SOLVING
PROPOSITIONAL SATISFIABILITY

BY IDENTIFICATION OF
HARD SUBFORMULAE

R. Bruni and A. Sassano
University of Roma “La Sapienza”

ISMP 2000
Atlanta, GA, August 2000

SUMMARY

. Introduction and notation

. Hard clauses and Minimally unsatisfiable

subformulae (MUS)

. Branching tree structure
. The algorithm : Adaptive core search (ACS)

. Computational results and conclusions

INTRODUCTION

Every propositional logic formula can be expressed in

Conjunctive Normal Form

(@ V...V e vV Tag VY T) ALA(QG VeV g Y T VLY T)

m

SATISFIABILITY PROBLEM (NP-COMPLETE)
Is there a truth assignment for the logic variables
(and if yes which is)

such as the whole formula is satisfied (= is True) ?

NOTATION

Ground set of the literals (posited or negated proposition)

A= {ai: . =a fori=1,...,n; —-a fori=n+1,..., 2n}
Define —a,=a;,,,and —-a;,,=4a;
Clause C;={a:ielcl={l,..,2n}}

(set of literals)

Instance F={C:j=1,..,m)
(collection of sets of literals) :

TRUTH ASSIGNMENT

Truth assignment S = {ai ra, €S> ;& S}
(set of literals)

Partial if |S| < n, completeif |S| =n

Completion CS)={a,:a,¢S A—-a ¢ S}
(set of literals)

S satisfies F VC ed, SNnC = ¢

F is unsatisfiable VS, 3C, e F: SN C = ¢

APPROACHES

e Complete methods
Given enough time, are guaranteed to find the solution.

Based on branching (DLL) and/or resolution (DP)

 Heuristics
Are faster, but not guaranteed to find the solution.

Not very useful for unsatisfiable instances.

GENERIC BRANCHING PROCEDURE

Time depends on :
e number of nodes of the search tree

e time needed at every single node

At every node,

1. Choose variable to branch on (branching rule)

(needs time)
2. Fix the variable (fast)

3. Simplify the formula (needs time)

(unit propagation: unit resolution and unit subsumption)

POSSIBLE SOLUTIONS

 Reduce size of the branching tree,
e.g. by improving effectiveness of the branching rule

or by cutting some subtrees.

 Reduce time needed for the selection of the branching

variable by simplifying its calculation.

 Reduce time needed for unit propagation by delaying

some operations.

HARD CLAUSES

Given an instance #, some clauses are more difficult to
satisfy, that is are more constraining in the context of

that particular instance

Example of short clauses containing the same variables
(hard)

C1={a1 a2} C2={al_'32} C3={—|a1 a2}

Example of long clauses containing different variables
(easy)

C, = {31 s —|a3} C, = {34 —asg 36} Cs; = {_'37 dg 39}

INDIVIDUATION OF HARD CLAUSES

A priori :

observations made before, length lj,

In itinere :
(solving the problem with a branching procedure)

of visits v, of a clause, # of failure f; due to a clause
We evaluate clause hardness using
O(C) = (v;+ pf)/ L

Calculation of @ requires extremely small overhead and

keeps improving throughout the computation.

BRANCHING RULE PART 1:
CLAUSE SELECTION

e If we front hard clauses deep in the branching tree

(current partial assignment S almost complete, C(S) small)

usually we need to backtrack far.

e If we front hard clauses at the beginning of the branching

tree (S small, C(S) wide) we solve them, or we discover

unsatisfiability earlier.

Hard clauses must be fronted first:

We choose C; = argmax Q(C;) = (v; + pf)/ 1;

BRANCHING SCHEME

Like most of complete methods, we use a branching
procedure.

No binary branching, but clause-based branching.

variable | clause

BRANCHING RULE PART 2:
VARIABLE SELECTION

e Within the clause, we need to choose the variable :

Two sided Jeroslow Wang (Hooker)

Choose a; = argmax 2. 216l + 2 o-Icil

Ccy C c-y

approximated as follows:

let J(a) = 1 + # binary clauses containing a;

choose a, = argmax J(a;) J(—a))

MINIMALLY UNSATISFIABLE
SUBFORMULAE

Given an unsatisfiable instance #, we can have
collections of clauses G c F which are still unsatisfiable

G c % is minimally unsatisfiable (MUS) iff

» VS, 3G ed:SNnC =9 (is unsatisfiable)

(every subset

» VHcG,3S,V C; € SN Cij#¢ is satisfiable)

F is unsatisfiable < % contains a MUS

MUS APPROXIMATION

By collecting enough hard clauses (using ¢) from
an unsatisfiable instance, we can identify an

unsatisfiable set of clauses.

If we stop collecting as soon as the set is

unsatisfiable, we cannot say that it’s minimal.

We have a quick approximation of a minimally

unsatisfiable subformula.

THE ALGORITHM - DEFINITIONS

Given an instance J and values for @, define:
O(F) =C=1{C;: C;e F, 0(C;) 29(C,) VC,e F, | C|<| T |}
(selection of the hardest clauses in the clause-set)

and =5\ C

Given a partial solution S, and a set of clauses (,_, define:
N, = { Ciel,:C(S)n C = ¢} (falsified clauses)

S. =1 Ciel,:5,nC # ¢} (satisfied clauses)

ADAPTIVE CORE SEARCH - |

Preprocessing: perform p branching iterations on F to

give initial values to ¢

Base step: select an initial collection of the hardest
clauses €, = @(F). C, is the first core , i.e. candidate to

be a MUS. Remaining clauses form 0,

ADAPTIVE CORE SEARCH - 1]

Iteration : apply h branching iterations to €, ignoring O,

One of the following:

e (. is unsatisfiable = Fis unsatisfiable, then STOP.

* No result after h iteration = contraction (allowed only

t times to ensure termination): put G, = @(C,), k = k+1,

goto Iteration.

e C is satisfied by S, = If €, = F, Fis satisfiable, STOP.

Otherwise test S, on (J, . One of the following: [next]

ADAPTIVE CORE SEARCH - 1]
Test S, on (J, . One of the following :
¢ 5. =0, N, = ¢ = F is satisfied, then STOP

¢ N, # ¢ = expansion: add N, to the core, obtain

Ceir1= C.U N, (note C,,cF), k =k+1, goto Iteration.

e N, =¢, 5 c U, = extension: keep S,

put C.,= G, U (0,), k =k+1, goto Iteration.

FEATURES

e Complete method: In the worst case performs a complete
branching.

e Factors of size reduction for the branching tree:

1) To front hard clauses first.
2) To prove unsatisfiability exploring only the core subtree.
e Factors of time reduction for branching variable selection:
1) Easy to compute branching rule.

2) To choose only within the current core.

 Reduces time needed for unit propagation by delaying

it for clauses out of the core.

USEFULNESS OF MUS
APPROXIMATION

Many sat instances encode real world problems.

If a formula is unsatisfiable, it is useful to know which

part of the formula cause this unsolvability.

That is the part respectively to remove or to keep
when we respectively want such formula to be

satisfiable or unsatisfiable.

SERIES PAR16 (SAT)

Problem n m ACS 1.0 SATO 3.2

parl6-1 1015 3310 10.10 24.16
parl6-1-c 317 1264 11.36 2.62
parl6-2 1015 3374 52.36 49.22
parl6-2-c 349 1392 100.73 128.15
parl6-3 1015 3344 103.92 40.81
parl6-3-c 334 1332 8.19 78.91
parl6-4 1015 3324 70.82 1.51
parl6-4-c 324 1292 5.10 133.07
parl6-5 1015 3358 224 .84 4.92
parl6-5-c 341 1360 72.29 196.33

SERIES AIM-100 UNSAT

Problem n m C-sat 2cl TabuS | BRR | ACS ACS ACS n m
sel sol tot core | core
aim-100-1_6-no-1 100 | 160 n.a. n.a. n.a. | n.a. 0.17 0.03 0.20 43 48
aim-100-1_6-no-2 100 | 160 n.a. n.a. n.a. | n.a. 0.54 0.39 0.93 46 54
aim-100-1_6-no-3 100 | 160 n.a. n.a. n.a. n.a. 0.62 0.73 1.35 51 57
aim-100-1_6-no-4 100 | 160 n.a. n.a. n.a. | n.a. 0.61 0.35 0.96 43 48
aim-100-2_0-no-1 100 | 200 52.19 | 19.77 | 409.50 | 5.78 0.03 0.01 0.04 18 19
aim-100-2_0-no-2 100 | 200 1463 | 11.00 | 258.58 | 0.57 0.05 0.04 0.09 37 40
aim-100-2_0-no-3 100 | 200 56.21 6.53 | 201.15 | 2.95 0.04 0.01 0.05 25 27
aim-100-2_0-no-4 100 | 200 0.05| 11.66 | 392.15 | 4.80 0.04 0.01 0.05 26 32

SERIES 132 (SAT)

Problem n m ACS 1.0

i132al 459 9212 0.02
1132b1 228 1374 0.00
1132b2 261 2558 0.03
1132b3 348 5734 0.03
1132b4 381 6918 1.53
i132cl 225 1280 0.00
1132¢2 249 2182 0.00
1132¢3 279 3272 2.84
1132¢c4 759 20862 5.07
1132d1 332 2730 0.01
1132d2 404 5153 0.76
1132d3 824 19478 7.49
1i132¢l 222 1186 0.00
1132¢e2 267 2746 0.01
11323 330 5020 0.08
132¢4 387 7106 0.02
132e5 522 11636 1.03

CONCLUSIONS

e Techniques to perform a fast complete enumeration are

widely proposed in literature (e.g. sophisticated data

structure, ...).

e Here a technique is presented to reduce the set that

enumeration works on.

 In practical scenarios it is useful to know which part of

the instance cause the unsolvability.

Results are extremely encouraging. We believe better
performances can be obtained by using both of the

above techniques.

