
Orthogonalization of a Boolean Function

Renato Bruniz and Peter L. Hammerx

December 20, 2000

Abstract

Orthogonalization is the process of transforming a conjunctive nor-
mal form of a Boolean function to orthogonal conjunctive normal form,
i.e. to a normal form in which any two clauses contain a pair of com-
plementary literals. Orthogonal disjunctive normal form is de¯ned
similarly. The problem is of great relevance in several application, e.g.
the reliability theory and the propositional satis¯ability problem. We
propose a procedure for transforming an arbitrary CNF or DNF to an
orthogonal one, and present the results of computational experiments
carried out on randomly generated Boolean formulae.

Keywords: Boolean formulae, NP-completeness, Satis¯ability.

1 Introduction

Let B = f0; 1g, or, equivalently, fTrue; Falseg. A Boolean function is a
function f(x1; x2; :::; xn) from the Boolean hypercube Bn to the Boolean set
B. A Boolean function can be represented in several ways. A widely used
one is by means of a Boolean formula F in Conjunctive (CNF) or Disjunctive
(DNF) normal form.

A Boolean CNF formula is the logic conjunction (^) of m clauses, which
are logic disjunction (_) of literals, which can be either posited proposition
(xi) or negated (:xi). The general structure is therefore the following.

(xi1 _ :::_xj1 _:xj1+1_ :::_:xn1)^ : : :^(xim _ :::_xjm_:xjm+1_ :::_:xnm)

zDipartimento di Informatica e Sistemistica, Universitµa di Roma \La Sapienza", via
Buonarroti 12 - 00185 Roma, Italy. E-mail: bruni@dis.uniroma1.it

xRUTCOR, Rutgers University, 640 Bartholomew Road, Piscataway, NJ, 08854-8003
USA. E-mail: hammer@rutcor.rutgers.edu

1

Conversely, a Boolean DNF formula is the logic disjunction (_) of m
terms, which are logic conjunction (^) of literals. The general structure is:

(xi1 ^ ::: ^ xj1 ^ :xk1 ^ ::: ^ :xn1) _ : : : _ (xim ^ ::: ^ xjm ^ :xkm ^ ::: ^ :xnm)

In order to handle both CNF and DNF, in section 2 we introduce a
general notation for normal forms. The orthogonal form results of great
relevance in solving several hard problems, e.g. in the reliability theory.
A basic procedure to reach the orthogonal form is described in section 4.
During the above process, the size of the formula tends to exponentially
increase. We therefore present, in section 5, some improvements of the basic
procedure, with the aim of minimizing the size of the formula both in the
¯nal result and during the computation. The proposed procedure is tested
on a set of arti¯cially generated Boolean formulae. Results are in section 6.

2 Notation

We will develop a procedure that applies both to CNF and DNF. We there-
fore need a notation which can represent both forms.

Clauses and terms can be viewed as sets of literals. We will call both of
them monomials mi. A CNF or DNF formula F is therefore a collection of
sets of literals, hence a collection of monomials. We have an operator applied
between monomial, that will be here indicated with the symbol ? (external
operator), and an operator applied between literals of the same monomial,
that will be here indicated with the symbol > (internal operator). Both
CNF and DNF will therefore be represented as follows.

(xi1>:::>xj1>:xk1>:::>:xn1)? : : : ?(xim>:::>xjm>:xkm>:::>:xnm)

Where the following conventions hold:

? means ^ if we are considering CNF, and _ if we are considering DNF
> means _ if we are considering CNF, and ^ if we are considering DNF

Given a monomial mi, we have a set Ti µ Bn where mi is 1 (True), and
a set Fi µ Bn (the complement of Ti with respect to Bn) where mi is 0
(False). When solving several NP problems on Boolean formulae, e.g. the
Satis¯ability problem, what we actually want to know is some information
about the set of True points T = fX 2 Bn : f(X) = 1g or, equivalently,
about the set of False points F = fX 2 Bn : f(X) = 1g for the whole

2

function. Due to normal form, we already have some relations between the
Ti and the global T , and between the Fi and F .

Proposition 2.1. In the case of CNF (a conjunction), it results:

T =
n\

i=1

Ti

whereas, in the case of DNF (a disjunction), it results:

T =
n[

i=1

Ti

Of course, specular results hold for the False set F :

Proposition 2.2. In the case of CNF (a conjunction) it results:

F =
n[

i=1

Fi

whereas, in the case of DNF (a disjunction), it results:

F =
n\

i=1

Fi

In the general case, such sets are not disjoint, but can overlap each
other: it can be Ti \ Tj 6= Á or Fi \ Fj 6= Á for some i; j 2 f1 : : : ng. For
the above reason, to ¯nd respectively the cardinality jT j and jF j, we need
to identify, at least in an implicit way, respectively all the Ti and all the Fi.
The cardinality jT j or jF j gives us, for example, the solution of the feasibility
version of the propositional Satis¯ability problem, which is well known NP-
complete. This theoretically means, moreover, that every problem in NP
can be polynomially reduced to the problem of ¯nding this cardinality.

Since the number of points in Ti and Fi is, in the worst case, exponential
in the length of the monomials mi, the approach of identifying all the Ti and
all the Fi has exponential worst-case time complexity. This is not surprising.
On the other hand, if all the Ti (resp. all the Fi) would be pairwise disjoint
sets, in order to ¯nd the cardinality jT j (resp. jF j) it would su±ce to know

3

the cardinality of the Ti (resp. Fi), and sum them. Such cardinalities are,
in fact, trivially computable.

In order to complete notation uni¯cation, let us consider again the Sat-
is¯ability problem. In the case of CNF formulae, it consists in ¯nding if,
in the Boolean hypercube Bn, there is at least one true point for all the
clauses. Conversely, for DNF formulae, it consists in ¯nding if there is at
least one false point for all the terms. Altogether, false points are bad for
CNF, while true points are bad for DNF.

We will call the set of such bad points U , with the convention that U = F
for CNF, and U = T for DNF. Moreover, every monomial mi has his set
of bad points Ui of the Boolean hypercube Bn, with the convention that
Ui = Fi for CNF, and Ui = Ti for DNF. (More intuitively, every mi forbids
a set of points: in the case of CNF, every mi forbids its Fi, while, in the
case of DNF, every term mi forbids its Ti).

Conversely, we will call V the set of good points, with the convention
that V = T for CNF, and V = F for DNF. Every monomial mi has therefore
his set of good points Vi, with the convention that Vi = Ti for CNF, and
Vi = Fi for DNF.

Form internal op. external op. bad pt. good pt.

Uni¯ed > ? U V

CNF _ ^ F T

DNF ^ _ T F

Table 1: Convention used to unify notation for CNF and DNF.

Proposition 2.3. The cardinality of the above Ui and Vi are easily
computable. Let n be the number of variables, and l(mi) be the number
of distinct literals appearing in monomial mi, we have jUij = 2n¡l(mi), and
jVij = 2n ¡ jUij = 2n ¡ 2n¡l(mi).

We will indicate with (Á) the empty monomial, i.e. the monomial mÁ

which is an empty set of literals. According to proposition 2.3, UÁ = Bn,
(mÁ has only bad points). We will instead indicate with Á the empty formula,
i.e. the formula FÁ which is an empty set of monomials. By de¯nition, FÁ
will always evaluate to (V).

4

3 The Orthogonal form

We declare a formula to be in orthogonal form when, for every pair of mono-
mials mi and mj, at least one boolean variable xk appears direct in one (for
instance mi) and negated in the other (for instance mj). Any two monomials
have therefore the following structure:

mi = (: : : >xk> : : :); mj = (: : :>:xk> : : :) 8 i; j 2 f1 : : : ng

We will say that the above terms are orthogonal, or clash [4] on xk, or
resolve [9] on xk, or also hit [3] on xk. This holds both for CNF and DNF.

Theorem 3.1. For a Boolean formula in orthogonal form, the sets Ui
are pairwise disjoint.

This particularizes for CNF as:

Fi \ Fj = Á 8 i; j 2 f1 : : :mg

(Ti \ Tj can be 6= Á for some i; j 2 f1 : : :mg)

and for DNF as:

Ti \ Tj = Á 8 i; j 2 f1 : : :mg

(Fi \ Fj can be 6= Á for some i; j 2 f1 : : : mg)

Proof: Orthogonal form) Ui \ Uj = Á 8 i; j 2 f1 : : :mg.
Ui corresponding to monomial mi is a set of points in Bn de¯ned by

a pattern obtainable from the mi itself. For example, Ui corresponding to
the CNF clause (x1 _ :x3) on B4 is de¯ned by the pattern (0, *, 1, *
), representing the 4 points (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 1, 0), (0, 1,
1, 1). If two monomials mi and mj clash on at least one variable xc, the
corresponding Ui and Uj are de¯ned by two patterns which respectively have
0 and 1 in at least position c, hence they de¯ne two sets Ui and Uj which
cannot have any common point.

Proof: Orthogonal form (Ui \ Uj = Á 8 i; j 2 f1 : : :mg.
Let us consider two Boolean point x0 = (x01; x02; :::; x0n) 2 Ui and x00 =

(x001; x002; :::; x00n) 2 Uj , with Ui \ Uj = Á. x0 and x00 must be di®erent (and
binary), hence at least one component is respectively 0 and 1. Let us call

5

that component xc Monomials mi and mj corresponding to Ui and Uj must
therefore both contain the variable xc, and clash on it.

Example: Suppose we are interested in solving the Satis¯ability prob-
lem for the following CNF. To solve our problem we need to check whether
the global F covers the whole B5. In the general case, we can only proceed
by identifying F as the intersection of the Fi.

It is straightforward to ¯nd the corresponding Fi (and their cardinality).

(x1 _ :x2 _ x3 _ x4 _ x5) ! F1 = f0; 1; 0; 0; 0g jF1j = 1
(:x1 _ :x2 _ x3 _ x4 _ x5) ! F2 = f1; 1; 0; 0; 0g jF2j = 1

(x2 _ x3 _ x4 _ x5) ! F3 = f¤; 0; 0; 0; 0g jF3j = 2
(x3 _ :x4 _ x5) ! F4 = f¤; ¤; 0; 1; 0g jF4j = 4
(x3 _ x4 _ :x5) ! F5 = f¤; ¤; 0; 0; 1g jF5j = 4
(x3 _ :x4 _ :x5) ! F6 = f¤; ¤; 0; 1; 1g jF6j = 4
(:x3) ! F7 = f¤; ¤; 1; ¤; ¤g jF7j = 16

No more in a straightforward way, by identifying all the points of the
intersection of the Fi , we can observe that F actually covers B5 (see picture
1 below). Hence, given CNF is unsatis¯able.

11111

01111 10111 11011 11101 11110

00111 01011 01101 01110 10011 10101 10110 11001 11010 11100

11000 10100 10010 10001 01100 01010 01001 00110 00101 00011

10000 01000 00100 00010 00001

00000
F1

F2

F4

F3

F7

F5

F6

Figure 1: Individuation of the False sets Fi on the Boolean hypercube B5

6

The number of points in this intersection is, unfortunately, exponential
(in the worst case) in the size of the formula. This gives worst case expo-
nential time complexity to such procedure.

On the other hand, we could observe that the CNF is in orthogonal form,
hence we have pairwise disjoint Ui. In the case of CNF, this means pairwise
disjoint Fi. On this basis, we easily have jF j = jF1j + jF2j + jF3j + jF4j +
jF5j + jF6j + jF7j = 32. Since F covers B5 i® jF j = 25 = 32, this is the case,
and given CNF is unsatis¯able. This is obtained just by counting, as shown
in [6].

4 Basic Orthogonalization operation

Given an arbitrary Boolean formula F in normal form, representing the
Boolean function f(x1; x2; :::; xn), our aim is to put it in the orthogonal
form O while still representing the same f(x1; x2; :::; xn). This can always
be done as follows.

We ¯rst need to de¯ne the multiplication (¦) of two monomials mi and
mj . The result of such multiplication operation is a new monomial contain-
ing all the literals of mi and of mj (but without repeated ones) when the
two monomials are not orthogonal, and Á when they are orthogonal. Note
that Á means an empty formula, i.e. a formula for which there are only good
points, and not a formula made by an empty monomial, i.e. a formula for
which there are only bad points. Formally:

mi¦mj = (xih>:::>xik)¦(xjh>:::>xjk) =

(
Á if mi and mj are orthogonal
(xih>xjh>:::>xik>xjk) else

Proposition 4.1. Consider any two monomials mi and mj, with their
corresponding sets Ui, Vi, Uj and Vj. Let mk = mi ¦ mj be their product.
The set of the bad points for mk is Uk = Ui\Uj , while the set of good points
is Vk = Vi [Vj

We can use such multiplication operation to make any two monomials
orthogonal each other. In fact:

Theorem 4.1. Consider an arbitrary Boolean formula F in normal
form representing the Boolean function f(x1; x2; :::; xn). If we multiply an

7

arbitrary monomial mi 2 F by the negation :mj of another arbitrary mono-
mial mj 2 F , we obtain a new Boolean formula F 0 still representing the same
f(x1; x2; :::; xn).

Proof: We need to prove that sets U and V are the same for F and F 0.
As we can observe in the following ¯gure 2, monomial mj determines in Bn

a partition in Uj and Vj . Its negation :mj determines a partition U:j = Vj
and V:j = Uj.

Uj = V¬j

Vi

V

Vj

Figure 2: Individuation of the False sets Fi on the Boolean hypercube B5

Now we multiply another monomial mi by :mj, obtaining the new mono-
mial m0

i, add m0
i and remove mi form the formula. The set V 0

i corresponding
to this new monomial, by proposition 4.1, is Vi [V:j , which is ¶ Vi. So the
set of good points for the formula V , which is the intersection of all the
Vi, cannot decrease. It could increase in the area of V:j , but such area is
forbidden by the fact that V µ Vj. Hence, V is the same for F and F 0, and
therefore U also remains the same. The thesis follows.

Given an arbitrary monomial mi = (xh>xh+1>:::>xk), its negation (by
De Morgan's laws) is easy computable as the following set of monomials con-
nected by our external operator. (:xh)?(:xh+1)?:::?(:xk) = :(mi). But
the expression for :mi is not unique. We could, in fact, consider a negation
which is in orthogonal form, namely the orthogonal negation :o(mi) of mi.
:o(mi) is made of k monomials omi

1 ?omi
2 ? : : :?omi

k corresponding to the
negation of the ¯rst literal, the ¯rst and the negation of the second, and so

8

on, as follows.

(:xh)?(xh>:xh+1)?:::?(xh>xh+1>:::>:xk)

Example The orthogonal negation of

m = (x1>x2>:x3)

is
:o(m) = om1 ?om2 ?om3 = (:x1)?(x1>:x2)?(xi>x2>x3)

Basing on the above results, we can develop the following procedure.

Basic Orthogonalization Operation: Without loss of generality, con-
sider any two monomials m1 and m2 not already orthogonal.

m1 = (xi>:::>xj>xj+1>:::>xh) m2 = (xj+1>:::>xh>xh+1>:::>xk)

m1 and m2 have, in general, a common set of literals c1;2 = (xj+1>:::>xh)
and two sets of literals d1 and d2 which are not in common: d1 = (xi>:::>xj)
for m1, and d2 = (xh+1>:::>xk) for m2. Note that, since they are not
orthogonal, they cannot contain complementary literals: if xi 2 m1) :xi 62
m2.

Choose one of them, say d1, and consider its orthogonal negation :o(d1) =
od11 ?od12 ? : : :?od1j .

The (sub)formula m1?m2, is equivalent to the following (sub)formula,
in the sense that they both represent the same Boolean function.

m1 ? od11 ¦ m2 ? od12 ¦ m2 ? : : : ? od1j ¦ m2

Note that the obtained (sub)formula is in orthogonal form. The number
of monomials is 1 plus the cardinality of the set of non-common literals (d1)
we used. In order to obtain a smaller number of monomials, we always
choose the set of non-common literals of minimum cardinality.

Example Given a formula made up of the two monomials m1 and m2.

m1 = (x1>:x2>x5)?(:x2>x3>x4) = m2

9

the sets of non-common literals are

d1 = (x1>x5) and d2 = (x3>x4)

Their cardinality is the same. We choose d1, and its orthogonal negation is
the following.

(:x1)?(x1>:x5)

By performing the orthogonalization operation, the above formula is equiv-
alent to

(x1>:x2>x5)?((:x1) ¦ (:x2>x3>x4))?((x1>:x5) ¦ (:x2>x3>x4))

which is the following orthogonal formula.

(x1>:x2>x5)?(:x1:x2>x3>x4)?(x1>:x2>x3>x4>:x5)

The above is a general procedure to orthogonalize any two monomials.
Given any formula, by iterating this orthogonalization operation to exhaus-
tion, until every pair of monomials are orthogonal, we can always reach the
orthogonal form.

5 Improvements

Unfortunately, by repeatedly applying above operation to exhaustion, the
size of the formula tends to exponentially increase. To reduce the size of the
formula, we will make use of the following observation.

5.1 Recognition of Internally Orthogonal Sets of Terms

A set of monomials S is internally orthogonal when each monomial mi 2 S
of them is orthogonal to every mj 2 S, for all mi;mj 2 S. Given a generic
formula, some sets of monomials may already be internally orthogonal.

We can partition the set of monomials in sets Si which are already inter-
nally orthogonal S1; :::; Sp. The original formula can therefore be represented
as follows.

S1?:::?Sp
Given a set of monomials Si, we can consider its orthogonal negation

:o(Si), which is a set of new monomials oSij corresponding to the negation

10

of Si in orthogonal form. This is obtainable in a straightforward way from
the de¯nition of orthogonal negation of a monomial.

:o(Si) = oSi1 ?oSi2 ? : : :?oSik

This lead us to the extended orthogonalization operation: We de¯ne the
multiplication (¦) of two sets of monomials S1 and S2 as a new set of all the
monomials obtained by calculating mi ¦ mj for all mi 2 S1 and all mj 2 S2.
(The multiplication mi ¦ mj is de¯ned above.)

Without loss of generality, given any two internally orthogonal sets, the
multiplication (¦) of

S1 = (mi?mi+1? : : :?mj) S2 = (mh?mh+1? : : : ?mk)

The (sub)formula S1?S2 is equivalent, in the sense speci¯ed above, to the
following (sub)formula.

S1?:o(S1) ¦ S2
The above is a general procedure to orthogonalize any two sets of inter-

nally orthogonal monomials. Given any formula, by iterating this orthogo-
nalization operation to exhaustion, we can always reach the orthogonal form.
We can moreover take advantage of the two following simplifying operations.

5.2 Absorption

One monomial is implied by another one if it contains another one. Given
a formula containing the following two monomials,

m1 = (xi> : : : xj>xj+1> : : : >xh>xh+1> : : : >xk) m2 = (xj+1> : : :>xh)

the ¯rst can be deleted obtaining a new formula which is equivalent, in the
sense speci¯ed above, to the original one. This operation is particularly
useful in reducing the number of monomials in the formula.

5.3 Synthesis Resolution

This operation is a special case of the general operation called resolution
[9, 1] in the case of CNF, and consensus [8] in the case of DNF. Given a
formula containing two monomials which are identical except for one literal
xi appearing positive in one monomial and negative in the other, hence with
the following structure:

m1 = (xi>xh> : : :>xk) m2 = (:xi>xh> : : :>xk)

11

we can add to the formula their resolvent [9] obtaining a new formula which
is equivalent, in the sense speci¯ed above, to the original one.

t3 = (xh> : : : >xk)

In particular, in this case, such resolvent absorbs both its parents. We can
therefore remove from the formula both its parents, obtaining a new formula
which is equivalent, in the sense speci¯ed above, to the original one. This
operation helps in reducing the number of monomials in the formula.

6 Complete Orthogonalization Operation

So far, we have a set of operation that can be performed on the original
formula in order to put it in orthogonal form. Being our aim not to increase
too much the size of the formula, we de¯ne the quality Q of an orthogonal-
ization step as the number of clauses orthogonalized divided by the number
of new clauses created. A simple way to The algorithm is therefore

1. Find a partition in already orthogonal sets of clauses S1; :::; Sp
2. Perform all extended orthogonalization steps of quality Q ¸ Qlimit1

3. Perform all basic orthogonalization steps of quality Q ¸ Qlimit2

4. Perform all possible synthesis resolution.

5. Perform all possible absorption

6. Repeat until all orthogonal

7 Testing

The algorithm was tested on a set of CNF formulae representing satis¯ability
instances. They are obtained from the SATLIB web site of the Darmstadt
University of Technology. Such instances are 3-sat arti¯cially generated
problem.

12

Problem n m literals sol time morthogonal

uf20-01 20 91 273 Y 6.52 130

uf20-02 20 91 273 Y 5.00 100

uf20-03 20 91 273 Y 5.32 132

uf20-04 20 91 273 Y 3.42 134

uf20-05 20 91 273 Y 0.32 31

uf20-06 20 91 273 Y 1.80 40

uf20-07 20 91 273 Y 1.54 85

uf20-08 20 91 273 Y 5.55 136

uf20-09 20 91 273 Y 15.47 144

uf20-010 20 91 273 Y 5.84 128

uf20-011 20 91 273 Y 1.07 130

uf20-012 20 91 273 Y 8.34 190

uf20-013 20 91 273 Y 2.28 65

uf20-014 20 91 273 Y 7.07 167

uf20-015 20 91 273 Y 5.67 120

uf20-016 20 91 273 Y 4.77 102

uf20-017 20 91 273 Y 4.22 109

uf20-018 20 91 273 Y 8.06 105

uf20-019 20 91 273 Y 3.56 70

uf20-020 20 91 273 Y 9.17 98

uf20-021 20 91 273 Y 1.92 73

uf20-022 20 91 273 Y 2.48 79

uf20-023 20 91 273 Y 11.53 211

uf20-024 20 91 273 Y 5.28 171

uf20-025 20 91 273 Y 4.39 82

uf20-026 20 91 273 Y 3.50 59

uf20-027 20 91 273 Y 2.49 63

uf20-028 20 91 273 Y 3.38 93

uf20-029 20 91 273 Y 2.24 66

uf20-030 20 91 273 Y 1.96 90

From the above table we can observe that the number of monomials
in the orthogonalized formula generally increase, although in some cases
this does not hold. Moreover, intermediate formulae contains many more
monomials. This turn out to be a general rule in performing such kind of
operation. However, there are practical applications where the orthogonal
form is of great relevance, and the advantages completely surmount the
disadvantage of such size increase.

An example comes from the Reliability theory, in the case we need to
compute the fault probability of a system which is made of a connection
(serial andnor parallel) of elements whose fault probabilities are known.

13

8 Conclusions

The orthogonal form of a Boolean formula has remarkable properties. Sev-
eral hard problems become easy when in orthogonal form. Every logic
formula can be transformed in orthogonal form. A general procedure for
orthogonalization is developed. The problem is indeed computationally de-
manding. As predictable, in the initial phase of the procedure, the size of
the formula tends to exponentially increase. On the other hand, the size of
the formula decreases again when approaching to the ¯nal phase. In spite
of this size growth, orthogonalization appears to be the preferable way to
solve some practical problems, for instance in the ¯eld of Reliability theory.
Due to relatively novelty of the topic, the presented algorithm can probably
still noteworthy improve.

References

[1] A. Blake. Canonical Expressions in Boolean Algebra. Ph.D. thesis,
University of Chicago, 1937.

[2] E. Boros, Y. Crama, P. L. Hammer, and M. Saks. A complexity index
for Satis¯ability Problems. SIAM Journal on Computing, 23:45{49,
1994.

[3] H. Kleine BÄuning and T. Lettmann. Aussagenlogik: Deduktion und
Algorithmen. B.G. Teubner, Stuttgart, 1993. Reprinted in English.

[4] V. Chvatal. Resolution Search. Discrete Applied Mathematics, 73:81{
99, 1997.

[5] P.L. Hammer and S. Rudeanu. Boolean Methods in Operations Research
and Related Areas. Springer-Verlag, New York, 1968.

[6] K. Iwama. CNF Satis¯ability Test by Counting and Polynomial Average
Time. SIAM J. Computing 18:385{391, 1989.

[7] D.W. Loveland. Automated Theorem Proving: a Logical Basis. North
Holland, 1978.

[8] W.V. Quine. A way to simplify truth fubctions. American Mathematical
Monthly, 62:627{631, 1955.

14

[9] J.A. Robinson. A machine-oriented logic based on the resolution prin-
ciple. Journal of the ACM, 23{41, 1965.

15

