
Solving Solving Solving Solving
Propositional Satisfiability Propositional Satisfiability Propositional Satisfiability Propositional Satisfiability

by Identification ofby Identification ofby Identification ofby Identification of
Hard Hard Hard Hard SubformulaeSubformulaeSubformulaeSubformulae

R. Bruni and A. Sassano
University of Roma “La Sapienza”

ISMP 2000
Atlanta, GA, August 2000

1. Introduction and notation

2. Hard clauses and Minimally unsatisfiable

subformulae (MUS)

3. Branching tree structure

4. The algorithm : Adaptive core search (ACS)

5. Computational results and conclusions

SummarySummarySummarySummary

IntroductionIntroductionIntroductionIntroduction

Every propositional logic formula can be expressed in

Conjunctive Normal Form

(αi1
∨…∨ αj1

∨ ¬αj1+1∨…∨ ¬αn1
) ∧...∧ (αim

∨…∨ αjm
∨ ¬αjm+1∨…∨ ¬αnm

)

SatisfiabilitySatisfiabilitySatisfiabilitySatisfiability Problem (NPProblem (NPProblem (NPProblem (NP----complete)complete)complete)complete)

Is there a truth assignment for the logic variables

(and if yes which is)

such as the whole formula is satisfied (= is True) ?

Ground set of the literals (posited or negated proposition)

NotationNotationNotationNotation

A = { ai : ai = αi for i = 1,…, n; ¬αi-n for i = n +1,…, 2n }

Define ¬ai = a i + n , and ¬ai + n = a i

Cj = { ai : i ∈ Ij ⊆ I ≡ {1, …, 2n} }Clause
(set of literals)

Instance
(collection of sets of literals)

FFFF = { Cj : j = 1, …, m }

Truth AssignmentTruth AssignmentTruth AssignmentTruth Assignment

Truth assignment
(set of literals)

S = { ai : ai ∈ S ⇒ ¬ai ∉ S }

Partial if |S| < n, complete if |S| = n

C(S) = { ai : ai ∉ S ∧ ¬ai ∉ S }Completion
(set of literals)

S satisfies FFFF ∀∀∀∀ Cj ∈ FFFF , S ∩ Cj ≠ φ

FFFF is unsatisfiable ∀∀∀∀ S, ∃∃∃∃ Cj ∈ FFFF : S ∩ Cj = φ

ApproachesApproachesApproachesApproaches

• Complete methods

Given enough time, are guaranteed to find the solution.

Based on branching (DLL) and/or resolution (DP)

• Heuristics

Are faster, but not guaranteed to find the solution.

Not very useful for unsatisfiable instances.

Generic branching procedureGeneric branching procedureGeneric branching procedureGeneric branching procedure

At every node,

1. Choose variable to branch on (branching rule)

2. Fix the variable (fast)

3. Simplify the formula
(unit propagation: unit resolution and unit subsumption)

Time depends on :

• number of nodes of the search tree

• time needed at every single node

(needs time)

(needs time)

Possible solutionsPossible solutionsPossible solutionsPossible solutions

• Reduce size of the branching tree,

e.g. by improving effectiveness of the branching rule

or by cutting some subtrees.

• Reduce time needed for the selection of the branching

variable by simplifying its calculation.

• Reduce time needed for unit propagation by delaying

some operations.

Given an instance FFFF, some clauses are more difficult to
satisfy, that is are more constraining in the context of

that particular instance

hard clauseshard clauseshard clauseshard clauses

Example of short clauses containing the same variables
(hard)

Example of long clauses containing different variables
(easy)

C1 = { a1 a2 } C2 = { a1 ¬a2 } C3 = {¬a1 a2 }

C1 = { a1 a2 ¬a3} C2 = { a4 ¬a5 a6} C3 = {¬a7 a8 a9}

A priori :

observations made before, length lj, ….

Individuation of hard clausesIndividuation of hard clausesIndividuation of hard clausesIndividuation of hard clauses

ϕ(Cj) = (vj + pfj)/ lj

In itinere :

(solving the problem with a branching procedure)

of visits vj of a clause, # of failure fj due to a clause

We evaluate clause hardness using

Calculation of ϕ requires extremely small overhead and
keeps improving throughout the computation.

• If we front hard clauses deep in the branching tree

(current partial assignment S almost complete, C(S) small)

usually we need to backtrack far.

• If we front hard clauses at the beginning of the branching

tree (S small, C(S) wide) we solve them, or we discover

unsatisfiability earlier.

Hard clauses must be fronted first:

We choose Cj = argmax ϕ(Cj) = (vj + pfj)/ lj

Branching rule part 1:Branching rule part 1:Branching rule part 1:Branching rule part 1:
clause selectionclause selectionclause selectionclause selection

Like most of complete methods, we use a branching
procedure.

No binary branching, but clause-based branching.

Branching schemeBranching schemeBranching schemeBranching scheme

aa ∨ ab ∨ ac ∨ ad

clause

aa = F
ab = T

aa = F
aa = F
ac = T

aa = F
aa = F
aa = F
ad = T

ai

ai = F

variable

ai = T aa = T

• Within the clause, we need to choose the variable :

Two sided Jeroslow Wang (Hooker)

Choose ai = argmax Σ 2-|Cj| + Σ 2-|Cj|

Cj ⊂ ai Cj ⊂ ¬ai

approximated as follows:

let J(ai) = 1 + # binary clauses containing ai

choose ai = argmax J(ai) J(¬ai)

Branching rule part 2:Branching rule part 2:Branching rule part 2:Branching rule part 2:
variable selectionvariable selectionvariable selectionvariable selection

Given an unsatisfiable instance FFFF, we can have
collections of clauses GGGG ⊂ FFFF which are still unsatisfiable

Minimally Minimally Minimally Minimally Unsatisfiable Unsatisfiable Unsatisfiable Unsatisfiable
SubformulaeSubformulaeSubformulaeSubformulae

GGGG ⊆⊆⊆⊆ FFFF is minimally unsatisfiable (MUS) iff

∀∀∀∀ S, ∃∃∃∃ Cj ∈ GGGG : S ∩ Cj = φ (is unsatisfiable)

∀∀∀∀HHHH ⊂GGGG , ∃∃∃∃ S, ∀∀∀∀ Cj ∈HHHH : S ∩ Cj ≠ φ
(every subset
is satisfiable)

FFFF is unsatisfiable ⇔ FFFF contains a MUS

By collecting enough hard clauses (using ϕ) from

an unsatisfiable instance, we can identify an

unsatisfiable set of clauses.

If we stop collecting as soon as the set is

unsatisfiable, we cannot say that it’s minimal.

We have a quick approximation of a minimally

unsatisfiable subformula.

MUS approximationMUS approximationMUS approximationMUS approximation

The algorithm The algorithm The algorithm The algorithm ---- DefinitionsDefinitionsDefinitionsDefinitions

Given an instance FFFF and values for ϕ, define:

ϕϕϕϕ(FFFF) =CCCC = {Cj : Cj ∈FFFF, ϕ(Cj) ≥≥≥≥ ϕ(Ck) ∀∀∀∀ Ck∈FFFF, |CCCC |<|FFFF |}
(selection of the hardest clauses in the clause-set)

and OOOO = FFFF \ CCCC

Given a partial solution Sk and a set of clauses OOOOk , define:

NNNNk = { Cj ∈OOOOk : C(Sk) ∩ Cj = φ } (falsified clauses)

SSSSk = { Cj ∈OOOOk : Sk ∩ Cj ≠ φ } (satisfied clauses)

Adaptive core search Adaptive core search Adaptive core search Adaptive core search ---- IIII

Base step: select an initial collection of the hardest

clauses CCCC1 = ϕϕϕϕ(FFFF). CCCC1 is the first core , i.e. candidate to

be a MUS. Remaining clauses form OOOO1

Preprocessing: perform p branching iterations on FFFF to

give initial values to ϕ

Iteration : apply h branching iterations to CCCCk ignoring OOOOk

One of the following:

• CCCCk is unsatisfiable ⇒ FFFF is unsatisfiable, then STOP.

• No result after h iteration ⇒ contraction (allowed only

t times to ensure termination): put CCCCk+1 = ϕϕϕϕ(CCCCk), k = k+1,
goto Iteration.

• CCCCk is satisfied by Sk ⇒ If CCCCk = FFFF , FFFF is satisfiable, STOP.
Otherwise test Sk on OOOOk . One of the following: [next]

Adaptive core search Adaptive core search Adaptive core search Adaptive core search ---- II II II II

Test Sk on OOOOk . One of the following :

• SSSSk =OOOOk , NNNNk = φφφφ ⇒ FFFF is satisfied, then STOP

• NNNNk ≠≠≠≠ φφφφ ⇒ expansion: add NNNNk to the core, obtain

CCCCk+1 = CCCCk ∪ NNNNk (note CCCCk+1 ⊆FFFF), k = k+1, goto Iteration.

• NNNNk = φφφφ , SSSSk ⊂⊂⊂⊂ OOOOk ⇒ extension: keep Sk ,

put CCCCk+1 = CCCCk ∪ ϕϕϕϕ(OOOOk), k = k+1, goto Iteration.

Adaptive core search Adaptive core search Adaptive core search Adaptive core search ---- IIIIIIIIIIII

FeaturesFeaturesFeaturesFeatures
• Complete method: In the worst case performs a complete
branching.

• Factors of size reduction for the branching tree:

1) To front hard clauses first.

2) To prove unsatisfiability exploring only the core subtree.

• Factors of time reduction for branching variable selection:

1) Easy to compute branching rule.

2) To choose only within the current core.

• Reduces time needed for unit propagation by delaying
it for clauses out of the core.

Usefulness of MUS Usefulness of MUS Usefulness of MUS Usefulness of MUS
approximationapproximationapproximationapproximation

Many sat instances encode real world problems.

If a formula is unsatisfiable, it is useful to know which

part of the formula cause this unsolvability.

That is the part respectively to remove or to keep

when we respectively want such formula to be

satisfiable or unsatisfiable.

Series PAR16 (sat)Series PAR16 (sat)Series PAR16 (sat)Series PAR16 (sat)

4.92224.8433581015par16-5

196.3372.291360341par16-5-c

133.075.101292324par16-4-c

1.5170.8233241015par16-4

78.918.191332334par16-3-c

40.81103.9233441015par16-3

128.15100.731392349par16-2-c

49.2252.3633741015par16-2

2.6211.361264317par16-1-c

24.1610.1033101015par16-1

SATO 3.2ACS 1.0mnProblem

Series AIMSeries AIMSeries AIMSeries AIM----111100 00 00 00 unsatunsatunsatunsat

32260.050.010.044.80392.1511.660.05200100aim-100-2_0-no-4

27250.050.010.042.95201.156.5356.21200100aim-100-2_0-no-3

40370.090.040.050.57258.5811.0014.63200100aim-100-2_0-no-2

19180.040.010.035.78409.5019.7752.19200100aim-100-2_0-no-1

48430.960.350.61n.a.n.a.n.a.n.a.160100aim-100-1_6-no-4

57511.350.730.62n.a.n.a.n.a.n.a.160100aim-100-1_6-no-3

54460.930.390.54n.a.n.a.n.a.n.a.160100aim-100-1_6-no-2

48430.200.030.17n.a.n.a.n.a.n.a.160100aim-100-1_6-no-1

m
core

n
core

ACS
tot

ACS
sol

ACS
sel

BRRTabuS2clC-satmnProblem

Series II32 (sat)Series II32 (sat)Series II32 (sat)Series II32 (sat)
ACS 1.0mnProblem

1.0311636522ii32e5

0.027106387ii32e4

0.085020330ii32e3

0.012746267ii32e2

0.001186222ii32e1

7.4919478824ii32d3

0.765153404ii32d2

0.012730332ii32d1

5.0720862759ii32c4

2.843272279ii32c3

0.002182249ii32c2

0.001280225ii32c1

1.536918381ii32b4

0.035734348ii32b3

0.032558261ii32b2

0.001374228ii32b1

0.029212459ii32a1

• Techniques to perform a fast complete enumeration are
widely proposed in literature (e.g. sophisticated data
structure, ...).

• Here a technique is presented to reduce the set that

enumeration works on.

• In practical scenarios it is useful to know which part of

the instance cause the unsolvability.

Results are extremely encouraging. We believe better
performances can be obtained by using both of the

above techniques.

ConclusionsConclusionsConclusionsConclusions

