 

in general

As in Example 2, there may be an extreme value even 

when  f ′(c)  does not exist

Finding Maximum and Minimum
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Fermat’s Theorem does suggest that we should at least start 

looking for extreme values of f at the numbers c where  f ′(c) 
= 0  or where f ′(c) does not exist. Such values are called 
critical numbers or critical values

So, Fermat’s Theorem can be rephrased as follows

Finding Maximum and Minimum

7 Consider a function f defined on an interval  I. If  f has a local 
maximum or minimum at  c, and  c is not an endpoint of  I, then

c is a critical number of  f
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To find an absolute maximum or minimum of a continuous 
function on a closed interval, we note that either it is local 
or it occurs at an endpoint of the interval

Thus the following three-step procedure always works

Finding Maximum and Minimum
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From experiments, we find that the average blood alcohol 
concentration (BAC) after consumption of 1 drink (15 mL of ethanol) is 
given by this function, where t is in minutes after consumption and C
is in mg/mL

Example

Find when is the maximum value of BAC in the first hour

0.0467 t =  1 

C(t) = 0.0225t e -0.0467t 

C’ (t) = 0.0225t e -0.0467t (-0.0467) + 0.0225  e -0.0467t 

We begin by finding the derivative using the product rule 
and the chain rule

= 0.0225  e -0.0467t (-0.0467t +1)

The derivative is 0 when t =  1 / 0.0467 ≈ 21.4
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Then we compute the value of C at this critical value and 
at the endpoints 0 and 60 of the interval

Example

So the maximum of BAC in the first hour is 0.177 mg/mL, 
and it happens after about 21 minutes

C(21.4) ≈ 0.177

C(0) = 0

C(60) ≈ 0.0819
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Rolle’s Theorem

We will see an important result called the Mean Value 
Theorem. But to arrive at the Mean Value Theorem we first 
need some other steps
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(c)

(b)

(d)

(a)

In each example there is at least one point where the 
tangent is horizontal and therefore f ′(c) = 0

Rolle’s Theorem
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Example  

Prove that the equation x3 + x – 1 = 0 has exactly one real 
root (or solution)

Solution:
First we use the Intermediate Value Theorem to show that 
a root exists. Let f(x) = x3 + x – 1. Then f(0) = –1 < 0 and 
f(1) = 1 > 0 

Since f is a polynomial, it is continuous, so the Intermediate 
Value Theorem states that there is a value  c between 0 
and 1 such that f(c) = 0

Thus the given equation has at least one solution
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Example – Solution

To show that the equation has no other real root, we use 
Rolle’s Theorem and argue by contradiction 

Suppose that it had two roots a and  b. Then f(a) = 0 = f(b) 
and, since  f  is a polynomial, it is differentiable on (a, b) and 
continuous on [a, b] 

Thus, by Rolle’s Theorem, there is a number  c between a
and b such that f ′(c) = 0 

cont’d
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Example – Solution

But

f ′(x) = 3x2 + 1 ≥ 1        for all x

(since x2 ≥ 0) so f ′(x) can never be 0. This gives a 
contradiction 

Therefore the equation can’t have two real roots

cont’d
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The Mean Value Theorem

Our main use of Rolle’s Theorem is in proving the following 
important theorem, which was first stated by another 
French mathematician, Joseph-Louis Lagrange
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The Mean Value Theorem

The slope of the secant line AB is

Since f ′(c) is the slope of the tangent line at the point 
(c, f(c)), the Mean Value Theorem says that there is at 
least one point P(c, f(c)) on the graph where the slope of 

the tangent line is the same as the slope of the secant 

line AB

In other words, there is a point P where the tangent line is 
parallel to the secant line AB
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The Mean Value Theorem

So, there is at least one point where the derivative has 
slope parallel to the secant line AB. We can see that it is 
evident by considering the points A(a, f(a)) and B(b, f(b)) 
on the graphs of two differentiable functions
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Example 

To illustrate the Mean Value Theorem with a specific 
function, let’s consider 

f(x) = x3 – x a = 0,  b = 2

Since f is a polynomial, it is continuous and differentiable 
for all x, so it is certainly continuous on [0, 2] and 
differentiable on (0, 2)

Therefore, by the Mean Value Theorem, there is a number 
c in (0, 2) such that

f(2) – f(0) = f ′(c)(2 – 0) 
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Now f(2) = 6, 

f(0) = 0, and 

f ′(x) = 3x2 – 1, so this equation becomes

6 = (3c2 – 1)2 

= 6c2 – 2

which gives               that is,  c =                But c must lie in 

(0, 2), so 

cont’d
Example 
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The tangent line at this value of c is parallel to the secant 
line OB

cont’d
Example 
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Detecting constant functions

The Mean Value Theorem can be used to establish some 
of the basic facts of differential calculus 

One of these basic facts is the following theorem
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Note:  

Care must be taken in applying Theorem 5. Let

The domain of  f  is D = {x | x ≠ 0} and f′(x) = 0 for all x in D. 
But  f is obviously not a constant function 

This does not contradict Theorem 5 because D is not an 
interval. Notice that f is constant on the interval (0,     ) and 
also on the interval (       , 0)

Detecting constant functions
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What Does f ′ Say About f ?

As seen, the derivative of  f tells where a function is 
increasing or decreasing

Between B and C the tangent lines have negative slope 
and so f ′(x) < 0

Between A and B and 

between C and D, the 

tangent lines have positive 

slope and so f ′(x) > 0
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Example

Find where the function f(x) = 3x4 – 4x3 – 12x2 + 5 is 
increasing and where it is decreasing

Solution:

f ′(x) = 12x3 – 12x2 – 24x = 12x(x – 2)(x + 1)

To use the I/D Test we have to know where f ′(x) > 0 and
where f ′(x) < 0 

This depends on the signs of the three factors of f ′(x):   
12x,  x – 2,  and  x + 1
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We divide the real line into intervals whose endpoints are 
the critical numbers where the derivative is zero: –1, 0, 2 
and arrange our work in a chart

A plus sign indicates that the given expression is positive, 
and a minus sign indicates that it is negative. The last 
column of the chart gives the conclusion based on the I/D 
Test 

For instance, f ′(x) < 0 for 0 < x < 2, so  f is decreasing on 
(0, 2) (and also on the closed interval [0, 2])

cont’d
Example
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The graph confirms the information in the chart

cont’d
Example
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The First Derivative Test

In this example,  f(0) = 5 is a local maximum of  f because f
increases on (–1, 0) and decreases on (0, 2) 

In derivatives, f ′(x)>0  for  –1<x< 0  and  f ′(x)<0  for 0<x< 2

In other words, the sign of f ′(x) changes from positive to 
negative at 0. In general:
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In part (a), for instance, since the sign of f ′(x) changes from 
positive to negative at c, f is increasing to the left of c and 
decreasing to the right of c. It follows that f has a local 
maximum at c

It is easy to remember the First Derivative Test by
visualizing these diagrams

Local maximum Local minimum

The First Derivative Test
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No maximum or minimum No maximum or minimum

The First Derivative Test
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What Does f ″ Say About f ?

Consider these two increasing functions on (a, b)

Both graphs join point A to point B but they look different 
because they bend in different directions
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What Does f ″ Say About f ?

In the first case the curve lies above the tangents and f is 
called concave upward on (a, b)  

In the second case the curve lies below the tangents and g
is called concave downward on (a, b)

Concave upward Concave downward
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What Does f ″ Say About f ?

Graph of a function that is concave upward (abbreviated 
CU) on the intervals (b, c), (d, e), and (e, p) and concave 
downward (CD) on the intervals (a, b), (c, d), and (p, q).
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What Does f ″ Say About f ?

The second derivative helps determine the intervals of 
concavity. In this case, going from left to right, the slope of 
the tangent increases

Concave upward

This means that the derivative f ′ is an increasing function 
and therefore its derivative f ″ is positive
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What Does f ″ Say About f ?

Here the slope of the tangent decreases from left to right, 
so f ′ decreases and therefore f ″ is negative

Concave downward
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What Does f ″ Say About f ?

This reasoning can be reversed and suggests that:
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Example 

Discuss the curve y = x4 – 4x3 with respect to concavity, 
points of inflection, and local maxima and minima. Use this 
information to sketch the curve

Solution:

If f(x) = x4 – 4x3, then

f ′(x) = 4x3 – 12x2 = 4x2(x – 3)

\

f ″(x) = 12x2 – 24x = 12x(x – 2)
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To find the critical numbers we set  f′(x) = 0  and obtain 
x = 0  and  x = 3

Since  f ′(x) < 0  for  x < 0  and also for  0 < x < 3, the First 
Derivative Test tells us that  f does not have a local 
maximum or minimum at  0 

Instead, f ′(x) > 0  for  x >3, so for the First Derivative Test  
we have a local minimum at 3

Since f ″(x) = 0  when  x = 0  or  2, we divide the real line 
into intervals with these numbers as endpoints and 
complete the following chart

cont’d
Example 
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The point (0, 0) is an inflection point since the curve 
changes from concave upward to concave downward

Also (2, –16) is an inflection point since the curve changes 
from concave downward to concave upward there

Using the local minimum, the 
intervals of concavity, and the 
inflection points, we can sketch 
the curve

cont’d
Example 
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The Second Derivative Test

Note:  The Second Derivative Test is inconclusive when 

f ″(c) = 0. In other words, at such a point there might be a 

maximum, there might be a minimum, or neither 

This test also fails when f ″(c) does not exist. In such cases 

the First Derivative Test must be used. In fact, even when 

both tests apply, the First Derivative Test is often the easier 

one to use
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Example -- continued

f ″(0) = 0 f ″(3) = 36 > 0

Since f ′(3) = 0 and f ″(3) > 0, f(3) = –27 is a local minimum

Since f ″(0) = 0, the Second Derivative Test gives no 
information about the critical number 0

Use the second derivative test to find the local extreme 
values of  f(x) = x4 – 4x3

We already know  f’(0) = f’(3) = 0. We now evaluate f’’ there
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Other Example

Sketch the graph of the function f(x) = x2/3(6 – x)1/3

Solution:
Calculation of the first two derivatives gives

Since f ′(x) = 0 when x = 4 and f ′(x) does not exist when 
x = 0 or x = 6, the critical numbers are 0, 4 and 6
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To find the local extreme values we use the First Derivative 
Test

Since f ′ changes from negative to positive at 0, f(0) = 0 is a 
local minimum 

Since f′ changes from positive to negative at 4, f(4) = 25/3 is 
a local maximum

The sign of f ′ does not change at 6, so there is no 
minimum or maximum there. (The Second Derivative Test 
could also be used at 4, but not at 0 or 6 since f ″ does not 
exist at either of these numbers)

cont’d
Other Example
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Looking at the expression for f ″(x) and noting that x4/3 ≥ 0 
for all x, we have f ″(x) < 0 for x < 0 and for 0 < x < 6, but   

f ″(x) > 0 for  x > 6 

So  f is concave downward on (        , 0) and (0, 6), but it is  
concave upward on (6,    ), and the only inflection point is 
(6, 0) 

cont’d
Other Example
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The graph is

Note that the curve has vertical tangents at (0,0) and (6,0) 
because |f ′(x)|        as x     0 and as x    6

cont’d
Other Example
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Indeterminate Forms

Suppose we are trying to analyze the behavior of the 
function

Although F is not defined when x = 1, we need to know how 
F behaves near 1. In particular, we would like to know the 
value of the limit
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Indeterminate Forms

In computing this limit we can’t apply the quotient low for 
limits because the limit of the denominator is 0. In fact, 
although the limit exists, its value is not obvious because 
both numerator and denominator approach 0 and    is not 
defined

In general, if we have a limit of the form

where both  f(x) → 0  and  g(x) → 0  as  x → a, then this 
limit may or may not exist and is called an indeterminate 

form of type zero over zero   
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We will see a systematic method, known as l’Hospital’s

Rule (or l'Hôpital, or Bernoulli-l'Hôpital), for the evaluation 
of indeterminate forms

Another indeterminate situation occurs when we want to 
evaluate the limit of F at infinity:

It isn’t obvious how to evaluate this limit because both 
numerator and denominator become large as x →

Indeterminate Forms
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Indeterminate Forms

There is a struggle between numerator and denominator. If 
the numerator wins, the limit will be     ; if the denominator 
wins, the answer will be 0. Or there may be some 
compromise, in which case the answer will be some finite 
number

In general, if we have a limit of the form

where both f(x) → (or – ) and g(x) → (or – ), then 
the limit may or may not exist and is called an 
indeterminate form of type /    
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l’Hospital’s Rule

L’Hospital’s Rule applies to this type of indeterminate form
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l’Hospital’s Rule

Note 1:

L’Hospital’s Rule says that the limit of a quotient of 
functions is equal to the limit of the quotient of their 
derivatives, provided that the given conditions are satisfied. 
It is especially important to verify the conditions regarding 
the limits of  f and  g before using l’Hospital’s Rule

Note 2:

L’Hospital’s Rule is also valid for one-sided limits and for 
limits at infinity or negative infinity; that is, “x → a” can be 
replaced by any of the symbols x → a+, x → a–, x → , or 
x → –
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Example

Find

Solution:

Since

and
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Example – Solution

we can apply l’Hospital’s Rule:

cont’d
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Dealing with Indeterminate Forms

Clearly, l’Hospital rule does not apply always. 
For example, not to this limit, because is not
an indetrminate form: it is 1+/0+ x

x
x ln
lim

1+

→

Another important limit is

In this case, it is often said that l’Hospital rule cannot be
applied since this limit actually corresponds to the 
derivative of sin x

sin x/ x = (sinx - sin0)/(x-0) 

The derivative of  sinx is cosx, and its limit for x�0 is 1

x

x
x

sin
lim

0→
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Dealing with Indeterminate Forms

2
lim

x

e
x

x ∞→

L’Hospital’s rule can also be applied by computing the 
derivative more than once 

x

e
x

x 2
lim

∞→

However it is still indeterminate!
We need to apply again the rule, 
that means to derive again

∞=
∞→ 2

lim
x

x

e

This also shows that the exponential function
approaches infinity faster than any power of x
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Dealing with Indeterminate Forms

px x

xln
lim

∞→

Another interesting case is this, with  p > 0

This shows that the logarithmic function approaches 
infinity more slowly than any power of x

0
1/1

lim
1

==
−

∞→
ppx pxpx

x
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Indeterminate Products

If limx→a f(x) = 0 and limx→a g(x) =     (or – ), then it isn’t 
clear what the value of  limx→a [f(x) g(x)], if any, will be. 
There is a struggle between f and g

If  f wins, the answer will be 0; if  g wins, the answer will 
be       (or – )

Or there may be a compromise where the answer is a finite 
nonzero number. This kind of limit is called an 

indeterminate form of type 0 �∞
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Indeterminate Products

We can deal with it by writing the product fg as a quotient:

This converts the given limit into an indeterminate form of 
type    or     /     so that we can use l’Hospital’s Rule
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Example

Evaluate 

Solution:

The given limit is indeterminate because, as x → 0+, the 
first factor (x) approaches 0 while the second factor (ln x) 
approaches –
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Example – Solution

Writing x = 1/(1/x), we have 1/x → as x → 0+, so 
l’Hospital’s Rule gives

= 0

cont’d
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Note:

In solving this example another possible option would have 
been to write

This gives an indeterminate form of the type 0/0, but if we 
apply l’Hospital’s Rule we get a more complicated 
expression than the one we started with

In general, when we rewrite an indeterminate product, we 
try to choose the option that leads to the simpler limit!

Example – Solution
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Indeterminate Differences

If  limx→a f(x) =      and limx→a g(x) =     , then the limit

is called an indeterminate form of type – . Again 
there is a contest between the two

Will the answer be     (f wins) or will it be – (g wins) or will 
they compromise on a finite number? To find out, we try to 
convert the difference into a quotient (for instance, by using 
a common denominator, or rationalization, or factoring out 
a common factor) so that we have an indeterminate form of 
type    or     /    
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Indeterminate Powers

Several indeterminate forms arise from the limit

1. and                                   type 00

2. and                                   type     0

3. and                                   type 
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Indeterminate Powers

Each of these three cases can be treated either by taking 
the natural logarithm:

let y = [f(x)]g(x),    then    ln y = g(x) ln f(x)

or by writing the function as an exponential:

[f(x)]g(x) = eg(x) ln f(x)

In either method we are led to the indeterminate product 
g(x) ln f(x), which is of type 0 �
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Slant Asymptotes

Some curves have asymptotes that are oblique, that is, 
neither horizontal nor vertical. If

then the line y = mx + b is called
a slant asymptote because the
vertical distance between the 
curve y = f(x) and the line
y = mx + b approaches 0 

A similar situation may exist if we let x → -∞
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Guidelines for Sketching a Curve

The following checklist is intended as a guide to sketching 
a curve y = f(x) by hand. Clearly, some item may be not 
applicable (for instance, a given curve might not have an 
asymptote or possess symmetry)

But the guidelines provide all the information you need to 
make a sketch that displays the most important aspects of 
the function

A. Domain It’s often useful to start by determining the 
domain D of  f, that is, the set of values of  x for which  f(x) 
is defined
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Guidelines for Sketching a Curve

B. Intercepts The y-intercept is f(0) and this tells us where 
the curve intersects the y-axis. To find the x-intercepts, we 
set y = 0 and solve for x. (sometimes omitted if the 
equation is difficult to solve)

C. Symmetry

(i) If  f(–x) = f(x)  for all x in D, that is, the equation of the 
curve is unchanged when x is replaced by –x, then f is an 
even function and the curve is symmetric about the y-axis
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Guidelines for Sketching a Curve

This means that our work is cut in half. If we know what the 
curve looks like for x ≥ 0, then we need only reflect about 
the y-axis to obtain the complete curve

Here are some examples: y = x2, y = x4, y = |x|, and
y = cos x

Even function: reflectional symmetry
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Guidelines for Sketching a Curve

(ii) If  f(–x) = –f(x)  for all in x in D, then  f  is an odd 

function and the curve is symmetric about the origin. 
Again we can obtain the complete curve if we know what it 
looks like for x ≥ 0 by rotating 180° about the origin 

Some simple examples of odd functions are y = x, y = x3,
y = x5, and y = sin x.

Odd function: rotational symmetry
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Guidelines for Sketching a Curve

(iii) If  f(x + p) = f(x) for all x in D, where p is a positive 
constant, then f is called a periodic function and the 
smallest such number p is called the period

For instance, y = sin x  has period  2π and  y = tan x  has 
period π. If we know what the graph looks like in an interval 
of length p, then we can use translation to sketch the entire 
graph

Periodic function: translational symmetry
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Guidelines for Sketching a Curve

D. Asymptotes

(i) Horizontal Asymptotes. If either  limx→∞
f(x) = L  or

limx→ -∞ f(x) = L, then the line  y = L is a horizontal 
asymptote of the curve y = f(x)

If it turns out that  limx→∞
f(x) =∞ (or -∞ ), then we do not 

have an asymptote to the right, but that is still useful 
information for sketching the curve 

The same applies when considering limx→ -∞ f(x) 
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Guidelines for Sketching a Curve

(ii) Vertical Asymptotes. The line x = a is a vertical 
asymptote if at least one of the following statements is true:

For rational functions you can also locate the vertical   
asymptotes by equating the denominator to 0 after
canceling any common factors, but for other functions this 
method does not apply
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Guidelines for Sketching a Curve

If f(a) is not defined but a is an endpoint of the domain of f, 
then you should compute limx→a– f(x) or limx→a+ f(x), 
whether or not this limit is infinite

(iii) Slant Asymptotes. Search for

E. Intervals of Increase or Decrease Use the I/D Test. 
Compute f ′(x) and find the intervals on which f ′(x) is 
positive (f is increasing) and the intervals on which f ′(x) is 
negative (f is decreasing)
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Guidelines for Sketching a Curve

F. Local Maximum and Minimum Values  Find the critical 
numbers of f [the numbers c where f ′(c) = 0 or f ′(c) does 
not exist]. Then use the First Derivative Test. If f ′changes 
from positive to negative at a critical number c, then f(c) is 
a local maximum

If f ′ changes from negative to positive at c, then f(c) is a 
local minimum. Although it is usually preferable to use the 
First Derivative Test, you can use the Second Derivative 
Test if f ′(c) = 0 and f″(c) ≠ 0

Then f″(c) > 0 implies that f(c) is a local minimum, whereas 
f″(c) < 0 implies that f(c) is a local maximum
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Guidelines for Sketching a Curve

G. Concavity and Points of Inflection Compute f″(x) and 
use the Concavity Test. The curve is concave upward 
where f″(x) > 0 and concave downward where f″(x) < 0. 
Inflection points occur where the direction of concavity 
changes

H. Sketch the Curve Using the information in items A–G, 
draw the graph. Sketch the asymptotes as dashed lines. 
Plot the intercepts, maximum and minimum points, and 
inflection points
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Guidelines for Sketching a Curve

Then make the curve pass through these points, rising and 
falling according to E, with concavity according to G, and 
approaching the asymptotes

If additional accuracy is desired near any point, you can 
compute the value of the derivative there. The tangent 
indicates the direction in which the curve proceeds
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Example 

Use the guidelines to sketch the curve

A. The domain is

{x | x2 – 1 ≠ 0} = {x | x ≠ ±1}

= (      , –1) ∪ (–1, 1) ∪ (1, )

B. The x- and y-intercepts are both 0

C. Since f(–x) = f(x), the function f is even. The curve is  
symmetric about the y-axis
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Example 

D.

Therefore the line y = 2 is a horizontal asymptote

Since the denominator is 0 when x = ±1, we compute the 
following limits:

cont’d
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Example 

Therefore the lines x = 1 and x = –1 are vertical asymptotes

This information about limits and asymptotes enables us to 
draw this preliminary sketch, showing the parts of the curve 
near the asymptotes

cont’d

Preliminary sketch
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Example 

E.

Since f′(x) > 0 when x < 0 (x ≠ –1) and f ′(x) < 0 when
x > 0 (x ≠ 1), f is increasing on ( , –1) and (–1, 0) and  
decreasing on (0, 1) and (1, )

F. The only critical number is x = 0

Since f ′ changes from positive to negative at 0, f(0) = 0   
is a local maximum by the First Derivative Test

cont’d
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Example 

G.

Since 12x2 + 4 > 0 for all x, we have

f″(x) > 0      x2 – 1 > 0      |x| > 1

and f″(x) < 0      |x| < 1. Thus the curve is concave upward 
on the intervals ( , –1) and (1, ) and concave 
downward on (–1, 1). It has no point of inflection since 1 
and –1 are not in the domain of  f

cont’d
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Example 

H. Using the information in E–G, we finish the sketch

Finished sketch of y =

cont’d
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Optimization Problems
In solving many practical problems the challenge is often to convert 

them into mathematical optimization by setting up a function that is to 

be maximized or minimized (=optimized) and possible constraints

When facing one of these problems, we need to:

1. understand the real-world problem and the relationships among the 

quantities

2. understand which quantities we need to decide (variables) and 

which are just data of the problem

3. write an optimization model, with an objective function that we want 

to maximize or minimize, and possibly some constraints to specify 

which solutions (= values for the variables) are feasible

4. Find the optimal solution (= the one maximizing or minimizing the 

objective function) among the feasible solutions
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Example 

A farmer has 2400 m of fencing and wants to fence off a 
rectangular field that borders a straight river. He needs no 
fence along the river. What are the dimensions of the field 
that has the largest area?

To better understand this problem, let’s see some possible 
ways of laying out the fencing. These are 3 feasible 
solutions, we want the optimal solution
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Example – Solution

We see that when we try shallow, wide fields or deep, 
narrow fields, we get relatively small areas. It seems 
plausible that there is some intermediate configuration that 
produces the largest area.

We wish to maximize the area A of the rectangle, and we 
need to decide x and y

cont’d
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Example – Solution

Let x and y be the depth and width of the rectangle (in m). 
Then we express A in terms of x and y:

A = xy

We can express A as a function of just one variable, so we 
eliminate y by expressing it in terms of x. To do this we 
use the given information that the total length of the fencing 
is 2400 m.

Thus

2x + y = 2400

From this equation we have y = 2400 – 2x, which gives

A = x(2400 – 2x) = 2400x – 2x2

cont’d
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Example – Solution

Note that x ≥ 0 and x ≤ 1200 (otherwise A < 0). So the 
function that we wish to maximize is

A(x) = 2400x – 2x2 0 ≤ x ≤ 1200

The derivative is A ′(x) = 2400 – 4x, so to find the critical 
numbers we solve the equation

2400 – 4x = 0

which gives x = 600

The maximum value of A must occur either at this critical 
number or at an endpoint of the interval

cont’d
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Example – Solution

Since A(0) = 0, A(600) = 720,000, and A(1200) = 0, so the 
maximum value is  A(600) = 720,000 

Alternatively, we could observe that A ′′(x) = – 4 < 0  for all 
x, so A is always concave downward and the local 
maximum at x = 600 must be an absolute maximum

Thus the rectangular field should be 600 m deep and 
1200 m wide

cont’d
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Global maximum or minimum



9898

Optimization in Economics

Consider the cost of producing x units of a certain product. 

We can write it as a function C(x) called cost function. 

Then, the cost of producing one additional unit, called the 

marginal cost, is the rate of change of C with respect to x, 

hence, it is the derivative C ′(x) of the cost function

Now let  p(x)  be the price per unit that the company can 

charge if it sells x units. Then p is called the demand 

function (or price function) and it is generally a 

decreasing function of x
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If x units are sold and the price per unit is p(x), then the 

total revenue is

R(x) = xp(x) 

and R is called the revenue function

The derivative R ′ of the revenue function is called the 

marginal revenue function and is the rate of change of 

revenue with respect to the number of units sold

Optimization in Economics
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If x units are sold, then the total profit is 

P(x) = R(x) – C(x)

and P is called the profit function

The marginal profit function is P ′, the derivative of the 

profit function

Optimization in Economics
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Example 

A store has been selling 200 Blu-ray disc players a week at 
$350 each. A market survey indicates that for each $10 
rebate offered to buyers, the number of units sold will 
increase by 20 a week. Find the demand function and the 
revenue function. How large a rebate should the store offer 
to maximize its revenue?

Solution:
If x is the number of Blu-ray players sold per week, then the 
weekly increase in sales is  x – 200 

If the price is decreased by $10 there is an increase of 20 
units sold
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Example – Solution

So for each additional unit sold, the decrease in price will 

be             and the demand function is

p(x) = 350 – (x – 200) = 450 – x

The revenue function is 

R(x) = xp(x) = 450x – x2

Since R ′(x) = 450 – x, we see that R ′(x) = 0 when x = 450

This value of x gives an absolute maximum by the First 
Derivative Test because R’ changes from positive to 
negative (or simply by observing that the graph of R is a 
parabola that opens downward)

cont’d
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Example – Solution

The corresponding price is

p(450) = 450 – (450) = 225

and the rebate is 350 – 225 = 125

Therefore, to maximize revenue, the store should offer a

rebate of $125

Indeed, for 200 units sold at 350$ the total revenue is

70,000$

For 450 units sold at 225$ the total revenue is 101,250$

cont’d
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Newton’s Method

To find the roots of an equation f(x)=0 we can use the 
Newton’s method, a.k.a. Newton-Raphson method

Imagine we want to find the solution corresponding to point r

We start with a first approximation x1, which is obtained by 
guessing, or from a rough sketch of the graph of  f, or from a 
computer-generated graph of  f
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Newton’s Method

Then we take the tangent line L to the curve y = f(x) at the 
point (x1, f(x1)) and look at the x-intercept of L, labeled x2

The idea behind Newton’s method is that the tangent line is 
close to the curve and so its x-intercept, x2, is close to the   
x-intercept of the curve (namely, the root r  that we are 
seeking). Because the tangent is a line, we can easily find 
its x-intercept

To find a formula for x2 in terms of x1 we use the fact that 

the slope of  L  is  f ′(x1), so its equation is

y – f(x1) = f ′(x1)(x – x1)
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Newton’s Method
Since the x-intercept of  L is x2, we set y = 0 and we 
search  for the value of x2

0 – f(x1) = f ′(x1)(x2 – x1)

If f ′(x1) ≠ 0, we can solve this equation for x2:

We use x2 as a second approximation to r

Next we repeat this procedure with x1 replaced by the 
second approximation x2, using the tangent line at             
(x2, f(x2))
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Newton’s Method

This gives a third approximation:

If we keep repeating this process, we obtain a sequence of 
approximations x1, x2, x3, x4, . . . 
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Newton’s Method

In general, if the nth approximation is xn and f ′(xn) ≠ 0, then 
the next approximation is given by

If the numbers xn become closer and closer to r as n
becomes large, then we can find the root, and we say that 
the sequence converges  to r and we write
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Example 

Starting with x1 = 2, find the third approximation x3 to the 
root of the equation x3 – 2x – 5 = 0

Solution:

We apply Newton’s method with

f(x) = x3 – 2x – 5 and f ′(x) = 3x2 – 2

(Newton himself used this equation to illustrate his method 
and he chose x1 = 2 after some experimentation because     
f(1) = –6,  f(2) = –1, and  f(3) = 16)
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Example – Solution

Equation 2 becomes

With n = 1 we have

cont’d
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Example – Solution

Then with n = 2 we obtain

It turns out that this third approximation x3 ≈ 2.0946 is 
accurate to four decimal places

cont’d
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Antiderivatives

In some case, we may need to find a function  F  whose 
derivative is a given function  f.  If such a function F exists, 
it is called an antiderivative of  f 
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Antiderivatives

For instance, let f(x) = x2. It isn’t difficult to discover an 
antiderivative of  f if we keep the Power Rule in mind. In 
fact, if  F(x) =   x3, then F ′(x) = x2 = f(x)

But the function G(x) =   x3 + 100 also satisfies G ′(x) = x2

Therefore both F and G are antiderivatives of  f

Indeed, any function of the form H(x) =   x3 + C, where C is 

a constant, is an antiderivative of  f
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Antiderivatives

The following theorem says that  f has no other 

antiderivative

Going back to the function f(x) = x2, we see that the general 

antiderivative of  f is  x3/3 + C
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Antiderivatives

By assigning specific values to the constant C, we obtain a 

family of functions whose graphs are vertical translates of 

one another

This makes sense because

each curve must have the

same slope at any given

value of x

Members of the family of 
antiderivatives of f (x) = x2
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Example 

Find the most general antiderivative of each of the following 
functions.

(a) f(x) = sin x (b) f(x) = 1/x (c) f(x) = xn,  n ≠ –1

Solution:

(a) Recall that d/dx (cos(x)) = −sen(x)

So, if F(x) = –cos x, then F ′(x) = sin x, so an antiderivative
of sin x is  –cos x

By Theorem 1, the most general antiderivative is 
G(x) = –cos x + C
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Example – Solution

(b) Recall

So on the interval (0,    ) the general antiderivative of 1/x
is  ln x + C. We also learned that

for all x ≠ 0. Theorem 1 then tells us that the general
antiderivative of  f(x) = 1/x is  In |x | + C  on any interval
that doesn’t contain 0. In particular, this is true on each
of the intervals (       , 0) and (0,    )

cont’d
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Example – Solution

So the general antiderivative of  f is

(c) We use the Power Rule to discover an antiderivative of
xn. In fact, if n ≠ –1, then

Thus the general antiderivative of  f(x) = xn is

cont’d
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Example – Solution

This is valid for n ≥ 0 since then  f(x) = xn is defined on
any interval. If  n  is negative (but n ≠ –1, we have already 
seen that case), it is valid on any interval that doesn’t 
contain 0

cont’d
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Table of Antiderivatives

By considering in the reverse way the basic derivatives 
seen, we can write a Table of Antiderivatives

To obtain the most general anti derivative from the particular 
ones in this Table, we have to add a constant (or constants)


