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Preface

Optimization models with binary variables and a linear structure possess
a high expressive power, and are expecially suitable to represent logic and
decision problems allowing the representation of options in the cases where
indivisibility is required or where there is not a continuum of solutions. Many
real problems have in fact such characteristics, being, at the very essential
level, a choice.

Binary problems are hard. The finite number of alternatives is in fact
not a simplification, with respect to the case of a continuum of possibilities,
because of the impressive number of such alternatives in real world problems.
However, recent years have witnessed a huge amount of research in this field,
and consequent decisive algorithmic improvements. We are now closer than
ever before to realizing the ancient vision of using logic for reducing delicate
and complex choice problems to computations.

This work is organized as follows.

Chapter 1 constitutes a brief overview of logic. Some introductory ele-
ments of propositional logic, Boolean functions, propositional satisfiability
and constraint satisfaction problems are given.

Chapter 2 is a more detailed review of algorithms for satisfiability prob-
lems, focused in particular on branching search frameworks. A unified per-
spective of various algorithms is attempted.

Chapter 3 presents a new search framework for propositional satisfia-
bility, which makes use of an adaptive strategy. The concept of minimal
unsatisfiable subformula is discussed, and a technique for its selection is
developed. Computational results and comparisons are provided.

Chapter 4 treats further logic problems, introducing the concept of or-
thogonal Boolean formulae, and presenting a procedure to transform any
Boolean formula into an orthogonal Boolean formula. Test results are re-
ported.

ix
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Finally, chapter 5 is an application of the above concepts to computa-
tionally demanding real world problems. A case of data collecting is consid-
ered. The problems arising from automatic error detection and correction
are respectively modeled as satisfiability and set covering problems. The sat-
isfiability problems are solved by using solver presented in chapter 3. The
set covering problems are solved by using state-of-the-art solvers. Results
are reported and discussed.

Roma, Italy, December 2000. Renato Bruni



Chapter 1

Introduction to Logic,
Inference, Satisfiability and
Constraint Satisfaction

1.1 Logic

Logic is the science of correct reasoning. It can be viewed as the system of
principles underlying any science. Logic describes relationship among propo-
sitions, with the purpose of providing instruments to check the correctness
of an argument, to deduce conclusions from premises, and therefore to estab-
lish the consistency of a theory. In order to reach this aim, logic must have
descriptive symbolic tools to represent propositions, and deterministic and
formal rules to work on them. In the classical symbolic approach, both of
the above elements must be merely mechanical and completely independent
from the meaning of the considered propositions.

This independence from the contents was already clear to the Greek
philosophers, in particular to Aristotle (384-322 B.C.) with the development
of syllogism.

The results formulated at that time stood almost unchanged, through
medieval logicians, up to the time of G.W. Leibniz (1646-1716), who devel-
oped several versions of a calculus for logic. His definitions and terminology
had some difficulties and defects, but, nevertheless, they lead him to imagine
an encoding of human knowledge and a computational process that would
reduce rational discussions to mere calculations.

After one hundred and fifty years, G. Boole (1815-1864) created a cal-
culus for logic that, in today’s terms, uses the logical and, the exclusive or,

1



2 CHAPTER 1. INTRODUCTION TO LOGIC AND INFERENCE

and a certain inverse of that or. Such system made logic calculation possi-
ble, and, with some simplifications, is known today as Boolean algebra or
Propositional Logic.

After that, G. Frege (1848-1925) created a complete notation for math-
ematical logic. Today, Frege’s formulae would be called parse trees of logic
expressions. Frege envisioned that mathematics could be based on logic. He
set out to prove that conjecture in an extraordinary effort spanning many
years. His work contains many novel ideas, but, later, B. Russel (1872-1970)
showed that the assumptions made by Frege contained a flaw.

A.N. Whitehead (1861-1947) and Russel successfully carried out much of
Frege’s plan, and argued in a three volume treatise called Principia Mathe-
matica that all of mathematics can be derived from logic. At that time, it
seemed that, in principle, one could derive all theorems of mathematics by
computation.

Subsequently, D. Hilbert (1862-1943) defined the axiomatic method, in-
troduced meta-mathematics, and hoped that, with these tools, one could
carry out a program that eventually would establish the consistency of most,
if not all, mathematical systems.

In 1931 [106], K. Gödel (1906-1978) proved that the construction of
Whitehead and Russel cannot build all of mathematics, and that Hilbert’s
program generally cannot be carried out. That result, called the Incomplete-
ness Theorem, implies that one cannot systematically compute all theorems
of mathematics starting from some given axioms.

The availability of computers in the second half of the XX century raised
the hope that computations in logic could be used to solve real-world prob-
lems. Loveland gives a concise account of the developments since the 1950s
in [176]. Logic and Mathematics are nowadays always more two aspects of a
same stream of science. Just to mention some remarkable examples, Ham-
mer always pursued this idea with the theory of boolean functions [124].
Chandru and Hooker stress and enhance the above interconnections in [43].
Truemper developed a whole new mathematical method for computation in
propositional logic [250]. Extensive references can be found it the bibliogra-
phy of these three books.

The vision of logic computation is therefore gradually being translated
into reality. Logic is nowadays used in a variety of fields. Examples are
deductive databases, automatic theorem proving, Artificial Intelligence, in-
tegrated logic circuit design and test, etc. We give an overview of the various
approaches later, once we have defined the logic problems to be considered.

In the field of logic we can define several formal systems. Mainly used
are propositional logic, first-order predicate logic, probabilistic and related
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logic, etc. In particular, the last several years have seen orders-of-magnitude
improvements in inference algorithm for propositional logic. In this work we
mainly deal with propositional logic. Throughout the rest of this chapter
we give an introduction of propositional logic, Boolean and pseudo-Boolean
functions, first-order logic, satisfiability and constraint satisfaction.

1.2 Propositional Logic

Propositional logic is the simplest formal system where we are interested in
solving inference problems. Propositional logic, sometimes called sentential
logic, may be viewed as a grammar for exploring the construction of complex
sentences (propositions) from atomic statements, using the logical connec-
tives. In prepositional logic we consider formulas (sentences, propositions)
that are built up from atomic propositions that are unanalyzed. In a specific
application, the meaning of these atomic propositions will be known.

The traditional (symbolic) approach to prepositional logic is based on a
clear separation of the syntactical and semantical functions. The syntactics
deals with the laws that govern the construction of logical formulas from
the atomic propositions and with the structure of proofs. Semantics, on
the other hand, is concerned with the interpretation and meaning associ-
ated with the syntactical objects. Prepositional calculus is based on purely
syntactic and mechanical transformations of formulas leading to inference.

Propositional formulae are syntactically built by using an alphabet over
the two following sets:

• The set of primary logic connectives {¬,∨,∧}, together with the brack-
ets () to distinguish start and end of the field of a logic connective.

• The set of proposition symbols, such like x1, x2, . . . , xn.

The only significant sequences of the above symbols are the well-formed
formulas (wffs). An inductive definition is the following:

• A propositional symbol x or its negation ¬x.

• Other wffs connected by binary logic connectives and surrounded, in
case, by brackets.

Both propositional symbols and negated propositional symbols are called
literals. Propositional symbols represent atomic (i.e. not divisible) proposi-
tions, sometimes called atoms. An example of wff is the following.

(¬x1 ∨ (x1 ∧ x3)) ∧ ((¬(x2 ∧ x1)) ∨ x3) (1.1)
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A formula is a wff if and only if there is no conflict in the definition
of the fields of the connectives. Thus a string of atomic propositions and
primitive connectives, punctuated with parentheses, can be recognized as a
well-formed formula by a simple linear-time algorithm. We scan the string
from left to right while checking to ensure that the parentheses are nested
and that each field is associated with a single connective. Incidentally, in
order to avoid the use of the awkward abbreviation ”wffs,” we will henceforth
just call them propositions or formulas and assume they are well formed
unless otherwise noted.

The calculus of propositional logic can be developed using only the three
primary logic connectives above. However, it is often convenient to permit
the use of certain additional connectives, such as ⇒ which is called implies.
They are essentially abbreviations that have equivalent formulas using only
the primary connectives. In fact, if S1 and S2 are formulas, we have:

(S1 ⇒ S2) is equivalent to (¬S1 ∨ S2)

The elements of the set B = {T, F} (or equivalently {1, 0}) are called
truth values with T denoting True and F denoting False. The truth or false-
hood of a formula is a semantic interpretation that depends on the values of
the atomic propositions and the structure of the formula. In order to exam-
ine the above, we need to establish a correspondence between propositional
symbols and the elements of our Domain. This provides a truth assignment,
which is the assignment of values T or F to all the atomic propositions.
For this reason, propositions are often, although slightly improperly, called
binary variables, but no connection with the concept of variable such as in
the case of first-order logic exists.

To evaluate a formula we interpret the logic connectives, with their ap-
propriate meaning of ”not,” ”or,” and ”and”. As an illustration, consider
the formula (1.1). Let us start with an assignment of true (T ) for all three
atomic propositions x1, x2, x3. At the next level, of subformulas, we have
¬x1 evaluates to F , (x1 ∧ x3) evaluates to T , (x2 ∧ x1) evaluates to T ,
and x3 is T . The third level has (¬x1 ∨ (x1 ∧ x3)) evaluating to T and
((¬(x2 ∧ x1)) ∨ x3) also evaluating to T . The entire formula is the ”and” of
two propositions both of which are true, leading to the conclusion that the
formula evaluates to T . This process is simply the inductive application of
the rules:

• S is T if and only if ¬S is F .

• (S1 ∨ S2) is F if and only if both S1 and S2 are F .
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• (S1 ∧ S2) is T if and only if both S1 and S2 are T .

The assignment of truth values to atomic propositions and the evaluation
of truth/falsehood of formulas is the essence of the semantics of this logic.
We now introduce a variety of inference questions related to the truth or
falsehood of propositions.

A truth assignment for which a formula evaluates to T is called a model
for the formula. A formula is said to be satisfied by a model. A formula is
satisfiable if has at least one model. A formula with no model is called un-
satisfiable. While a model is proof of satisfiability, a proof of unsatisfiability
is called a refutation. A formula for which every truth assignment is a model
is called a tautology. The formula (x1 ∨ ¬x1) is a tautology. A formula for
which no truth assignment is a model is called a contradiction.

A formula S1 is said to imply another formula S2, defined on the same
set of atomic propositions as S1, if every model of the former is also a
model of the latter. This concept of logic implication is fundamental for the
definition of the Inference problem (see section 1.6). Two formulas are said
to be semantically equivalent if they share the same set of models, or if their
models are equivalent under some mapping.

1.3 Normal Forms

The normal forms of formulas are special representations that make evident
the duality of the binary connectives: conjunction ∧ and disjunction ∨.
Every propositional formula can be transformed in normal form. To begin
with, we need to get rid of the unary negation operator ¬. This is done
by expanding the set of atomic propositions {x1, x2, . . . , xn} into the set of
literals {x1, x2, . . . , xn;¬x1,¬x2, . . . ,¬xn}. We subsequently need to absorb
the negation connective ¬ into the literals.

This is achieved by repeated application of the De Morgan’s laws,

¬(S1 ∨ S2) is equivalent to (¬S1 ∧ ¬S2) (1.2)

¬(S1 ∧ S2) is equivalent to (¬S1 ∨ ¬S2) (1.3)

along with the involutory property of negation,

¬¬S = S (1.4)

and the distributive laws

S1 ∨ (S2 ∧ S3) is equivalent to (S1 ∨ S2) ∧ (S1 ∨ S3) (1.5)
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S1 ∧ (S2 ∨ S3) is equivalent to (S1 ∧ S2) ∨ (S1 ∧ S3) (1.6)

We apply the above rules recursively until, ¬ operates only on atomic
propositions. Thus we only have formulas with literals connected by disjunc-
tions and conjunctions. A subformula that is a pure disjunction of literals
is called a clause. A formula is said to be in conjunctive normal form, or
CNF, if it is the pure conjunction of a set of clauses. Such a formula would
have the appearance

(xi1 ∨ ...∨xj1 ∨¬xk1 ∨ ...∨¬xn1)∧ . . .∧ (xim ∨ ...∨ xjm ∨¬xkm ∨ ...∨¬xnm)

A formula is said to be in disjunctive normal form, or DNF, if it is
the pure disjunction of terms, each of which is a pure conjunction of literals.
Such formulas have the appearance

(xi1 ∧ ...∧xj1 ∧¬xk1 ∧ ...∧¬xn1)∨ . . .∨ (xim ∧ ...∧ xjm ∧¬xkm ∧ ...∧¬xnm)

The two normal forms CNF and DNF are dual representations with
symmetric properties. Although there are some applications of propositional
logic for which the DNF may be the more accepted normal form, we will
stay with CNF as the standard form for propositions in this work.

We now have a complete procedure for transforming a given formula into
CNF.

1. Use the transformation rules of De Morgan’s laws and involution of
negation to absorb all ¬ into the literals.

2. Use the distributive law to move the conjunctions out of the subfor-
mulas until each subformula is a clause of pure disjunctions.

As an illustration, let us consider the formula (2.1). The step by step
transformations on this sample are depicted below.

(¬x1 ∨ (x1 ∧ x3)) ∧ ((¬(x2 ∧ ¬x1)) ∨ x3)
(¬x1 ∨ (x1 ∧ x3)) ∧ ((¬x2 ∨ x1) ∨ x3)

(¬x1 ∨ x1) ∧ (¬x1 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3)
(¬x1 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3)

(1.7)

In the last step we removed the clause (x1∧¬x1) since this is a tautology
whose truth is invariant. In general, however, this simple procedure for
reducing formulas to CNF runs into trouble. The main difficulty is that
there may be an explosive growth in the length of the formula. The length
of a formula is measured by the total number of literals in the description
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of the formula. Consider the action of the above procedure on the family of
DNF formulas

(x1 ∧ x2) ∨ (x3 ∧ x4) ∨ . . . ∨ (x2n−1 ∧ x2n) (1.8)

It is not difficult to see that the CNF formula produced is made up of the
2n clauses. We therefore have that, in the worst case, the above procedure
may generate a CNF formula whose length is exponentially related to the
length of the input formula. Such CNF do not contain redundant clauses,
since it can be proved [42] that no clause is implied by others.

On the other hand, there is another more complex procedure of conver-
sion into CNF. Such procedure allows us to obtain succinct CNF represen-
tations, by using rewriting techniques. Rewriting techniques are essentially
based on the introduction of additional atomic propositions corresponding to
subformulas of the given formula, and on writing new clauses that represent
the structure of the given formula.

By using such techniques, the two formulas will be equivalent in the sense
that every model for the original formula can be extended to a model for
the rewritten one (with appropriate truth values for the new atomic proposi-
tions). Conversely, every model of the rewritten formula, when restricted to
the original atomic propositions (projected), corresponds to a model of the
original formula. This result can be generalized for all formulas in proposi-
tional logic with the procedure described in [251, 268].

The result is a CNF formula that is satisfiable if and only if the input
formula is. Further, it is easy to prove by induction that the length of the
clause sets constructed is, in each case, bounded by a constant factor of
the length of the corresponding subformula. Hence we have the following
remarkable rewriting theorem.

Theorem 1.1 Any formula in propositional logic can be rewritten to an
equivalent CNF formula whose length is linearly related to the length of the
original formula.

It is possible to show that the CNF formula produced by the first pro-
cedure is the geometric projection of the formula produced by this second
procedure [20]. The transformation into normal forms has several advan-
tages, as explained in more detail in chapter 4.
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1.4 Boolean and Pseudo-Boolean Functions

Instead of defining the formal system of propositional logic starting by its
grammar, we could consider a formula as the definition of a boolean function
[124]. Defining, as above, B = {T, F}, or, equivalently, {0, 1}, a Boolean
function is a function fB(x1, x2, ..., xn) from the Boolean hypercube Bn

to the Boolean set B. Instead, a pseudo-Boolean function is a function
fpB(x1, x2, ..., xn) from the Boolean hypercube Bn to the set of real num-
bers IR.

Since every V = (v1, v2, . . . , vn) in Bn is the characteristic vector of
the subset {i : vi = 1} of {1, 2, . . . , n}, a Boolean function is essentially
a boolean-valued set function defined on the set of all subsets of an n-
element set. A pseudo-Boolean function is instead a real-valued set function
defined on the above set. These functions appear in numerous areas of
discrete optimization, computer science, reliability theory, data analysis,
graph theory, as well as in many interdisciplinary models of VLSI design,
physics, telecommunications, etc.

Boolean and pseudo-Boolean functions can be defined in many different
ways. For example, they can be specified by a truth table. On the left we
have a Boolean function, on the right a pseudo-Boolean one.

x1, x2 fB(x1, x2) x1, x2 fpB(x1, x2)
0, 0 1 0, 0 4
0, 1 1 0, 1 0
1, 0 0 1, 0 -2
1, 1 1 1, 1 1

It can be seen that pseudo-Boolean functions are a generalization of
Boolean ones. We will therefore present some general results on pseudo-
Boolean functions (pBfs) .

It was seen in [124] that every pBf has a polynomial representation. For
instance, the functions defined above have the polynomial expression

fB(x1, x2) = 1 − x1 + x1x2

fpB(x1, x2) = 4 − 6x1 − 4x2 + 7x1x2

By using both the original variables xj , and their complements x̄j =
1 − xj , every pBf can be represented as an (additive) posiform, i.e. a
polynomial depending on the original variables and their complements, and
having only positive coefficients, with the possible exception of the constant
term [82].
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Alternatively, a Boolean function can be represented using the primary
logic operators {¬,∨,∧}. The polynomial expression representation and the
propositional logic representation are closely related [82], and each one of
them can be obtained from the other. A natural conversion into DNF is ob-
tained by substituting every complemented variable 1−xi with the negated
proposition ¬xi, every addition (+) with a disjunction (∨), and every mul-
tiplication (.) with a conjunction (∧). A propositional representation of the
above fB for instance is the following:

¬x1 ∨ (x1 ∧ x2)

Propositional logic formulas are therefore representation of Boolean func-
tions, and many results obtained for the latter ones hold of course for the
formers.

1.5 First-Order Logic

We give here a very introductory mention of First-order predicate logic.
More accurate treatments can be found in [102, 175]. Predicate logic is a
refinement of propositional logic that brings substantially more expressive
power. This comes at the price of a much more difficult inference problem.
The modeling power of predicate logic derives from two features. It further
analyzes atomic formulas of propositional logic by viewing them as attribut-
ing properties to individual objects, or stating that individual objects stand
in certain relations to each other. It uses variables that range over objects,
as well as constants that refer to particular objects. The syntactical limit of
first-order logic is that a variable cannot represent a predicate.

First-order formulae are syntactically built by using an alphabet over
the following sets:

• The set of primary logic connectives {¬,∨,∧} and of the quantifiers
{∀,∃, }, together with the brackets ().

• The set of constants symbols, such like a, b, . . .

• The set of variables symbols, such like x, y, . . .

• The set of function symbols, such like f( ), g( , ) . . .

• The set of predicate symbols, such like P ( ), Q( , ), . . .
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A constant is a fixed object of our universe. A variable can be any
object of our universe. A function takes a number of objects of the universe
as argument, and returns one object of the universe. A predicate takes a
number of objects of the universe as argument, and returns a truth value in
{T, F}.

We can congruently define well-formed formulas [197]. The universal
quantifier ∀ means ’for every’. The existential quantifier ∃ means ’there
exists’. Variables are said to be bound if they are in the field of action of a
quantifier. Variables not bounded by quantifiers are said free.

A formula without variables can be view as a propositional logic formula,
and is said to be at ground level. A formula F obtained from another formula
G by substituting every variable with some different symbols if said to be
an instance of G. G is a generalization of F .

Any first-order formula can be converted in Skolem normal form, that
is a conjunction of universally quantified clauses, and such clauses have no
variables in common. The original formula is satisfiable if and only if the
converted formula is satisfiable.

A basic result of first-order logic shows how to write for any first or-
der formula a propositional formula, called the Herbrand extension, that is
satisfiable if and only if the original formula is satisfiable. The Herbrand
extension may be infinite in length, but when it is not, it allows one to
check the satisfiability of a first-order formula using methods designed for
propositional logic.

Unfortunately, the propositional formula, even when finite, becomes
rapidly more complex for larger problems. This difficulty can be alleviated
somewhat by using a partial instantiation technique introduced by Jeroslow
[147]. Two general approaches to partial instantiation exist. They are called
primal and dual. The primal approach begins with a short propositional for-
mula that is too weak, and adds clauses to it until it is unsatisfiable or the
original first order formula is proved satisfiable. The dual approach begins
with a propositional formula that is too strong, and weakens it until it is
satisfiable or the original first-order formula is proved unsatisfiable.

On the other hand, the best-known method for checking satisfiability di-
rectly in first-order logic probably is the resolution method [223]. By think-
ing of all its computational drawbacks, we can understand the complexity
of such task.

By imposing syntactical limitations, we can consider subsets, called frag-
ments, of first-order logic. Partial instantiation methods can be adapted to
take advantage of the structure of such fragments.

Because full first-order logic is undecidable [48], no finite algorithm can
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always settle the satisfiability issue. In fact, first-order logic can be given
a complete axiomatization, [105], i.e. there is a finite set of axioms from
which every valid formula can be deduced. The point is that there is no
finite algorithm that will always determine whether such a deduction exists.
However, first-order logic is semidecidable, meaning that there is a proce-
dure that will always terminate with a proof of unsatisfiability if a formula
is unsatisfiable. If a formula is satisfiable, the procedure may never termi-
nate with the indication of satisfiability. However, termination is guaranteed
when the formula belongs to a decidable fragment of first-order logic, such
as the Löwenheim-Skolem or the ∃∀ fragments.

1.6 Implication and Inference

Given two formulas S1 and S2 defined on the same set of atomic proposi-
tions, if every model of S1 is also a model of S2, S1 logically implies S2, or,
equivalently, S2 is logically implied by S1, or, moreover, S2 is an implication
of S1. So far, in all the cases when we have an interpretation were S1 is
True, we know that S2 also is True, without the need to study truth value
of S2 by starting from its atoms. Unfortunately, this definition does not give
a practical way to determine whether a formula implies another. The idea
of checking all truth assignments would be hopeless.

The fundamental problem of inference in logic is therefore to ascertain
if the truth of one formula implies the truth of another. We need some
inference method to detect implication. An inference method is a procedure
which, given a set of formulas called axioms, is able to derive a set of new
formulas called theorems. An inference method is sound if all the theorems
that can derive are logically implied by the axioms. An inference method is
complete if all the theorems which are logically implied by the axioms can
be derived.

A clause, in a CNF formula, is called redundant if it is implied by the
remaining clauses. A single clause C absorbs clause D if every literal in
C appears also in D. Further, a clause D is logically implied by a single
clause C if and only if C absorbs D or if D is a tautology. In a CNF formula
therefore a clause will be redundant if it is absorbed by another. What makes
inference so complex is the fact that redundancy can be deeply embedded.
Fortunately, there is a simple principle that, on repeated application, reveals
the embedded structure. This is the principle of resolution [223, 21].

In any CNF formula, suppose there are two clauses C and D with exactly
one atomic proposition xj appearing negated in C and posited in D. It is
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then possible to resolve C and D on xj . We call C and D the parents of the
resolvent clause, which is formed by the disjunction of literals in C and D,
excluding xj and ¬xj. The resolvent is an implication of the parent clauses.

As an illustration of this principle consider the two clauses.

C = (¬x1 ∨ x3)
D = (x1 ∨ ¬x2 ∨ x3)

(¬x2 ∨ x3)

The resolvent of C and D is the clause below the line. The resolution
principle is a manifestation of case analysis, since if C and D have to be
satisfied and (case 1) x1 is true, then x3 must be true; or if (case 2) x1 is
false then (¬x2 ∨ x3) must be true. Hence every model for C and D is also
a model for the resolvent.

A prime implication of a CNF formula S, is a clause that is an implication
of S and is not absorbed by any clause that is an implication of S, except
by itself. In the above example, the prime implications are

{(¬x1 ∨ x3), (¬x2 ∨ x3)}

A simple procedure for deriving all prime implications of S is to repeat-
edly apply the resolution principle while deleting all absorbed clauses. If we
are left with an empty clause, the formula S has no model. Otherwise, we
will be left with all the prime implications.

Resolution is a complete inference method for propositional calculus, in
the sense that any clause implied by S is absorbed by one of the clauses
obtained in the resolution process. This was originally proved in the case of
DNF, where the analogous of resolution is called consensus (see [220]). We
therefore have a complete inference mechanism for propositional logic based
on purely syntactic techniques. However, the principle of resolution is not a
computationally viable inference method for all but small examples, in the
general case.

More computationally attractive is a weakened form of resolution, called
unit resolution, in which one of the parent clauses is always taken to be
a clause with exactly one literal. This weaker principle is complete only
on special classes of propositions called Horn formulas. Horn formulas are
defined to be made by Horn clauses, or nearly-negative clauses, which are
clauses with any number of negated literals but at most one positive literal.

An alternate syntax for propositional logic that has been popularized in
recent years by the Artificial Intelligence community is the syntax of rule-
based systems. A rule system, or rule-based system, is a type of proposi-
tional logic in which all the formulas are rules. A rule is an if-then statement
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of the form
(x1 ∧ . . . ∧ xj) ⇒ (y1 ∨ . . . ∨ yk)

where ⇒ means implies, x1, . . . , xj are the antecedents, and y1, . . . , yk

is the consequent. The above rule is equivalent to the clause

¬x1 ∨ . . . ∨ ¬xj ∨ y1 ∨ . . . ∨ yk

Thus if there are no antecedents (j = 0), the rule simply asserts the
consequent. If there is no consequent (k = 0), the rule denies the conjunction
of the antecedents. Also, it is clear that any clause can be written as a
rule, just by putting the positive literals in the consequent and treating the
negative literals (stripped of their negations) as antecedents. If there is at
most one disjunct in the consequent, the rule is called Horn, and in fact the
corresponding clause is a Horn clause.

Rules are often called ”inference rules” in the AI literature, but they
are not inference rules in the classical sense. They are simply formulas in
a logical system, to which an inference rule may be applied to derive other
formulas.

In rule systems the most common inference rule is modus ponens, also
known as forward chaining:

(x1 ∧ . . . ∧ xj) ⇒ (y1 ∨ . . . ∨ yk)
⇒ x1
...
⇒ xj

(y1 ∨ . . . ∨ yk)

This means that one can infer the conclusion below the line from the
premises above the line.

Another popular inference rule is modus tollens, also called backward
chaining:

(x1 ∧ . . . ∧ xj) ⇒ (y1 ∨ . . . ∨ yk)
y1 ⇒

...
yk ⇒

(x1 ∨ . . . ∨ xj) ⇒

Modus ponens is obviously the same as a series of unit resolutions in
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which the unit clauses are positive. For example, the inference

(x1 ∨ x2) ⇒ y
⇒ x1

⇒ x2

y

can be accomplished by resolving ¬x1∨¬x2∨y with x1 to obtain ¬x2∨y,
and resolving the latter with x2 to obtain y. Similarly, modus tollens is the
same as a series of unit resolutions in which the unit clauses are negated.

Since unit resolution is not a complete inference method for propositional
logic, forward and backward chaining are not complete for a rule system.
The following valid inference, for example, cannot be obtained using these
two inference rules:

x ⇒ (y1 ∨ y2)
y1 ⇒ z
y2 ⇒ z

x ⇒ z

However, forward and backward chaining are a complete refutation method
for a Horn rule system, since unit refutation is complete for Horn clauses.

1.7 The Role of Satisfiability

We have now defined the following three basic inference problems in propo-
sitional logic.

• Is a given formula satisfiable?

• Is a given formula a tautology?

• Does one formula imply another?

All of three can be solved in several ways, for example by enumeration.
Since we have 2n truth assignments for n propositions, this is obviously im-
practicable. However, the fact that one method can solve all three problems
is indicative of a possible relationship between them. In fact, we have

Proposition 1.1 The following statements are equivalent:

1. S1 implies S2.

2. (¬S1 ∨ S2) is a tautology.
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3. (S1 ∧ ¬S2) is unsatisfiable.

All of the three problems above can therefore be reduced to the problem
of determining whether a given formula evaluates to True (is satisfied) for
some assignment of truth values to the atomic propositions. This is called
the satisfiability problem.

We therefore understand that the satisfiability problem is the central
problem of inference in propositional logic. For this reason, when above we
showed the syntactical transformation rules to obtain normal form, our care
was to modify a formula without affecting its models.

The propositional satisfiability problem, SAT for short, was the first
problem shown to be NP-complete [55, 155]. The problem is therefore hard,
in the sense that no known algorithm can always solve it in an amount of
time that is a polynomial function of the problem size [98]. However, clever
algorithms can rapidly solve many SAT formulas of practical interest. There
has been great interest in designing efficient algorithms to solve most SAT
formulas.

Moreover, the large family of computationally intractable NP-complete
problems have been identified as central to a number of areas in comput-
ing theory and engineering. This means that, at least theoretically, all
of those problems can be polynomially reduced to a SAT problem, hence
solved by solving SAT. In practice, SAT is fundamental in solving many
problems in automated reasoning, computer-aided design, computer-aided
manufacturing, machine vision, database, robotics, integrated circuit design
automation, computer architecture design, and computer network design.
Therefore, methods to solve SAT formulas play an important role in the
development of efficient computing systems.

In the next chapter we analyze in greater detail many solutions methods
for such problem.

1.8 Constraint Satisfaction Problems

Logic programming, in the sense of application of optimization methods to
logic deduction, can be extended to constraint programming, which deals
with constraint satisfaction problems. A constraint satisfaction problem,
CSP for short, can be view as a generalization of SAT.

In the mid-1980’s, constraint programming was developed as a computer
science technique, combining developments in Artificial Intelligence commu-
nity with the development of new computer programming languages. For
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those familiar with mathematical programming, one confusions comes from
the fact that the word programming is differently used in the two field of
Computer Science and Operation Research.

On one hand, the field of mathematical programming arose from its
roots in linear programming. In Dantzig’s seminal textbook [62], linear
programming is introduced by describing some different planning problems.
Such problems were programming problems in the sense of program, or
schedule, of activities. Therefore, the term program, previously used to
describe a plan of activities, became associated with a specific mathematical
problem in the operations research literature.

On the other hand, in constraint programming (often called constraint
logic programming), the word programming refers to computer programming
[159]. A computer program can be viewed as a plan of action of operations
of the computer, and hence the common concept of a plan is shared with
the origins of linear programming.

Hence, a constraint program is not a statement of a problem as in math-
ematical programming, but is rather a computer program that indicates a
method for solving a particular problem.

A constraint satisfaction problem [133], CSP for short, consists in a set
of n decision variables

x1, x2, . . . , xn

Each one of those xi has its domain Di of allowable values. The domain
of a decision variable can be any possible set of symbols, for example, even
numbers, names, etc. There is no restriction on type of each decision vari-
able, and hence decision variables can take on integer values, real values, set
elements, or even subsets of sets.

A constraint c(x1, x2, . . . , xn) is a mathematical relation, i.e. a subset
S of the set D1 × D2 × . . . × Dn such that if (x1, x2, . . . , xn) ∈ S, then the
constraint is said to be satisfied. A constraint is therefore represented by
mathematical function

f : D1 × D2 × . . . × Dn → {0, 1}

such that f(x1, x2, . . . , xn) = 1 if and only if c(x1, x2, . . . , xn) is satisfied.
Using functional notation, we can define a constraint satisfaction prob-

lem (CSP) as: Given a set of n domains {D1,D2, . . . ,Dn} and a set of m
constraints {f1, f2, . . . , fm}, find a set of n values {x1, x2, . . . , xn} such that

fj(x1, x2, . . . , xn) = 1 j = 1, . . . ,m
xi ∈ Di i = 1, . . . , n
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Note that this problem is only a feasibility problem, and that no ob-
jective function is defined. The functions fi do not necessarily have closed
mathematical forms, and can simply be defined by providing the set S de-
scribed above. In other words, a solution to a CSP is simply a set of values
of the variables such that the values are in the domains of the variables, and
all of the constraints are satisfied.

Each constraint must have a form that is easy to evaluate, so any dif-
ficulty in solving such a problem comes from the interaction between the
constraints and the need to find a setting for the variables that simultane-
ously satisfies all the constraints [217]. In a SAT instance, each constraint
is expressed as a clause, making SAT a special case of the constraint satis-
faction problem (see Figure 1).

An order-l constraint indicates the compatibility (i.e., consistency or in-
consistency or conflicting measure) among l variables for a given variable
assignment. The variables conflict if their values do not satisfy the con-
straint. In practice, two frequently used constraints are unary constraints
imposed on a single variable and binary constraints imposed on a pair of
variables.

Constraint satisfaction problems are extremely common. Most NP-
complete problems are originally stated as constraint satisfaction problems.
Indeed, the proof that a problem is NP-complete implies an efficient way to
transform the problem into a constraint satisfaction problem.

For a few special forms of the constraint satisfaction problem there exist
algorithms that solve such formulas in polynomial worstcase time. When
no polynomialtime algorithm is known for a particular form of constraint
satisfaction problem, it is common practice to solve such formulas with a
search algorithm.

CSP




Discrete CSP




N − queen problem
Graph coloring problem
Scheduling problem
. . .

Binary CSP




SAT problem
MaxSAT problem
. . .

. . .

Figure 1. Some examples of the constraint satisfaction problem (CSP).
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1.9 Combinatorial Optimization Models

In order to apply the paradigms of mathematical programming to inference
in logic, we can bridge the different worlds to which these subjects belong. In
the previous sections, we formulated the basic inference problems of propo-
sitional logic using symbolic valuations of propositions as either True or
False. Mathematical programming, however, works with numerical valua-
tions. These ”formulations” of inference in propositional logic are what we
explore in this section.

The solubility of systems of linear inequalities over the real (rational)
numbers is closely related to the problem of linear programming. A standard
approach is to deal with solubility as a special case of optimization over
linear inequalities. Integer programming deals with the linear programming
problems with the added restriction that some (possibly all) variables may
take values restricted to the integers. By introducing suitable bounds on
the variables, it is possible to restrict variables to only take values in the
nonnegative integers or even just values of 0 and 1.

This ”boolean” restriction captures the semantics of propositional logic
since the values of 0 and 1 may be naturally associated with False and
True. In integer programming, all the inequality constraints have to be sat-
isfied simultaneously (in conjunction) by any feasible solution. It is natural
therefore to attempt to formulate satisfiability of CNF formulas as integer
programming problems with clauses represented by constraints and atomic
propositions represented by 0–1 variables [43].

A positive atom (xi) corresponds to a binary variable (xi), and a negative
atom (¬xi) corresponds to the complement of a binary variable (1 − xi).
Consider, for example, the single clause

x2 ∨ ¬x3 ∨ x4

The satisfiability of this clause corresponds to the solubility of the fol-
lowing inequality over (0,1) variables.

x2 + (1 − x3) + x4 ≥ 1

The satisfiability of the formula

(x1) ∧ (x2¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x4) ∧ (¬x2 ∨ x3 ∨ x5)



1.9. COMBINATORIAL OPTIMIZATION MODELS 19

is equivalent to the existence of a solution to the system:

x1 ≥ 1
x2 + (1 − x3) + x4 ≥ 1
(1 − x1) + (1 − x4) ≥ 1
(1 − x2) + x3 + x5 ≥ 1

x1, . . . , x5 ∈ {0, 1}

It is conventional in mathematical programming to clear all the constants
to the right-hand side of a constraint. Thus a clause Cj is represented by
ajx ≥ bj, where for each i, aji is +1 if xi is a positive literal in Cj , is -1 if
¬xi is a negative literal in Cj , and is 0 otherwise. Also, bj equals 1−n(Cj),
where n(Cj) is the number of negative literals in Cj. We shall refer to such
inequalities as clausal. So the linear inequalities converted to clausal form
are given by

x1 ≥ 1
x2 − x3 + x4 ≥ 0

−x1 − x4 ≥ −1
−x2 + x3 + x5 ≥ 0

x1, . . . , x5 ∈ {0, 1}

In general, satisfiability in propositional logic is equivalent to solubility
of

Ax ≥ b, x ∈ {0, 1}n

where the inequalities of Ax ≥ b are clausal. Notice that A is a matrix
over {0,±1}, and each bj equals 1 minus the number of -1’s in row j of the
matrix A.

We are therefore looking for an extreme point of the unit hypercube in
IRn that is contained in all the half–spaces defined by the clausal inequalities.
This is a spatial or geometric embedding of inference.

The intersection of clausal half-spaces defines a convex polyhedron. If the
box constraints 0 ≤ xi ≤ 1, (i = 1, 2, . . . , n) are added, we obtain a bounded
polyhedron or a polytope. Thus satisfiability is a special case of checking
for a integer lattice (Zn) point in a polytope defined implicitly by linear
inequalities. The latter is exactly the feasibility problem of integer (linear)
programming. In optimizing a linear objective function over constraints,
defined by linear inequalities and integer restrictions on variables, one must
certainly also contend with checking the feasibility of the constraints. Thus
it is natural to consider the optimization version of integer programming as
a more general model than the feasibility version.
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In clausal inequalities the right–hand side in any case (i.e. also when
the inequalities are not satisfied) can not be greater than 1 plus the value
of the left–hand side. We can therefore guarantee the feasibility of the
above system by introducing an artificial binary variable x0. This allows
to pose the feasibility version of integer programming as a special case of
optimization. Satisfiability of the above formula can also be tested by solving
the optimization problem

min x0

s.t. x0 + x1 ≥ 1
x0 + x2 − x3 + x4 ≥ 0
x0 − x1 − x4 ≥ −1
x0 − x2 + x3 + x5 ≥ 0
xi ∈ {0, 1}, i = 0, 1, . . . , 5

The original formula (2.15) is satisfiable if and only if the optimization
problem above is solved with x0 at 0. The variable x0 is called the artifi-
cial variable and the optimization problem a phase I construction in integer
programming terminology. The optimization formulation is useful since the
objective function provides a mechanism for directed search of truth assign-
ments (0-1 values for x1, . . . , xn) that satisfy the formula. In general, the
phase I construction is of the form

min x0

s.t. x0e + Ax ≥ b
xi ∈ {0, 1}, i = 0, 1, . . . , n

where Ax ≥ b represents the original clausal inequalities and e is a
column of 1’s. This problem is said to be in the form of generalized set
covering problem.

Inference in the form of implications can also be modeled as integer
programming problems. An indirect route would be to transform the im-
plication question to a satisfiability problem and then follow the Phase I
construction discussed above. However, direct formulations are also possi-
ble [42]. Let us consider an implication problem of the form: Does a formula
S1 imply another formula S2? For simplicity let us first assume that S1 is in
CNF and S2 is given by a single clause C. The corresponding optimization
model for testing the implication is

min cx
s.t. Ax ≥ b

xi ∈ {0, 1}, i = 1, . . . , n
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where c is the incidence vector of clause C, and Ax ≥ b are the clausal
inequalities representing S1. If this optimization yields a minimum value
1 − n(C) or larger, we have established the valid implication of S2 by S1.
Otherwise the implication does not hold.

Now, let us consider a situation where S1 represents a consistent knowl-
edge base in CNF with clausal inequalities Ax ≥ b and ¬S2 a general formula
in CNF with clausal inequalities Bx ≥ d. To test if S2 is logically implied
by S1 we solve

min x0

s.t. x0e + Bx ≥ d
Ax ≥ b
xi ∈ {0, 1}, i = 0, 1, . . . , n

S1 implies S2 if and only if the minimum value of x0 is 1. Notice that
the artificial x0 is not associated with Ax ≥ b since we have assumed that
S1 is consistent (satisfiable).

If we are interested not only in finding if the set of clauses is all simul-
taneously satisfiable, but also in finding the maximum number of clauses
that we can simultaneously satisfy, we have a problem called the maximum
satisfiability problem, max-SAT for short.

This can be modeled by adding, instead of one single artificial variable
x0, an artificial binary variable yj for each clause. We obtain the following,
where y is the vector {y1, . . . , ym} and I is the identity matrix.

min
∑m

j=1 yj

s.t. Iy + Ax ≥ b
xi ∈ {0, 1}, i = 1, . . . , n
yj ∈ {0, 1}, j = 1, . . . ,m

When we need to put an artificial variable yj at 1, this means that
the corresponding clause Cj was not satisfied. Note that max-SAT is a
generalization of SAT, since the solution of max-SAT gives also the solution
of SAT. If the number of simultaneously satisfiable clauses is equal to the
number of clauses in the instance, the problem is satisfiable. Otherwise, it
is unsatisfiable.

So far, we can apply many integer programming technique to solve infer-
ence problems, the relaxation of integrality to begin with, as covered in detail
in [43]. It becomes moreover possible to find tight correspondences between
easy cases in propositional logic and polyhedral properties in combinatorics.
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Chapter 2

Algorithms for Propositional
Satisfiability

2.1 An Overview

Due to the motivations exposed in chapter 1, SAT has historically been
considered as a sort of training field for algorithms designers. There have
been in fact innumerable SAT solvers proposed, based on the most different
techniques. We will try to give here an overview of the various approach,
with, of course, some simplifications and omissions.

As told, an instance of the CNF satisfiability (SAT) problem [55, 98]
consist in:

• A set of n propositions (or variables): x1, x2, . . . , xn.

• A set of m clauses: C1, C2, . . . , Cm. Each clause consists of only propo-
sitions (xi) or negated propositions (¬xi) combined by just logical or
(∨) connectives. All the clauses connected by just logical and (∧)
connectives form the CNF formula.

The goal is to determine whether there exists an assignment of truth
values to variables (and, if yes, which is) that makes the CNF formula True.

An example of satisfiable instance can be the following, which is True
for (x1 = True, x2 = False).

(x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x2)

An example of unsatisfiable instance can be the following. No truth
assignment can make it True.

(x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x2)

23
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In order to find the solution of such problem we perform a search. Search
is the process of systematic exploration of a set (or space) of possible solu-
tions. A search algorithm is said to be complete if it is guaranteed (given
enough time) to find a solution if it exists, or report lack of solution oth-
erwise. In addition, there are various schemes of incomplete search. These
algorithms usually scale better than complete ones on large problems, but
they run the risk of getting stuck in local optima and can therefore not
guarantee to ever find the globally best solution.

Some complete algorithms are based on resolution, such as the precursor
algorithm of Davis–Putnam [65]. They work by reducing the original CNF
formula to one with fewer variables that is satisfiable if and only if this is
so for the original CNF. To eliminate one variable xi, we replace all clauses
containing xi with all possible clauses derivable by resolutions from the
clauses containing xi. The process is repeated to exhaustion or until an
empty clause is generated. The original formula is not satisfiable if and only
if an empty clause is a resolvent. The total number of steps (or resolvents)
can be extremely large compared to the number of clauses in the original
formula.

Many other complete methods are enumeration algorithms, such as the
so-called Davis-Putnam-Loveland, or Davis-Logemann-Loveland [64]. They
are based on tree search and splitting, that is, they implicitly define a tree
where internal nodes correspond to partial solutions, branches are choices
(partitioning the search space), and leaf nodes are complete solutions. At
every internal node, a variable xi is selected from a formula, and the formula
is replaced by one subformula for each of two possible truth assignments to
xi (splitting). Each subformula has all the clauses of the original except those
satisfied by the assignment to xi and otherwise all the literals of the original
formula except those falsified by the assignment. The original formula has
a satisfying truth assignment if and only if either subformula has one. If a
subformula is proved unsatisfiable, backtrack is performed.

The third family of complete algorithms uses integer programming meth-
ods, such as Branch-and-Cut procedures [43]. Such methods are based on
the transformation of the satisfiability problem in the problem of the fea-
sibility of a system of linear inequalities with binary variables, and then in
the transformation of the latter in a binary optimization problem.

More complete algorithms exists, which do not stay in the above cate-
gories. The following are just two noteworthy examples. Binary Decision
Diagrams [35], and their variants, which allows to represent the set of all
solutions by means of a directed acyclic graph. The Analysis algorithm
[250], which is able, after an analysis of the instance, of providing a tailored
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solution algorithm together with a performance guaranteed.
Moreover, there are various schemes of incomplete search, of which local

search techniques are examples. These iterative procedures maintain one or
more complete solutions which are gradually improved by minor changes.
Some of these methods may in addition use Global optimization techniques
in order to escape from local minima.

Of course, such classification cannot take into account all of the features
of all the various algorithms. Alternative classifications could consider dis-
crete as opposed to continuous models, or sequential as opposed to parallel
algorithms, etc.

Anyway, we will analyze in further detail the six following classes. This
classification is inspired by [118] and [250]:

• Resolution

• Enumeration (Splitting and Backtracking)

• Integer Programming Techniques

• Local Search

• Global Optimization

• Other Techniques

Note, however, that state of the art solvers often combine more than
one of the above techniques. Moreover, there are special subclasses of SAT
which are solvable in polynomial time, by means of specialized algorithms.

2.2 Resolution

Recursive replacement of a formula by one or more other formulas, the so-
lution of which implies the solution of the original formula, is an effective
paradigm for solving CNF formulas. Recursion continues until one or more
primitive formulas have been generated and solved to determine the satis-
fiability of the original. Most recursive SAT algorithms use the following
primitive conditions to stop the recursion:

1. formulas with an empty clause have no solution.

2. formulas with no clauses have a solution.
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3. formulas with no variables (i.e., all variables have been assigned values)
are trivial.

One way to achieve this is through splitting (see below), while another
effective paradigm is based on resolution [223].

Given two clauses C1 = (v ∨ x1 ∨ . . .∨ xj) and C2 = (¬v ∨ y1 ∨ . . .∨ yk),
the resolvent of C1 and C2 is the clause (x1 ∨ . . . ∨ xj ∨ y1 ∨ . . . ∨ yk), that
is, the disjunction of C1 and C2 without v or ¬v. The resolvent is a logical
consequence of the logical and of the pair of clauses. Resolution is the pro-
cess of repeatedly generating resolvents from original clauses and previously
generated resolvents until either the null clause is derived or until no more
resolvents can be created [223]. In the former case (a refutation) the formula
is unsatisfiable and in the latter case it is satisfiable. For some formulas the
order in which clauses are resolved can have a big effect on how much effort
is needed to solve it. The worstcase associated with the best possible order
(the order is selected after the formula is given) has received considerable
study [94, 251, 123, 253]. These studies all used unsatisfiable formulas, but
where this is not obvious to the resolution algorithm. Eventually a much
stronger result was shown: nearly all random l–SAT formulas need exponen-
tial time when the ratio of clauses to variables is above a constant (whose
value depends on l) [50]. The constant is such that nearly all of the formulas
in this set have no solution.

Although resolution can be applied to SAT, the main reason for interest
in resolution is that it can be applied to the more difficult problem of solving
sentences of first order predicate logic. There is a vast literature on that
subject [17].

A number of restrictions and at least one extension to resolution have
been proposed and applied to CNF formulas. Restrictions aim to shorten the
amount of time needed to compute a resolution derivation by limiting the
number of possible resolvents to choose from at each resolution step. The
extension aims to provide shorter derivations than possible for resolution
alone by adding equivalences which offer more clauses on which to resolve.
A treatment of these refinements can be found in [38], Chapter 4. We
mention here a few of these.

2.2.1 Set of Support

Split a given formula into two sets of clauses F1 and Fs such that F1 is
satisfiable. Permit only resolutions involving one clause either in Fs or an
appropriate previous resolvent. Set Fs is called the support set [271]. This
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restriction can be useful if a large portion of the given formula is easily
determined to be satisfiable.

2.2.2 P-Resolution and N-Resolution

If one of the two clauses being resolved has all positive literals (resp. neg-
ative literals), then the resolution step can be called a P-resolution (resp.
N-resolution) step. In P-resolution (resp. N-resolution) only P-resolution
(resp. N-resolution) steps are used. Clearly there is great potential gain in
this restriction due to the usually low number of possible resolvents to con-
sider at each step. However, it has been shown that some formulas solved
in polynomial time with general resolution require exponential time with
N-resolution.

2.2.3 Linear Resolution

We have linear resolution if every resolution step except the first involves
the most recently generated resolvent (the other clause can be a previous
resolvent or a clause in the given formula). Depending on the choice of initial
clause and previous resolvents it is possible not to complete a refutation.

2.2.4 Regular Resolution

Regular resolution [251] proceeds by constructing a resolution tree where,
in every path, no variable is eliminated more than once.

2.2.5 Davis-Putnam Resolution

Once all the resolvents with respect to a particular variable have been
formed, the clauses of the original formula containing that variable can be
dropped [65]. Doing this does not change the satisfiability of the given for-
mula, but it does change the set of solutions to the extent that the value
of that variable is no longer relevant. When dropping clauses, it is natural
to first form all the resolvents for one variable, then all the resolvents for a
second variable, and so on. When doing resolution in this way, it is easy to
find one satisfying assignment if the formula is satisfiable. At the next to
last step the formula has just one variable, so each value can be tested to see
which one satisfies the formula (perhaps both will). Pick a satisfying value
and plug it into the formula from previous step, converting it into a one
variable formula. Solve that formula and proceed backwards in this manner
until an assignment for all variables is found.
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2.2.6 Extended Resolution

For any pair of variables x, y in a given formula F , create a variable z not
in F and append the following expression to F

(z ∨ x) ∧ (z ∨ y) ∧ (¬z ∨ ¬x ∨ ¬y)

Judicious use of such extensions can result in polynomial size refutations for
problems that have no polynomial size refutations without extension [251].

2.2.7 Subsumption

Subsumption, or absorption, is a strategy which help reducing the time to
compute a resolution derivation. If the literals in one clause are a subset
of those in another clause, then the smaller clause is said to subsume the
larger one. Any assignment of values to variables that satisfies the smaller
clause also satisfies the larger one, so the larger one can be dropped without
changing the set of solutions. Subsumption is of particular importance in
resolution algorithms because resolution tends to produce large clauses.

2.2.8 Pure Literals

A literal is pure if all its occurrences are either all positive or all nega-
tive. No resolvents can be generated by resolving on a pure literal, but all
clauses containing a pure literal can be removed without loss. An impor-
tant improvement to the basic resolution algorithm is to first remove clauses
containing pure literals (before resolving on non-pure literals) [65].

2.3 Enumeration trough Splitting and Backtrack

Backtracking algorithms are based on splitting. During each iteration, the
procedure selects a variable and generates two subformulas by assigning the
two values, true and false, to the selected variable. In each subformula, those
clauses containing the literal which is true for the variable assignment are
erased from the formula, and those clauses which contain the literal which
is false have that literal removed. Backtrack algorithms differ in the way
they select which variable to set at each iteration. The unit clause rule, the
pure literal rule, and the smallest clause rule, are three most common ones.
We state each algorithm informally.

The flow of control in splitting-based algorithms is often represented
by a search tree. The root of the tree corresponds to the initial formula.
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The internal nodes of the tree correspond to subformulas that cannot be
solved directly, whereas the leaf nodes correspond to subformulas that can
be solved directly. The nodes are connected with arcs that can be labeled
with variable assignments.

2.3.1 Simple Backtracking

If the formula has an empty clause (a clause which always has value false)
then exit and report that the formula has no solution. If the formula has no
variables, then exit and report that the formula has a solution. (The cur-
rent assignment of values to variables is a solution to the original formula.)
Otherwise, select the first variable that does not yet have a value. Generate
two subformulas by assigning each possible value to the selected variable.
Solve the sub formulas recursively [29]. Report a solution if any subformula
has a solution, otherwise report no solution.

2.3.2 Unit Clause Backtracking

This algorithm [214] is the same as simple backtracking except for how vari-
ables are selected. If some clause contains only one of the unset variables
then select that variable and assign it a value that satisfies the clause con-
taining it; otherwise, select the first unset variable.

In practice, this improved variable selection often results in much faster
backtracking [19].

2.3.3 Clause Order Backtracking

This algorithm is the same as simple backtracking except for how variables
are selected [39]. If this setting does not solve the formula, then select
the first clause that can evaluate to both true and false depending on the
setting of the unset variables. Select variables from this clause until its value
is determined.

By setting only those variables that affect the value of clauses, this algo-
rithm sometimes avoids the need to assign values to all the variables. The
algorithm as stated finds all the solutions, but in a compressed form. The
solutions come in cylinders, where some variables have the value don’t care.
Thus, a single solution with unset variables represents the set of solutions
obtained by making each possible assignment to the unset variables.
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2.3.4 Probe Order Backtracking

This algorithm [217] is the same as simple backtracking except for how
clauses are selected. Temporarily set all the unset variables to some pre-
determined value. Select the first clause that evaluates to false with this
setting. Return previously unset variables back to unset and continue as in
clause order backtracking.

For practical formulas one should consider adding the following five re-
finements to probe order backtracking: stop the search as soon as one solu-
tion is found, carefully choose the probing sequence instead of just setting
all variables to a fixed value [173, 238], probe with several sequences at one
time [40], carefully select which variable to set, use resolution when it does
not increase the input size [84].

Franco [83] noticed that a random assignment solves a nonzero fraction
of the formulas in the average l–SAT model when pn is large compared to
ln m. Simple uses of that idea does not lead to good average time [217],
but combining the idea with clause order backtracking leads to probe order
backtracking, which is fast when pn is above ln m. Probe order backtracking
appears to have some similarities to one method that humans use in prob-
lem solving in that it focuses the algorithm’s attention onto aspects of the
problem that are causing difficulty, i.e., setting variables that are causing
certain clauses to evaluate to false.

2.3.5 Shortest Clause Backtracking

This algorithm is the same as clause order backtracking except for the clause
selected. In this case, select the shortest clause. The corresponding idea for
constraint satisfaction is to first set a variable in the most constraining
relation. This idea is quite important in practice [19].

2.3.6 Jeroslow-Wang

A backtrack search can sometimes be terminated early by checking whether
the remaining clauses can be solved by a Linear Programming relaxation.
An implementation of this idea can be expensive. Jeroslow and Wang have
proposed a simpler and effective technique that is similar in spirit [146]. The
idea is, before splitting, to apply a procedure that iteratively chooses the
variable and value which, in some sense, maximizes the chance of satisfying
the remaining clauses. The procedure does not backtrack and is, therefore,
reasonably fast. Assignments determined by the procedure are temporarily
added to the current partial truth assignment. If the procedure succeeds in
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eliminating all clauses then the search is terminated and the given formula
is satisfiable. Otherwise, the procedure fails, control is passed to the split,
temporary assignments are undone, and backtracking resumes.

Such temporary assignment (i.e. fixing a variable to a truth value) cor-
responds in choosing a literal. At each iteration, we choose literal l which,
for all the clauses Cj belonging to the current subformula S, maximizes the
weight function

w(S, l) =
∑

j: l∈Cj

2−|Cj |

The length of clause Cj , denoted |Cj| above, is the number of literals
that are not falsified by the current partial assignment and the sum is over
clauses that are not satisfied by the current partial assignment.

The weight given above may be compared to that given by Johnson in
[148], and to Mom’s heuristic (prefer the proposition(s) having Maximum
Occurrences in clauses of Minimum Size) [211].

2.3.7 Backtracking and Resolution

Some algorithms have adapted ideas inspired by resolution to splitting al-
gorithms. For example, from the resolution view point, pure literals are
interesting in that they lead to a single subformula that is no more complex
than the original formula, while from the perspective of splitting, pure liter-
als lead to two subformulas, but the solutions to the subformula where the
literal has the value false are a subset of the one where the literal has the
value true. Therefore, the original formula has a solution if and only if the
formula associated with the true literal does.

2.3.8 The Pure Literal Rule Algorithm

Select the first variable that does not have a value. (If all variables have
values, then the current setting is a solution if it satisfies all the clauses.) If
some value of the selected variable results in all clauses that depend on that
variable having the value true, then generate one subformula by assigning the
selected variable the value that makes its literals true. Otherwise, generate
a subformula for both values of the selected variable. Solve the one or two
subformulas [108].

2.3.9 Clause Area

A clause with l distinct literals leads to the fraction 1/2l of the possible
variable settings not being solutions. One can think of the clause as blocking
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out area 1/2l on the Venn diagram for the formula. Iwama showed that
combining this idea with inclusion-exclusion and careful programming leads
to an algorithm which runs in polynomial average time [144] when

p >
√

(ln m)/n

Where n and m are, as usual, number of variables and clauses, and p
is a parameter used to generate the instances. If the sum of the area of
all clauses is less than 1, then some variable setting leads to a solution.
This idea works particularly well with shortest-clause backtracking since
that algorithm tends to eliminate short clauses. See [88] for a probabilistic
analysis of this idea. No average-time analysis has been done.

2.3.10 Branch Merging

This is complementary to preclusion. Backtracking is frequently used on
problems such as the n-queens problem where there is a known symmetry
group for the set of solutions. In such cases many search trees possess
equivalent branches which can be merged to reduce search effort [19, 266].
The use of the symmetry group can greatly speed up finding the solutions.
See [41] for examples from the field of group theory. Brown, Finklestein, and
Purdom [28] gave additional problems that arise in making the backtracking
techniques work with a backtracking algorithm which needs to set variables
in different orders on different branches of the search tree.

2.3.11 Search Rearrangement

This is also known as most-constrained search or non-lexicographic ordering
search. When faced with several choices of extending a partial solution, it
is more efficient to choose the one that offers the fewest alternatives. That
is, nodes with fewer successors should be generated early in the search tree,
and nodes with more successors should be considered later. The vertical
(variable) ordering and horizontal (value) ordering are special cases of search
rearrangement [91, 214, 243]. The rule used to determine which variable to
select next is often called the branching rule.

Many researchers are actively investigating the selection of branching
variables in the DP procedures. Hooker studied the branching rule and
its effect with respect to particular problem instances [135]. Böhm and
Speckenmeyer experimented with branching effect with a parallel DP proce-
dure implemented on an MIMD machine [22]. Boros, Hammer, and Kogan
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developed branching rules that aim at the fastest achievement of q-Horn
structures [26].

2.3.12 2-SAT Relaxation

In SAT problem formulation, very frequently in practical applications, many
of the constraints will be coded as 2-SAT clauses, i.e. clauses with only 2
literals. Since 2-SAT is an easy class which can be solved with fast polyno-
mial time algorithms, an important heuristic to SAT problem solving is to
first solve 2-SAT clauses. This fast operation can significantly reduce the
search space. The truth assignment to the rest of the variables can be han-
dled with a DP procedure. This idea has been used in SAT solver Stamm
[40], Gallo and Pretolani’s 2-SAT relaxation [211], and Larrabee’s algorithm
[167]. Similar ideas to solving 2-SAT clauses were developed. Eisele’s SAT
solver uses a weighted number of occurrences whereas occurrences in 2-SAT
clauses count more than other occurrences [40]. Dörre further added a lim-
ited amount of forward checking to quickly determine 2-SAT formulas in
[40].

2.3.13 Horn Relaxation

Horn clauses, or nearly negative clauses, are clauses with any number of
negated literals but no more than one positive literal. Since Horn-SAT is
an easy class which can be solved with fast polynomial time algorithms,
techniques were developed that use Horn-SAT relaxation in satisfiability
testing [59, 96]. In Crawford’s Tableau, Horn clauses are separated from
non Horn clauses. Based on the DPL procedure, Tableau applies in priority
the unit clause rule and if necessary branches on a variable selected in the
non Horn clauses using three successive heuristics.

2.3.14 Backmarking and Backjump

When a failure is observed or detected, the algorithm simply records the
source of failure and jumps back to the source of failure while skipping
many irrelevant levels on the search tree [99]. The more effective one’s search
rearrangement is, the less need there is for backjumping. Good search orders
tend to be associated with the source of failure being one level back.
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2.3.15 Conflict Directed Backjumping

Instead of a simple backtracking to the last element in the stack of open
splittings, conflict directed backjumping [212] backs up through this abstract
stack in a nonsequential manner, skipping stack frames where possible for
efficiency’s sake. Its mechanics involve examining all assignments made in
open splittings, not just last assignments, so it is more complicated than
usual backtrack.

2.3.16 Backtracking with Lookahead

A lookahead processor is a preprocessing filter that prunes the search space
by inconsistency checking [121, 120, 180, 195]. Backtracking with looka-
head processing is performed by interplaying a depth-first tree traversal and
a lookahead tree pruning processor that deletes nodes on the search tree
whose value assignments are inconsistent with those of the partial search
path. Techniques in this class include partial lookahead, full lookahead
[121], forward checking [129], networkbased heuristics [180, 69], and discrete
relaxation [120].

2.3.17 Backtrack with Lookback

When ever a contradiction is derived, we know some variable has both truth
values excluded. In order to avoid the same contradiction for the remain-
der of the search, the procedure learns a new clause by resolving the two
respective clauses containing the above variable; then it backs up to the
most recently assigned variable in such new clause (backjumping). This
new clause is called nogood, or working reason for the failure. Its generation
is called learning, and corresponds to a lookback process.

Unrestricted learning records every derived clause exactly as if it was a
clause from the underlying instance, allowing it to be used for the remainder
of the search. Because the overhead of unrestricted learning is high, there
exist restricted learning schemes [14]. Size bounded learning of order i re-
tains indefinitely only those derived clauses containing i or fewer variables.
Relevance bounded learning of order i maintains any clause that contains
at most i variables whose assignments have changed since the reason was
derived.
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2.3.18 Unit propagation with delayed unit subsumption

At every splitting, we usually simplify the formula by performing unit prop-
agation. This consists in unit resolution and unit subsumption. According
to [278], the procedure is faster when unit subsumption is not performed
at every splitting, but delayed and performed only under special conditions.
Different kinds of delaying for subsumption can be performed, see for in-
stance [33].

2.3.19 Backtracking for Proving Non-Existence

Dubois, Andre, Boufkhad, and Carlier proposed a complete SAT algorithm,
C-SAT [76]. The C-SAT was developed for the proof of the non-existence of
a solution. The algorithm uses a simple branching rule and a local process-
ing at the nodes of search trees (to detect further search path consistency
and make search decision). It performed efficiently on some DIMACS bench-
marks.

2.3.20 Intelligent Backtracking

This is performed directly to the variable that causes the failure, reducing the
effect of thrashing behavior. Methods in this category include dependency
directed backtracking [241, 70], revised dependency directed backtracking
[205], simple intelligent backtracking [92], and a number of simplifications
[67]. Freeman [90] present an intelligent backtracking algorithm, POSIT,
for PrOpositional SatIstiability Testbed. In this algorithm he used Mom’s
heuristic (prefer the proposition(s) having Maximum Occurrences in clauses
of Minimum Size), detecting failed literals, and minimizing constant factors
to speed up backtracking search.

2.3.21 Macro Expansion

In some applications of backtracking that require relatively little storage,
this method can be used to decrease the running time of the program by
increasing its storage requirements. The idea is to use macros in assembly
language in such a way that some work is done at assembly time instead
of many times at run time. This increases the speed at which nodes are
processed in the tree [19].
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2.3.22 Backtrack Programming

Much work has focused on developing a new programming language for
backtracking search. This includes the sequential Prolog programming lan-
guage [52, 242], Prolog with intelligent backtracking scheme [34], and logic
programming [133].

2.3.23 Special-Purpose Architectures

Special-purpose hardware machines were built to prune search space [189],
perform backtracking search, and do AI computations [257].

2.3.24 Branch and bound

Also known as ordered depth-first search. Select a variable. For each possible
value of the variable generate a subformula and compute some quick to
compute upper bound on the quality of the solution of the sub formula.
Solve recursively all subformulas except those that have a cost above that of
the best solution that has been found so far. Branch and bound is recognized
as a generalization of many heuristic search procedures such as [2, 264, 167].

2.3.25 Some Remarks on Complexity

The worstcase time for all known SAT algorithms is exponential in the
first power of the input size. The naive algorithm that tries every variable
setting requires time 2n for n variable formulas. For l–SAT, the best known
bound on worstcase complexity has been worked down from 1.618n [194]
to slightly below 1.5n obtained by Schiermeyer [230]. Other work on the
topic is given in [100]. As with other NP-complete problems there are no
exponential lower bound results for SAT. However, it has been proven that
all resolution algorithms need time that is exponential in the first power
of the input size [123, 50, 253]. No such lower bound analysis have been
done on splitting-based algorithms. For a comprehensive treatment of the
complexity of propositional proofs, see a recent survey by Urquhart [255].
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2.4 Integer Programming Methods

In order to represent SAT in the framework of mathematical programming,
we convert it into the following optimization problem:

min x0

s.t. x0e + Ax ≥ b
xj ∈ {0, 1}, j = 0, 1, . . . , n

While the Simplex method is effective for solving linear programs (LP),
there is no single technique that is fast for solving integer programs. Integer
optimization problems belong to the class of NP-hard problems. It is well-
known that the optimal integer programming solution is usually not obtained
by rounding the linear programming solution, although this is possible in
certain cases. The closest point to the optimal linear program may not even
be feasible. In some cases, the nearest feasible integer point to the linear
program solution is far removed from the optimal integer point. Thus, when
using an integer linear program to solve the integer program for SAT, it is
not sufficient simply to round linear programming solutions.

In the following subsections, we describe existing integer programming
methods to solve SAT by briefly and informally recalling the general proce-
dures.

2.4.1 Linear Program Relaxation

A basic method to solve an integer program is the linear program relaxation.
In this approach, the LP relaxation is achieved by replacing xi ∈ {0, 1} with
0 ≤ xi ≤ 1. Linear programming problems are far easier to handle, both
mathematically and computationally, than integer programming problems.
The linear programming relaxations of satisfiability problems are partic-
ularly easy to solve because unit resolution can be adapted to design a
complete solution method for these special linear programs [42]. The LP re-
laxation can be solved efficiently with some sophisticated implementations
of Dantzig’s Simplex method, or some variations of Karmarkar’s interior
point method [154].

Moreover, the linear programming relaxation of some special cases of
SAT has remarkably properties. Such cases are Horn formulas, Q-Horn
formulas, generalized Horn formulas. For instance, the linear program cor-
responding to a Horn formula has an integral least element that corresponds
to the unique minimal model of the Horn formula (see [42]). This leads to
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the development of particularly efficient solution algorithms based on integer
programming techniques .

Hooker early reported that by solving a linear programming of SAT, one
frequently produces an integer solution [138]. Kamath et al. used MINOS
5.1 to solve linear programming relaxation [153]. They tried some small SAT
inputs and found that the Simplex method failed to find integral solutions
to the linear programming relaxations in majority of instances tested.

2.4.2 Branch and Bound Method

Branch-and-bound (B&B) is essentially a strategy of divide and conquer.
It is a straightforward and the most successful way to solve the integer
programming problem. The idea is to systematically partition the linear
programming feasible region into manageable subdivisions and make as-
sessments of the integer programming problem based on these subdivisions.
When moving from a region to one of its subdivisions, we add one constraint
that is not satisfied by the optimal linear programming solution over the par-
ent region. So the linear programs corresponding to the subdivisions can be
solved efficiently. In general, there are a number of ways to divide the fea-
sible region, and as a consequence there are a number of branch-and-bound
algorithms.

We show the basic procedures of B&B with a simple example. The
method starts with the fractional solution given by its corresponding LP
relaxation. Then a variable of fractional solution is selected. For example,
let x1 be a variable, branch on x1 and set x1 ≤ 0 as the additional constant.
Resolve the LP relaxation with this augmented constraint. If it still produces
a noninteger solution, branch on another noninteger variable, say x2 , first
with constraint x2 ≤ 0, and resolve the LP with extra constraint x1 ≤
0 and x2 ≤ 0. This process continues until solving the augmented LP
yields an integer solution, i.e., an incumbent solution, so there is no need
to branch further at that node. Since we do not know this to be optimal, a
backtracking procedure is required to search other subregions by adding the
extra constraints x1 ≤ 0 and x2 > 0, then x1 > 0 and x2 ≤ 0, then x1 > 0
and x2 > 0, etc. We iterate the process until the optimal integer solution is
obtained.

The above process produces a binary tree. In this way, we implicitly
exhaust all possibilities and conclude with an optimal solution. Note that
each time we obtain an incumbent solution we get a new upper bound on
the minimum value of the objective function. It at the same node the LP
yields an objective function with value that exceeds the best upper bound
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obtained so far, then we can fathom that node, since any solution obtained
at its successors can only be worse.

2.4.3 Cutting Plane Method

Unlike partitioning the feasible region into subdivisions, as in branch-and-
bound approaches, the cutting plane algorithm solves integer programs by
finding a sequence of linear programming solutions until an integer solution
is obtained. It works with a single linear program, which it refines by adding
new constraints. The new constraints successively reduce the feasible region
until an integer optimal solution is found.

The idea of the cutting plane method can be illustrated from a simple
geometric interpretation. The feasible region for the integer program, i.e.,
an integer polytope, consists of those integer lattice points satisfying all
constraints. A cut is an inequality satisfied by all the feasible solutions of the
integer program. A cutting plane is a hyperplane defined by that inequality
and it conflicts with the solution x∗ of the linear programming relaxation.
The cutting plane passes between x∗ and the integer polytope and cuts off
a part of the relaxed polytope containing the optimal linear programming
solution x∗ without excluding any feasible integer points. After the cut,
the resulting linear program is solved again. If the optimal values for the
decision variables in the linear program are all integer, they are optimal;
otherwise, a new cut is derived from the new optimal linear programming
solution and appended to the constraints.

Historically, it was the first algorithm developed for integer programming
that could be proven to converge in a finite number of steps.

2.4.4 Branch and Cut Method

Within a Branch-and-Bound framework, one could think of adding cuts
in order to prune some branches of the search tree. Such procedures are
called branch-and-cut algorithms. Cuts can be generated using different
procedures, one of which is a special form of resolution called separating
resolution [139]. The procedure generates by resolution a new clause, such
that the corresponding clausal inequality cuts off the current fractionary so-
lution. Since cut generation is a relatively costing operation, it is preferable
to perform it at the first branching tree levels only, where its effect is greater.
Branch and cut methods reveal their efficiency when instance size increases.
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2.4.5 Interior Point Method

A very important advance in linear programming solution techniques was
introduced by Karmarkar [154]. While the Simplex method jumps from
a corner point to another corner point of the LP polytope until the opti-
mal solution is found, Karmarkar’s algorithm constructs an ellipsoid inside
the polytope and uses nonlinear transformations to project better solution
guesses in the interior of the polytope. Unlike the Simplex method which
approaches the optimal solution indeed by step-by-step searching and has an
exponential worstcase complexity, Karmarkar’s algorithm has been proven
to be a polynomial time algorithm.

To apply Karmarkar’s algorithm on integer programming, first the 0-1
integer program is transformed to a ±1 integer program. Then a potential
function is chosen, such that the optimal integer solution to the original IP
problem is at the point where the potential function achieves a maximum.
However, using Karmarkar’s algorithm on integer programming may get
stuck at a local minimum, i.e., it does not guarantee to find the optimal
solution by projection. Therefore, it is an incomplete algorithm.

2.4.6 Improved Interior Point Method

It is expected that a sequence of interior points

wk+1 = wk + α∆w∗

is generated such that the potential function in Karmarkar’s algorithm
is minimized. It is crucial to determine the descent direction ∆w∗ of the
potential function around wk and the step size α.

In the original Karmarkar’s algorithm, the step size α is assumed with
(0,1]. They used α = 0.5 in their experiments to solve SAT inputs. If
the potential function is well represented by the quadratic approximation
around the given point, then if we move along the Newton direction and have
the appropriate values for certain parameters, we will reach the minimum;
otherwise, recall that the step size is chosen so that it reaches a minimum of
the objective function on that line of the given descent direction. So there
is no reason to restrict α within (0,1].

This suggests the necessity to use line search to choose optimal step
size. Following this idea, Shi, Vannelli, and Vlach have recently given an
improved interior point algorithm [237]. In their algorithm, the step size α
is determined by a golden section search [177]. Experiments show significant
improvements on Karmarkar’s algorithm.
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2.4.7 Integer Programming Heuristics

Because of the computational difficulty of integer programming, a number
of heuristics have been developed. An heuristic is a techniques which finds
near-optimal solutions at a reasonable computational cost, without guaran-
tee either feasibility or optimality. Since they find approximate solutions,
they are more suitable to solve the Max-SAT version of the problem. Two
effective techniques used for this aim are the Lagrangian relaxation together
with a subgradient-based algorithm, and semidefinite programming.

Nobili and Sassano propose in [198] an algorithm for strengthening the
generalized set covering formulation of Max-SAT. This approach does not
rely on the solution of the linear relaxation, but computes a Lagrangian
bound and uses the Lagrangian multipliers to guide the generation of cutting
planes. Moreover, a recent approximation algorithm using the Lagrangian
relaxation that has been proved very effective for the (non-generalized) set
covering problem is the Volume Algorithm [11].

A semidefinite program is the problem of optimizing a linear function of
a symmetric matrix subject to linear equality constraints, and the constraint
that the matrix be positive semidefinite. Such problem can be solved within
an additive error of ε in polynomial time. For this reason, several integer
problems are approached by transforming them into semidefinite programs.
A randomized approximation algorithm for Max-2-SAT using semidefinite
programming is proposed by Goemans and Williamson in [107]. They obtain
a .7584-approximation algorithm for the overall Max-SAT problem.

De Klerk, Van Maaren and Warners in [158] derive a semidefinite pro-
gramming relaxation for SAT. They develop an incomplete algorithm for de-
tecting satisfiability. It is based on elliptic approximations of propositional
formulas ( see [178, 179]), which can be used to derive sufficient conditions
for unsatisfiability. This condition is expressed in terms of an eigenvalue
optimization problem, which in turn can be cast as a semidefinite program,
which is solved in polynomial time (to a given accuracy). Pigeon hole prob-
lems and mutilated chessboard problems are solved in polynomial time.

2.5 Local Search

Local search is a major class of discrete, unconstrained optimization proce-
dures that can be applied to a discrete search space. Such procedures can
be used to solve SAT by introducing an objective function that counts the
number of unsatisfiable clauses and solving to minimize the value of this
function [110, 111, 200, 234].
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Local search, or local optimization, is one of the primitive forms of con-
tinuous optimization applied to a discrete search space. It was one of the
early techniques proposed to cope with the overwhelming computational in-
tractability of NP-hard combinatorial optimization problems. There have
been two major periods for the development of local search. Early greedy
local search method was able to solve some small size, unconstrained path
finding problems such as TSP [174]. During the middle and late eight-
ies, more powerful techniques for randomized local search were developed.
These randomized local search algorithm can handle large size, constrained
problems such as CSP and SAT problems efficiently [239].

Given a minimization problem with objective function f and feasible
region R, a typical local search procedure requires that, with each solution
point xk ∈ R, there is a predefined neighborhood N(xk) ⊂ R. Given a
current solution point xk ∈ R, the set N(xk) is searched for a point xk+1

with f(xk+1) < f(xk). If such a point exists, it becomes the new current
solution point, and the process is iterated. Otherwise, xk is retained as a
local optimum with respect to N(xk). Then, a set of feasible solution points
is generated, and each of them is ”locally” improved within its neighborhood.
To apply local search to a particular problem, one needs only to specify the
neighborhood and the procedure for obtaining a feasible starting solution.

Local search can be efficient for two reasons. First, at the beginning of
search, a full assignment is assigned to all the variables in the search space.
Search efforts are focused on a single path in the search space. Second,
local search refines for improvement within its local neighborhood using a
testing for improvement and, if there is any improvement, takes an action
for improvement. Since the objective function has a polynomial number of
input numbers, both testing and action can be done efficiently. Little effort
is needed to generate the next solution point. A major weakness of local
search is that the algorithm has a tendency to get stuck at a locally optimum
configuration, i.e., a local minimum.

Greedy local search pursues only paths where every step leads to an
improvement, but this leads to a procedure that becomes stuck much more
often than the randomized local search. Greedy local search procedure gets
stuck in flat places as well as at local minima.

Many search techniques, such as simulated annealing [156], stochastic
evolution [226], conflict minimization [110], are either local search or varia-
tions of local search.

A search space can be roughly viewed in three levels: top level, middle
level, and bottom level. The top level is the upper open portion of the search
space with smoothing edges. Most optimization algorithms can descend
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quickly in the top level and thus perform quite well. The middle level
is the middle portion of the search space where there are relatively ”big
mountain peaks”. During the descent, the search process may encounter
problems and it may have to use some tunneling and random heuristics to
proceed. The bottom level is the bottom portion of the valleys (particular
the lowest valley) where there are many traps. The most difficult situation
is a trap where a group of local minima is confined in a ’well’. The search
process walks around the set of local minima periodically and cannot get
away without special mechanism. In general there may be many traps in a
search problem. When local search falls into a trap it may become locked
into a loop of local minima. Most algorithms do not succeed in this stage
and have difficulty continuing.

For the SAT problem, with high probability, a greedy local search will
fall into a trap much more easily. In this case some variables are updated
very quickly. The related clauses oscillate between the sat and unsat states.
The search is limited to these states. Without any help, there is little chance
of getting out to explore other states.

The above observations suggest to use multiphase search to handle the
NP-hard problems [117]. That is we may use an open search in the top
level, a peak search for searching ”coarse” peak structures in the middle
level, and a trap search for tracking ”fine” rugged trap surface structures in
the valleys.

Four components are crucial to the development of an efficient local
search algorithm for SAT. They are: (1) the min-conflict heuristics, (2) the
best-neighbor heuristics, (3) the random value/variable selection heuristics,
and (4) the trap handling heuristics.

2.5.1 The Min-Conflicts Heuristics

Different forms of min-conflict heuristics were proposed for solving the SAT
and CSP problems [112]. The min-conflict heuristics aim at performing
local conflict minimization in Boolean, discrete, and real spaces [225]. Min-
conflict heuristics are important to handle constraints in a constrained op-
timization problem.

Using inconsistency as objective, the objective function for the SAT
problem gives the number of unsatisfied clauses. A CNF is true if and
only if the objective function takes the global minimum value 0 on the cor-
responding solution point. This objective function is the basis of the design
of the SAT1, SAT2, SAT3, and G-SAT algorithms [116, 234].
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2.5.2 The Best-Neighbor Heuristics

A greedy algorithm selects the best neighbor that yields the minimum value
to the objective function and takes this best neighbor direction as the de-
scent direction of the objective function [114]. In a real search space, con-
tinuous optimization algorithms can find the best neighbor feasible solution
efficiently. A number of local and global optimization algorithms have been
developed to solve the SAT problem [114]. The first version of the G-SAT
algorithm was proposed as a greedy local search algorithm.

A greedy local search alone may become stuck at local minima much
more often and therefore may not be efficient in practice. Therefore, the best
neighbor heuristic should be used in conjunction with random value/variable
selection and trap handling heuristics described next.

2.5.3 The Random Value/Variable Heuristics

Random value assignment and random variable selection techniques are fun-
damental to the design of an effective local search algorithm for NP-hard
problems [111].

2.5.4 Random Flip Heuristic

Randomly flip the truth values of 1 ≤ k ≤ n variables in the SAT formula
[111]. This simple heuristic has been proven to be effective in improving
the performance of greedy local search algorithms. During 1988 to 1990 a
similar heuristic, random swap, was used to develop local search algorithms
for the CSP (e.g., n-queen) problems. It showed significant performance
improvement for solving large size n-queen problems [239].

2.5.5 Random Value (Assignment) Heuristics

These include: randomly select a value that generates the minimum number
of conflicts; randomly select a value if there is a symmetry (i.e., more than
one value producing the same performance); and randomly select a value for
conflict minimization when local minima are encountered [116, 174, 199]. A
simple random value assignment heuristic, random disturbance, was early
used in solving the TSP problem.

2.5.6 Random Variable (Selection) Heuristics

There are two important heuristics [116]: (1) Any Variable Heuristic: select
any variable randomly. (2) Bad Variable Heuristic: select a variable from
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the set of conflicting variables randomly [239].
The random variable selection heuristic is one of the most important

heuristics in the design of local search algorithms for NP-hard problems. It
was first used in the local search solution for the SAT problem [110] and
then used for the local search solution for the CSP (e.g., n-queen) problems
[238]. Conflicting variables in the SAT problem contribute to the unsatisfied
clauses.

The bad variable heuristic was first implemented to solve the large size
n-queen problems [238]. The bad variable heuristic was independently de-
veloped by Papadimitriou for the 2-SAT problem in 1991 [200] and was used
in the W-SAT algorithm by Selman et al. in 1994 [236].

2.5.7 Partial Random Variable Selection Heuristics

Partial variable random selection makes use of partial or alternating vari-
able selection techniques [112]. Variants of partial random selection include
partial and alternating selection of conflicting and nonconflicting variables,
a combination of partial deterministic and partial random variable selec-
tion, partial interleaved selection of the different search phases, and partial
random selection with metaheuristic control.

The simplest selection strategies include: select a variable deterministi-
cally (randomly) and select another variable randomly for conflict minimiza-
tion; select a variable deterministically (randomly) from the set of conflicting
variables and select another variable randomly for conflict minimization; se-
lect a variable deterministically and select another variable randomly from
the set of conflicting variables for conflict minimization; during certain pe-
riods of search, select a variable deterministically (randomly) and select
another variable randomly for conflict minimization; during certain peri-
ods of search, select a variable deterministically (randomly) from the set of
conflicting variables and select another variable randomly for conflict mini-
mization; during certain periods of search, select a variable deterministically
and select another variable randomly from the set of conflicting variables for
conflict minimization.

In the case of the SAT problem, a variable may be selected from the
unsatisfied clauses in a random, partially alternating, partially periodic, or
partially interleaving order. The partial and pre random variable selection
heuristics were implemented in the SAT3 algorithm in 1990 [112] and were
used to solve the large size n-queen problems. A similar heuristic to the
partial random variable selection, random walk, was developed by Selman,
Kautz, and Cohen independently in 1994 [236].
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Random and partial variable selection heuristics were introduced in the
design of SAT 1, QS2, QS3, and QS4 algorithms [112, 239]. They can
overcome the weakness of the greedy local search algorithms. Selman et al.
have recently developed and applied a number of random variable selection
heuristics to improve the performance of the greedy G-SAT algorithm [236].

2.5.8 The Trap Handling Heuristics

The search is a process of combating local minima. When the search process
is approaching the final search stage, trap handling heuristics are needed to
cope with local minima and traps. Examples are the following.

A tunneling Heuristic for the SAT Problem [116] is to flip the truth value
of a variable if it does not change the value of the objective function.

Local tracking heuristics [117] are used to track and break local loops
(a periodic occurrence of a set of local minima). Several frequently used
heuristics include: track local loop(s) when falling into a trap; give low
priority to flip to variables in a local minimum loop; give high priority to
flip to variables that lead to a new descending direction; lock and release
trapping variables periodically, adaptively, or statistically; move gently in a
trap to handle fine local structures; move strongly in a trap to handle coarse
local structures; jump out of a trap if walking inside it sufficiently long.

Multispace search heuristics [115]. Structural multispace operations have
been developed that empower a search process with an information flux
which is derived from a sequence of stepwise structural transformations.
These include multispace scrambling, extradimension transition, search space
smoothing, multiphase search, local to global passage, tabu search, and per-
turbations. They can disturb the environment of forming local minima and
facilitate efficient local search when there are many local minima.

Multiphase heuristics [111, 239, 218] are a part of multispace search
heuristics. They have been developed to adapt to the different phases of a
search process: perform a poor initial search and then a serious local search
for conflict minimization; perform a good initial search and then a serious
local search for conflict minimization; perform a good initial search, then
a rough local search, and a serious local search for conflict minimization;
perform an initial search, and then a rough local search and a serious lo-
cal search alternatively for conflict minimization; perform a rough initial
search, then a coarse local search, and finally, a fine local search for conflict
minimization.
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2.5.9 Boolean Local Relaxation

Boolean local relaxation may be viewed as a deterministic local search. It
was an early inconsistency relaxation technique developed for solving the
constraint satisfaction and satisfiability problems. For a variable having m
values, m Boolean labels are used to indicate the variables’ instantiation
to the particular Boolean values. The conflicts produced by an assignment
are coded in a set of Boolean objective functions (one for each label). The
Boolean relaxation is a local conflict minimization process [109]. During each
iteration, the algorithm checks each variable for every label and iteratively
minimizes the objective functions by flipping bits (truth values) assigned
to the labels: If the objective function does not change, keep it; If the
objective function can be reduced, keep the best (i.e., update the label),
and then report the inconsistency status. The iteration will terminate once
the inconsistency signal turns off.

The Boolean local relaxation algorithm can be combined with backtrack-
ing search for CSP/SAT applications. Because of its iterative local conflict
minimization and its direct applications to SAT/CSP, Boolean local search
made itself a predecessor of several early local search algorithms for CSP
and SAT problems.

2.5.10 Simulated Annealing Algorithm

Motivated by the method of simulated annealing, Hansen and Jaumard [127]
proposed a steepest ascent, mildest descent algorithm for the maximum
satisfiability (Max-SAT) problem. In this approach, Hansen and Jaumard
focused on a local change and defined an objective function based on a
switching variable and its related clauses. The objective function maximizes
local compensation for each variable which can be used for solving the Max-
SAT problem. The objective function can not be used for the SAT problem
unless another objective function whose global minimum corresponds to a
solution of the SAT problem is given. Furthermore, Hansen and Jaumard
used local optima checking to handle the local optimum and found it by
providing additional guidance to the search direction.

2.5.11 Randomized Local Search

A basic local search consists of an initialization stage and a search stage. At
the beginning of search, an initial random solution is chosen. The number of
unsatisfiable clauses is computed and is assigned as the value of the objective
function. During each iteration, if the objective function can increase, a
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flip operation is performed. The procedure terminates when the objective
function is reduced to zero, i.e., a solution to the given SAT instance is found.
In practice, before the objective function reduces to zero, the procedure may
become stuck at local minima.

If the local search procedure becomes stuck at a local minimum, further
progress may be achieved by using a noise perturbation to change its location
in the search space. The effectiveness with which local minima are handled
significantly affects the performance of a local search algorithm. Researchers
have proposed a number of techniques such as jumping, climbing, annealing,
and indexing to handle local minima [110].

In simulated annealing, a search process occasionally moves up rather
than down in the search space, with large uphill moves being less likely than
small ones. The probability of large uphill moves is gradually reduced as
the search progresses.

A variety of local handlers have been designed for use in the local search
algorithms. The basic idea is to generate random exchanges in some current
solution points when the search is stuck at a local minimum. The search
accepts a modified point as a new current solution not only when the value
of the objective function is better but also when it is worse [116] (Traditional
local search such as G-SAT used the greedy local descent and restart [234]).

A local handler and its activating condition(s) have significant effect on
the performance (running time and average running time) of a local search
algorithm for the SAT problem. The conditions for activating local handlers
differ from algorithm to algorithm [116]. The local handler can be called if
the objective function is not zero (an aggressive strategy). The local handler
can be called if the objective function does not increase. The local handler
can be called if the objective function does not increase or the objective
function is greater than zero for some iterations. In the last two algorithms,
the condition ’objective function does not increase’ means that the objective
value is either reduced (local descent) or remained unchanged (tunneling
heuristic).

2.5.12 Tunneling Heuristic

Instead of making a random swing in the vertical direction in the search
space, whenever a local minimum is encountered, one can tunnel through
the rugged terrain structure in a horizontal direction, moving from one local
basin to another local basin in an attempt to locate a better locally opti-
mal solution. A tunnel can be thought of as a shortcut passing through a
mountain separating points of equal elevation. Whenever a local minimum



2.5. LOCAL SEARCH 49

is encountered, a tunnel is made through a mountain to a neighboring basin
as long as this does not change/increase the objective function. Tunneling
can be used to search a region with local minima effectively. The behavior
of local search with tunneling illustrates the fact that seemingly innocuous
changes in an optimization routine can have a surprisingly large effect on
its performance.

2.5.13 Parallel Local Search

Several parallel algorithms and VLSI architectures have been developed to
accelerate CSP and the SAT problems [112]. Depending on implementations,
there are several ways of grouping variables or clauses together in parallel
so they can be evaluated simultaneously.

A computer word has 32 or 64 bits (such as the DEC Alpha machine).
The number of literals in a clause of most practical CNF formulas is much
less than 32. In a local search algorithm, therefore, one can pack all the
literals in a clause into the bits of a computer word and then evaluate all the
literals in one clause in parallel. For m clauses, instead of O(ml), it will take
O(m) time to evaluate and update the objective function. If, occasionally,
a clause has more than 32 literals, they can be packed in several computer
words and all of them can be evaluated simultaneously.

2.5.14 Complete Local Search

Local search algorithms are incomplete, i.e., they can find some solutions
for certain CNF formulas and give no answer if the CNF formula is not
satisfiable. To overcome this problem, researchers developed complete local
search algorithms to test satisfiability as well as unsatisfiability. The basic
idea in the SAT1.11 and SAT1.13 algorithms [110, 112] was to combine local
search with a systematic search procedure, keeping local search’s efficiency
while maintaining search completeness by the systematic search method. If
at a node of the search tree a solution point is found unsatisfiable, then the
algorithm backtracks and continues searching until a solution is found or
unsatisfiability is proven. Probe order backtracking is a simplified version of
complete local search. Crawford studied a complete local search algorithm
[60]. He used weights assigned to clauses to help choose branch variables.
Variables occurring in heavily weighted clauses were given precedence.
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2.5.15 Greedy Local Search

Traditional local search proceeds by taking a feasible solution point that
reduces the value of the objective function. Among many neighboring solu-
tion points, local search does not evaluate its neighbors’ relative performance
with respect to the objective function. A greedy algorithm selects the best
neighbor that yields the minimum value of the objective function and takes
this best neighbor direction as the descent direction of the objective func-
tion. In a real search space, continuous optimization algorithms can find
the best neighbor solution efficiently. Unconstrained local and global opti-
mization algorithms have been developed for solving the SAT problem (see
[111] ). In the discrete search space, a greedy local search algorithm searches
for the best neighbor solution. This requires that during each iteration the
algorithm examine all the possible moves and select one with maximum
descent.

2.5.16 Tabu Local Search

Mazure, Sais, and Gregoire proposed a tabu search algorithm, TSAT, for
satisfiability problem [188]. The basic idea behind the TSAT is to avoid us-
ing randomness in local search algorithm design. TSAT makes a systematic
use of a tabu list of variables in order to avoid recurrent flips and thus escape
from local minima. The tabu list is updated each time a flip is made. TSAT
keeps a fixed length chronologically ordered FIFO list of flipped variables
and prevents any of the variables in the list from being flipped again during
a given amount of time.

In this study, Mazure et al. found that the optimal length of the tabu
list is crucial to the algorithm’s performance. They showed that, for random
3SAT instances, the optimal length of the tabu list L(n) for TSAT is:

L(n) = 0.01875n + 2.8125

2.6 Global Optimization

A local search procedure may get stuck in a local minimum or a basin. To
escape from such local minima, global search strategies need to be developed.

Global optimization is concerned with the characterization and compu-
tation of global minima and maxima of constrained or unconstrained non-
linear problems [81, 141]. Global optimization problems belong to the class
of NP-hard problems. Most global optimization algorithms are designed as
an iterative refinement process.
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There are three aspects in designing global search strategies to solve SAT:
problem formulations and transformations, strategies to select a direction
to move, strategies to help escape from local minima.

Since a search trajectory lacks global information in a search space,
strategies to select a direction to move are either steepest descent or hill
climbing. A steepest descent approach chooses the direction with the max-
imum gradient. A hill climbing approach, on the other hand, chooses the
first point in the neighborhood of the current point that reduces the ob-
jective function. For large formulas, hill climbing methods are much faster
than steepest descent because they descend in the first direction that leads
to improvement, rather than the best one.

2.6.1 Universal SAT Input Models

In UniSAT models, we extend binary search space into real space. Subse-
quently, the SAT formula is transformed into an instance of an unconstrained
global optimization problem on IRn. All Boolean ∧ and ∨ connectives in
CNF formulas are transformed (using De Morgan laws) into + and × of or-
dinary addition and multiplication operations, respectively. The true value
of the CNF formula is converted to the 0 value of the objective function.
Given a CNF formula F from {0, 1}n to {0, 1} with m clauses C1, . . . , Cm ,
we define a real function f(y) from IRn to IR that transforms the SAT into
an unconstrained global optimization problem:

min
y∈IRn

m∑
i=1

ci(y)

where a clause function ci(y) is a product of n literal functions qi,j(yj) (1 ≤
j ≤ n)

ci(y) =
n∏

j=1

qi,j(yj)

In the UniSAT5 model [110]

qi,j(yj) =




|yj − 1| if literal xj ∈ Ci

|yj + 1| if literal ¬xj ∈ Ci

1 if neither xj nor ¬xj ∈ Ci

and in the UniSAT7 model

qi,j(yj) =




(yj − 1)2 if literal xj ∈ Ci

(yj + 1)2 if literal ¬xj ∈ Ci

1 if neither xj nor ¬xj ∈ Ci
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The correspondence between the binary variables xi and the continuous
variables yi is

xi =




1 if yi = 1
0 if yi = −1

undefined otherwise

Clearly, F has value true iff f(y) = 0 on the corresponding y ∈ {−1, 1}n.
A model similar to UniSAT5 was proposed independently in the neural net-
work area [291].

The UniSAT models transform SAT from a discrete, constrained deci-
sion problem into an unconstrained global optimization problem [111]. A
good property of the transformation is that UniSAT models establish a cor-
respondence between the global minimum points of the objective function
and the solutions of the original SAT formula. For instance, the formula

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x3)

is translated into

f(y) = |y1 − 1||y2 + 1| + |y1 + 1||y2 − 1||y3 − 1|

or
f(y) = (y1 − 1)2(y2 + 1)2 + (y1 + 1)2(y2 − 1)2(y3 − 1)2

As the iterative improvement progresses, a global minimum point may be
approached gradually. The closeness between the present solution point and
the global minimum solution point can be tested by solution point testing
or objective value testing. In practice, the search process could be stuck at
a locally optimum point. To improve the convergence performance of the
algorithm, one or more local handlers may be added.

Any existing unconstrained global optimization methods can be used
to solve the UniSAT problems (see literature). So far many global opti-
mization algorithms have been developed [110]. These include the basic
algorithms, steepest descent methods, modified steepest descent methods,
Newton’s methods, quasi-Newton methods, descent methods, cutting-plane
methods, conjugate direction methods, ellipsoid methods, homotopy meth-
ods, and linear programming methods. In each algorithm family, different
approaches and heuristics can be used to design objective functions, select
initial points, scramble the search space, formulate higher-order local han-
dlers, deflect descent directions, utilize parallelism, and implement hardware
architectures to speed up computations.



2.6. GLOBAL OPTIMIZATION 53

2.6.2 Complete Global Optimization Algorithms

In order to achieve a complete algorithms, we combine global optimization
algorithms with backtracking/resolution procedures [110]. Therefore, these
algorithms are able to verify satisfiability as well as unsatisfiability. For
small and medium size problems, backtracking is able to verify unsatisfia-
bility quickly for certain classes of formulas but is slow when it comes to
verifying satisfiability, as all possible resolutions need to be tried out before
concluding that the inference relation holds or that the input formula is
satisfiable. Recently some researchers investigated the number of solutions
of SAT formulas. Extending Iwama’s work [144], Dubois gave a combinato-
rial formula computing the number of solutions of a set of any clauses [73].
He and Carlier also studied the mathematical expectation of the number of
solutions for a probabilistic model [74]. For an incomplete SAT algorithm,
the number of solutions can have a strong effect on its computing efficiency.
For a complete SAT algorithm, however, the number of search levels plays
a crucial role.

2.6.3 Continuous Lagrangian Based Constrained Optimiza-
tion Algorithms

To avoid getting trapped in local minima, algorithms for solving these prob-
lems must have strategies to escape from local minima. Some of these
strategies, such as random restarts and tunneling, move the search to a
new starting point and start over. In the process of doing so, vital infor-
mation obtained during the descent to the current local minimum may be
lost.

One way to bring a search out of a local minimum is to formulate a SAT
problem as a constrained optimization problem. By using the force provided
by the violated constraints, the search trajectory can be brought out of a
local minimum. One way to implement this idea is compute the sum of the
constraints weighted by penalties and to update the penalties continuously
during the search. The difficulties with this approach lies in the choice of
the proper penalties.

A more systematic approach is to use a Lagrangian formulation. In this
and the next subsections, we show two Lagrangian formulations of SAT
problems, one in the continuous space and the other in the discrete space.

In order to use a Lagrangian based algorithm, a SAT problem can first
be transformed into a continuous constrained optimization problem. The
obtained problem has a scalar differentiable objective function (similar to
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the above continuous unconstrained problem) which takes the value 0 when
the formula is satisfied, and constraint that may look redundant imposing
that all clauses must be satisfied.

min
y∈D⊆IRn

F (y) =
m∑

i=1

ci(y) (2.1)

s.t. ci(y) = 0 ∀i ∈ {1, 2, . . . ,m}

where y = (y1, y2, . . . , yn), and ci(y) is defined as follows.

ci(y) =
n∏

j=1

qi,j(yj)

qi,j(yj) =




(1 − yj)2 if literal xj ∈ Ci

y2
j if literal ¬xj ∈ Ci

1 if neither xj nor ¬xj ∈ Ci

Here the correspondence between the binary variables xi and the continuous
variables yi is

xi =




1 if yi = 1
0 if yi = 0

undefined otherwise

All feasible points for the above problem are optima, but this is exactly
the concept of SAT. There are two advantages in reformulating the uncon-
strained problem into a continuous constrained problem. First, a continuous
objective value can indicate how close the constraints are being satisfied,
hence providing additional guidance in leading to a satisfiable assignment.
Second, when the search is stuck in a local minimum and some of the con-
straints are violated, the violated constraints can provide a force to lead the
search out of the local minimum. This is more effective than restarting from
a new starting point, as local information observed during the search can be
preserved.

Active research in the past two decades has produced a variety of meth-
ods for finding global solutions to nonconvex nonlinear optimization prob-
lems [141, 81, 125]. In general, transformational and non-transformational
methods are two approaches in solving these problems. Non-transformational
approaches include discarding methods, back-to-feasible-region methods, and
enumerative methods. Discarding methods [191] drop solutions once they
were found to be infeasible, and back-to-feasible-region methods [151] at-
tempt to maintain feasibility by reflecting moves from boundaries if such
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moves went off the current feasible region. Both of these methods have been
combined with global search and do not involve transformation to relax con-
straints. Last, enumerative methods are generally too expensive to apply
except for problems with linear objectives and constraints, and for bilinear
programming problems [15].

Transformational approaches, on the other hand, convert a problem into
another form before solving it. Well known methods include penalty, bar-
rier, and Lagrange-multiplier methods [177]. Penalty methods incorporate
constraints into part of the objective function and require tuning penalty
coefficients either before or during the search. Barrier methods are similar
except that barriers are set up to avoid solutions from going out of feasible
regions. Both methods have difficulties when they start from an infeasible
region and when feasible solutions are hard to find. However, they can be
combined with other methods to improve their solution quality.

In Lagrangian methods, Lagrange variables are introduced to gradually
resolve constraints through iterative updates. They are exact methods that
optimize the objective using Lagrange multipliers to meet the Kuhn-Tucker
conditions [177]. The above problem can be reformulated using Lagrange
multipliers into the following unconstrained problem.

L(y, λ) = F (y) + λT c(y) (Lagrangian function) (2.2)

L(y, λ) = F (y) + ||c(y)||22 + λT c(y) (An augmented Lagrangian func.)
(2.3)

where c = (c1(y), c2(y), . . . , cm(y)), and λT is the transpose of the set
of Lagrange multipliers. The augmented Lagrangian formulation is often
preferred because it provides better numerical stability.

According to classical optimization theory, all the extrema of (2.3),
whether local or global, are roots of the following sets of equations.

�yL(y, λ) = 0 and �λ L(y, λ) = 0 (2.4)

These conditions are necessary to guarantee the (local) optimality to
the solution of (2.1). Search methods for solving (2.3) can be classified into
local and global algorithms. Local minimization algorithms, such as gradient
descent and Newton’s methods, find local minima efficiently and work best in
unimodal problems. Global methods, in contrast, employ heuristic strategies
to look for global minima and do not stop after finding a local minimum
[201, 177]. Note that gradients and Hessians can be used in both local and
global methods.
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Local search methods can be used to solve (2.4) by forming a Lagrangian
dynamic system that includes a set of dynamic equations to seek equilibrium
points along a gradient path. These equilibrium points are called saddle-
points of (2.4), which correspond to the constrained minima of (2.1). The
Lagrangian dynamic system of equations are as follows.

dy(t)/dt = −�y L(y(t), λ(t)) and dλ(t)/dt = �λL(y(t), λ(t)) (2.5)

Optimal solutions to the continuous formulation are governed by the Saddle
Point Theorem which states that y∗ is a local minimum to the original
problem defined in (2.1) if and only if there exists λ∗ such that (y∗, λ∗)
constitutes a saddle point of the associated Lagrangian function F (y, λ).
Here, a saddlepoint (y∗, λ∗) of Lagrangian function F (y, λ) is defined as one
that satisfies the following condition.

F (y∗, λ) ≤ F (y∗, λ∗) ≤ F (y, λ∗) (2.6)

for all (y∗, λ) and all (y, λ∗) sufficiently close to (y∗, λ∗).
Note, however, that a Lagrangian search modeled by (2.5) is incom-

plete: if it does not find a solution in a finite amount of time, it does
not prove whether the original SAT problem is satisfiable or not. Hence,
infinite time will be required to prove unsatisfiability. Consequently, contin-
uous formulations are not promising in solving large SAT problems. In the
next subsection, we extend continuous Lagrangian methods to discrete La-
grangian methods. Surprisingly, discrete methods work much better and can
solve some benchmark problems that cannot be solved by other local/global
search algorithms.

2.6.4 Discrete Lagrangian Based Constrained Optimization
Algorithms

The discrete Lagrangian method is extended from the theory of continuous
Lagrangian methods. We have the following discrete constrained formula-
tion of a SAT problem.

min
y∈{0,1}n

N(y) =
m∑

i=1

Ui(y) (2.7)

s.t. Ui(y) = 0 ∀i ∈ {1, 2, . . . ,m}

Without going into all the details [263], the continuous Lagrangian method
can be extended to work on discrete problems. The discrete Lagrangian
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function is defined as follows.

L(y, λ) = N(y) + λT U(y) (2.8)

where y ∈ {0, 1}n, U(y) = (U1(y), . . . , Um(y)) ∈ {0, 1}m, and λT is the
transpose of λ = (λ1, . . . , λm) that denotes the Lagrange multipliers. Note
that λi can be continuous variables.

A saddle point (y∗, λ∗) of L(y, λ) in (2.8) is defined as one that satisfies
the following condition.

L(y∗, λ) ≤ L(y∗, λ∗) ≤ L(y, λ∗) (2.9)

for all λ sufficiently close to λ∗ and for all y whose Hamming distance
between y∗ and y is 1.

The Discrete Lagrangian Method (DLM) for solving SAT problems can
be defined as a set of difference equations,

yk+1 = yk − ∆yL(yk, λk) (2.10)

λk+1 = λk + U(yk) (2.11)

where ∆yL(y, λ) is the discrete gradient operator with respect to y
such that ∆yL(y, λ) = (δ1, . . . , δn) ∈ {−1, 0, 1}n,

∑n
i=1 |δi| = 1, and (y −

∆yL(y, λ) ∈ {0, 1}n. Informally, ∆y represents all the neighboring points of
y.

A discrete Lagrangian algorithm (DLM) implementing (2.10) and (2.11)
performs descents in the original variable space of y and ascents in the
Lagrange multiplier space of λ. In discrete space, ∆yL(y, λ) is used in place
of the gradient function in continuous space. DLM is started from either
the origin or from a random initial point. Further, λ is always set to zero.

As for descent and ascent strategies, there are two ways to calculate
∆yL(y, λ): greedy and hill-climbing, each involving a search in the range
of Hamming distance 1 from the current y (assignments with one variable
flipped from the current assignment y). In a greedy strategy, the assignment
leading to the maximum decrease in the Lagrangian function value is selected
to update the current assignment. Therefore, all assignments in the vicinity
need to be searched every time, leading to computation complexity of O(m),
where m is the number of variables in the SAT problem. In hill-climbing,
the first assignment leading to a decrease in the Lagrangian function value
is selected to update the current assignment. Depending on the order of
search and the number of assignments that can be improved, hillclimbing
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strategies are generally less computationally expensive than greedy strate-
gies. A comparison of the two strategies show that hill-climbing is orders of
magnitude faster and results in solutions of comparable quality.

The frequency in which λ is updated affects the performance of a search.
The considerations here are different from those of continuous problems. In
a discrete problem, descents based on discrete gradients usually make small
changes in L(y, λ) in each update of y because only one variable changes.
Hence, λ should not be updated in each iteration of the search to avoid
biasing the search in the Lagrange multiplier space of λ over the original
variable space of y.

In binary problems like SAT, a search may find a very small subset of
variables that can lead to no degradation in the objective function. Flipping
variables in this small subset successively may likely lead to a cycle in the
search space. To avoid such an undesirable situation, variables that have
been flipped in the recent past can be stored in a tabu list [104, 127] and
will not be flipped until they are out of the list.

Further, for large SAT problems formulated as discrete optimization
problems, the search may encounter large and flat, but suboptimal, basins.
Here, gradients in all directions are the same and the search may wander
forever. The discrete gradient operator ∆yL(y, λ) may have difficulties in
basins/plateaus because it only examines adjacent points of L(y, λ) that dif-
fer in one dimension. Hence, it may not be able to distinguish a plateau
from a local minimum.

One way to escape is to allow uphill moves. For instance, in G-SAT’s
random walk strategy [236], uphill walks are allowed based on probability
p. However, the chance of getting a sequence of uphill moves to get out a
deep basin is small since each walk is independent.

There are two effective strategies that allow a plateau to be searched.
(a) Flatmove strategy. We need to determine the time to change λ when

the search reaches a plateau. As indicated earlier, updating λ when the
search is in a plateau changes the surface of the plateau and may make it
more difficult for the search to find a local minimum somewhere inside the
plateau. To avoid this situation, a strategy called flat move [263] can be
employed. This allows the search to continue for some time in the plateau
without changing λ, so that the search can traverse states with the same
Lagrangian function value. How long should flat moves be allowed is heuris-
tic and possibly problem dependent. Note that this strategy is similar to
Selman’s “sidewaymove” strategy [236].

(b) Tabu list. This search strategy aims to avoid revisiting the same set
of states in a plateau. In general, it is impractical to remember every state
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the search visits in a plateau due to the large storage and computational
overheads. A tabu list [104, 127] can be kept to maintain the set of variables
flipped in the recent past and to avoid flipping a variable if it is in the tabu
list.

An analysis of convergence property and average time complexity can be
found in [177].

2.7 Advanced Techniques

In this section, we describe a number of advanced optimization techniques for
satisfiability testing which do not belong to previously discussed techniques.
They have been used in practical engineering applications and have proven
to be effective for certain classes of SAT.

2.7.1 Analysis and Decomposition

Truemper recently presented an impressive scheme based on the investiga-
tion of the structure of a SAT instance, called the analysis algorithm [250].
According to the structure of the {0,±1} matrix A of the system of linear
inequalities representing a SAT instance (see chapter 1), a SAT instance
defines a class Ā. Based on the insight gained into the structure of A, the
analysis algorithm assembles a solution algorithm that correctly processes
all the instances of class Ā. The analysis algorithm also computes an up-
per bound to the run time of the solution algorithm. That bound is valid
regardless of which case within Ā is being solved. This therefore gives a
performance guarantee for the solution algorithm.

In the language of computer science, one may call the analysis algorithm
a compiler that accepts A as input and that outputs a solution algorithm,
together with a performance guarantee.

The analysis algorithm carries out the following two groups of subrou-
tines. The subroutines of the first group determine whether a given A be-
longs to an easily solvable case (see next section). Specifically, it is tested
whether the given matrix A is 2-SAT, is (hidden) nearly negative, or is bal-
anced. Note that the cited properties are inherited under submatrix taking.
So, if A has one of the properties, then this is so for all instances of the class
defined by A.

The subroutines of the second group carry out five decompositions that
break down a given A. The components of each decompositions are obtained
from A by the deletion of some non-zero entry or by submatrix taking. the
latter step may be followed by the adjoining of some rows and columns.
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If A does not have one of the special properties, then the analysis algo-
rithm recursively searches for a decomposition of A into components which
in turn are processed analogously to A. For this reason the approach is
called decomposition.

Validity of the subroutines of the analysis algorithm is proved with a new
algebra called system IB that is an extension of propositional logic. Such
algebra uses three binary operators 
 (IB-multiplication), ⊕ (IB-addition),
and � (IB-subtraction). This lets represent matrix inequalities in the form
of A 
 s ≥ b, with s is a {0,±1} vector, and b a {0, 1} vector. This repre-
sentation of SAT supports the analysis of the instances with certain combi-
natorics tools. The underlying notion is to analyze the matrix A using the
new concepts of Boolean independence, Boolean rank, Boolean basis that are
adaptations of familiar concepts of linear algebra.

2.7.2 General Boolean Representations

In practice, many problems in integrated circuit design, such as logic ver-
ification, test pattern generation, asynchronous circuit design, logic opti-
mization, sequential machine reduction, and symbolic simulation, can be
expressed as Boolean satisfiability problems with arbitrary Boolean func-
tions. Many different representations have been proposed for manipulating
Boolean functions. However, many Boolean functions derived from practical
circuit design problems suffer from an exponential size in their representa-
tions, making satisfiability testing infeasible.

Most SAT algorithms work on conjunctive normal form (CNF) formulas.
Sometimes the CNF formula is not an efficient representation in practical ap-
plication problems. Many real engineering design problems use non-clausal
representations rather than the CNF formula. Algorithms in this category
may be regarded as non-clausal inference algorithms for satisfiability testing.
Compared to CNF formulas, a non-clausal, general Boolean representation
is much more compact and efficient, although the transformation of an ar-
bitrary non-clausal expression into CNF can be done in polynomial time
by introducing new variables. This will result in clause-form representation
of substantially larger sizes [100]. While this is not critical in complexity
theory, it will have serious impact in solving practical application problems.

In practice, a SAT algorithm can be made much more efficient if it
works directly on problems represented in a compact number of general
Boolean formulas rather than a large collection of CNF clauses. For a non-
clausal SAT algorithm, the evaluation of arbitrarily large, complex Boolean
functions is a key to its efficiency.
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2.7.3 Binary Decision Diagram

Ordered Binary Decision Diagrams (OBDDs) [35, 36] is an efficient repre-
sentation and manipulation method for arbitrary Boolean functions. This
representation is defined by imposing restrictions on the Binary Decision
Diagram (BDD) representation introduced by Lee [169] and Akers [4], such
that the resulting form is canonical. The OBDD representation and its
manipulation method are an extremely powerful technique in various prac-
tical applications. It is particularly useful with formulas where one needs
to consider every solution, such as cases where one must search for optimal
solutions.

Although the OBDD representation of a function may have size expo-
nential in the number of variables, many useful functions have more com-
pact representations in practice. A BDD gives a graphical representation
of Boolean functions. It is a directed acyclic graph with two types of leaf
nodes, 0 and 1. Each nonleaf node is labeled with a Boolean variable v and
has two outgoing edges labeled 0 (the left edge) and 1 (the right edge). A
BDD can be utilized to determine the output value of the function by exam-
ining the input values. Every path in a BDD is unique, i.e., no path contains
nodes with the same variables. This means that if we arbitrarily trace out a
path from the function node to the leaf node 1, then we have automatically
found a value assignment to function variables for which function will be 1
regardless of the values of the other variables.

Given a simple example Boolean function F = (a + b)(a + c), the BDD
of function F can be constructed to determine its binary value, given the
binary values of variables a, b, and c. At the root node of BDD, we begin at
the value of variable a. If a = 1, then F = 1 and we are finished. If a = 0,
we look at b. If b = 0, then F = 0 and again we are finished. Otherwise, we
look at c, its value will be the value of F .

It is well known that the BDD size for a given function depends on the
variable order chosen for the function (e.g., a,b,c). Since the early introduc-
tion of BDDs, several extensions have been proposed to reduce BDD sizes in
practical applications. In an ordered BDD, the input variables are ordered,
and every path from the root node to the leaf node visits the input vari-
ables in an ascending order. In practice, a simple topological based ordering
heuristic [363] yields small size BDDs for practical Boolean instances. A re-
duced ordered BDD is an ordered BDD where each node represents a unique
logic function. Bryant showed that the reduced ordered BDD of a Boolean
function is well-defined and is a canonical representation of the function; i.e.,
two functions are equivalent if their reduced ordered BDDs are isomorphic.
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The DBDD is efficient to search for optimal solutions for arbitrarily
complicated Boolean expressions. In VLSI circuit design, many practical
problems require the enumeration of all possible assignments for a given
Boolean formula. The best assignment that yields the minimum cost (e.g.,
minimal circuit structure, minimum chip area, and maximum circuit speed)
is then selected from these possible assignments. Since most algorithms for
satisfiability testing are designed for finding one truth assignment, they are
impractical for selecting an optimal assignment. BDDs are very useful in
such situations, since a simple and incremental enumeration of all possible
paths from the root node to the leaf node 1 yields all the truth assignments.
Thus, once the BDD for a Boolean function has been constructed, it is
straightforward to enumerate all assignments or find an optimal solution.

The BDD method can effectively handle small and medium size formulas.
For larger size formulas, a partitioning into a set of smaller subformulas
before applying the BDD algorithms has been suggested. This approach
works well for asynchronous computer circuit design problems [119].

2.7.4 The Unison Algorithms

The Unison algorithm [240] is implemented by using a network of multiple
universal Boolean elements (UBEs). The topology of the Unison network
specifies the structure of Boolean functions. By dynamically reconfiguring
the UBE’s functionality, Unison is adaptable to evaluate general Boolean
functions representing the SAT/CSP problems.

The total differential, dF , of a Boolean function F represents the dif-
ference in the function value due to the difference in input values. For a
Boolean function F (x, y) of two variables, x and y, the total differential is
calculated from differences in input, dx and dy, as:

dF = Fxdx ⊕ Fydy ⊕ Fxydxdy

where ⊕ is the Exclusive-OR operation. Let F (x, y) be a Boolean func-
tion of two dependent variables x and y; i.e., x = G(x1, x2) and y =
H(y1, y2). In this case, the total differential dF is:

dF (G(x),H(y)) = FxdG(x1, x2) ⊕ FydH(y1, y2) ⊕ FxydG(x1, x2)dH(y1, y2)

It can be observed that the value of dF depends on total differentials
dG and dH, rather than the function values G(x1, x2) and H(y1, y2). By
recursively applying the above, the total differential dF can be evaluated
based on only total differentials of the independent variables.
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The Unison algorithm works in two phases: initialization and evaluation.
The initialization phase computes partial derivatives that determine the
function to be evaluated in the evaluation phase. The partial derivatives
are constant during the evaluation phase. The evaluation phase reads input
values and computes the final results. The calculation is performed in a
bottom–up fashion, starting from the independent variables.

Combined with parallel evaluation, partial evaluation, and incremental
evaluation techniques, Unison can be incorporated into a variety of search
and optimization algorithms for satisfiability testing. It is especially im-
portant in realtime applications where hardware processing with different
Boolean functions is required. It provides an efficient approach for fast non-
clausal processing of SAT inputs.

2.7.5 Multispace Search

Many search and optimization methods have been developed in combinato-
rial optimization, operations research, artificial intelligence, neural networks,
genetic algorithms, and evolution programming. An optimization algorithm
seeks a value assignment to variables such that all the constraints are satis-
fied and the performance objective is optimized. The algorithm operates by
changing values to the variables in the value space. Because value changing
does not affect the formula structure and the search space, it is difficult for a
value search algorithm to handle the pathological behavior of local minima.

Multispace search is a new optimization approach developed in recent
years [115]. The idea of multispace search was derived from principles of
non-equilibrium thermodynamic evolution that structural changes are more
fundamental than quantitative changes, and that evolution depends on the
growth of new structure in biological system rather than just information
transmission. A search process resembles the evolution process, and struc-
tural operations are important to improve the performance of traditional
value search methods.

In multispace search, any active component related to the given input
structure can be manipulated, and thus, be formulated as an independent
search space. For a given optimization problem, for its variables, values,
constraints, objective functions, and key parameters (that affect the input
structure), we define the variable space, the value space (i.e., the traditional
search space), the constraint space, the objective function space, the pa-
rameter space, and other search spaces, respectively. The totality of all the
search spaces constitutes a multispace.

The basic idea of multispace search is simple. Instead of being restricted
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in the value space, the multispace is taken as the search space. In the
multispace, components other than value can be manipulated and optimized
as well. During the search, a multispace search algorithm not only alters
values in the value space; it also walks across the variable space and other
active spaces, changes dynamically the input structure in terms of variables,
parameters, and other components, and constructs systematically a sequence
of structured, intermediate instances.

Each intermediate instance is solved by an optimization algorithm, and
the solution found is used as the initial solution to the next intermediate
instance. By interplaying value optimization with structured operations,
multispace search incrementally constructs the final solution to the search
instance through a sequence of structured intermediate instances. Only
at the last moment of the search, the reconstructed instance structure ap-
proaches the original instance structure, and thus the final value assignment
represents the solution of the given search input.

The major structural operations in multispace search [115] include mul-
tispace scrambling [115], extradimension transition (e.g., air bridge, real
dimension, and extra dimension) [112], search space smoothing [120], multi-
phase search [112, 117], local to global passage [111], tabu search [104], and
perturbations (e.g., jumping, tunneling, climbing, and annealing) [112]. In
the next two subsections we describe two preprocessing methods for satisfi-
ability testing in multispace search: partitioning input size and partitioning
variable domain.

2.7.6 Partitioning to Reduce Input Size

Partitioning a large input into a set of smaller subinstances may permit
efficient solution of the input. There are two partitioning methods, each
consisting of a partitioning, a conquer, and an integration procedure. For
constructive partitioning (e.g., divide and conquer), partitioning, conquer,
and integration procedures are well defined and easy to implement. For de-
structive partitioning, it is difficult to design the partitioning and integration
procedures.

Such procedure was developed to solve problems of automated design
and synthesis of asynchronous circuits [168]. The design of asynchronous
control and interface circuits, however, has proven to be an extremely com-
plex and error-prone task. The core problem in asynchronous circuit syn-
thesis can be formulated as an instance of SAT to satisfy the complete state
coding (CSC) constraints, i.e., the SAT-Circuit problem. In this practical
application problem, an optimal solution with minimal circuit layout area
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is sought.
The partitioning preprocessor [119], at the beginning, decomposes a large

size SAT formula that represent the given asynchronous circuit design into
a number of smaller, disjoint SAT formulas. Each small size SAT formula
can be solved efficiently. Eventually, the results of these subformulas are
integrated together and contribute to the solution of the original formula.
This preprocessor avoids the problem of solving very large SAT formulas
and guarantees to finding one best solution in practice. This partitioning
preprocessing is destructive since, during the search, extra variables are
introduced to resolve the critical CSC constraints.

2.7.7 Partitioning Variable Domains

A variable domain contains values to be assigned to variables. The size
of a variable domain, along with the number of variables, determine the
computational complexity of an optimization algorithm. From a theoretical
point of view, even a small reduction in the variable domain would result in
significant improvements in computing efficiency. It is, however, difficult to
make use of variable-domain reduction techniques in solving optimization
problems. Recently, Wang and Rushforth have studied mobile cellular net-
work structures and developed a novel variable-domain reduction technique
for channel assignment in these networks [265].

The rapid growth of mobile cellular communication services has created
a direct conflict to the limited frequency spectrum. Channel assignment is
an important technique to the efficient utilization of frequency resource for
mobile cellular communications. Among several channel assignment prob-
lems, the fixed channel assignment (FCA) is essential to the design and
operation of cellular radio networks. An FCA algorithm assigns frequency
channels to calls such that the frequency separation constraints are satisfied
and the total bandwidth required by the system is minimized. By encoding
the constraints into clauses, the problem becomes an instance of SAT. For
a given cellular communication system, there are numerous ways to assign
a channel to a call request. An optimal channel assignment decision can
significantly improve the cellular system capacity without requiring extra
cost. For a fixed mobile cellular system, the capacity of the cellular sys-
tem is mainly determined by the performance of the channel assignment
algorithms.

Wang and Rushforth’s channel assignment algorithm was developed based
on the structure of cellular frequency reuse patterns. Using their variable
domain partitioning technique, they partition a mobile cellular network with
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larger variable domain into two networks: a minimum network with a fixed
and small variable domain (due to the known frequency reuse patterns) and a
difference network with an even smaller variable domain [265]. Channels are
assigned separately to the minimum network and to the difference network,
and the superposition of these two assignments constitutes an assignment
to the original network.

2.7.8 Parallel SAT Algorithms and Architectures

Many parallel SAT and CSP algorithms have been developed to speed up
search computation [257, 171, 228].

However, algorithms running on loosely-coupled, multiprocessor parallel
computers offer limited performance improvements for solving SAT.

First, in the worst case, a SAT algorithm may suffer from the exponential
growth in computing time. In order to solve a SAT formulas effectively, we
will need a computer that has much larger speedup than what is available
today. This computer will require the integration of at least a few million
processors in a tightly-coupled manner. This is infeasible in the current
computer system integration technology.

Second, as the processor gets much faster, the communication overhead
among processors in a parallel machine becomes a bottleneck, which may
often take 70% to even 90% of the total computing time [148]. Ideally
one would expect the speedup on a parallel computer to increase linearly
with increasing number of processors. Due to serious off-processor com-
munication delays, after certain saturation point, adding processors does
not increase speedup on a looselycoupled parallel machine. Processor com-
munication delay also makes process creation, process synchronization, and
remote memory access very expensive in a looselycoupled multiprocessor
system. For this reason, the speedup on a multiprocessor is normally less
than the number of processors used. With simple SAT algorithms, however,
speedup is sometimes greater than the number of processors.

In order to use a tightly-coupled parallel architecture for SAT compu-
tation, one must map a computing structure to the input structure and
must reduce the total number of sequential computing steps through a large
number of symmetrical interactions among simple processors [109]. Sev-
eral different approaches, e.g., special-purpose parallel VLSI architectures
[120], bitparallel programming on sequential machines [112, 240], and tight
programming on parallel computer systems, are promising alternatives in
this direction. These approaches are capable of providing a tight mapping
between a formula structure and a computing structure, resulting in faster
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computation. Parallel processing does not change the worstcase complexity
of a SAT algorithm unless one has an exponential number of processors.
Parallel processing, however, does delay the effect of exponential growth of
computing time, allowing one to solve larger size instance of SAT.

2.8 Special Subclasses of SAT

Certain subclasses of SAT that are known to be solved in polynomial time
have been identified and explored. A given formula can be preprocessed and
examined to determine whether it is a member of a polynomialtime solvable
subclass of SAT. If so, a special, fast algorithm can be brought to bear on
the formula. Otherwise, a portion of a given formula may a member of such
a subclass and its solution may make solving the given formula easier.

2.8.1 2-SAT

A CNF formula containing clauses of one or two literals only is called 2-SAT
formula, and is solved in linear time by applying unit resolution [8, 77].

2.8.2 Horn and Extended Horn Formulas

A CNF formula is Horn if every clause in it has at most one positive literal.
This class is widely studied, in part because of its close association with
Logic Programming. Horn formulas can be solved in linear time using unit
resolution [71, 143, 233].

The class of extended Horn formulas was introduced by Chandru and
Hooker [42] who were looking for conditions under which a Linear Program-
ming relaxation could be used to find solutions to propositional formulas. A
theorem of Chandrasekaran [46] characterizes sets of linear inequalities for
which 0-1 solutions can always be found (if one exists) by rounding a real
solution obtained using an LP relaxation. Extended Horn formulas can be
expressed as linear inequalities that be long to this family of 0-1 problems.
The following graph-theoretic characterization, taken from [244], is simpler
than the LP characterization.

Let C be a clause constructed from a variable set V , and let R be a
rooted directed tree with root s (i.e., a directed tree with all edges directed
away from s) and with edges uniquely labeled with variables in V . Then
C is extended Horn w.r.t. R if the positive literals of C label a (possibly
empty) dipath P of R, and the set of negative literals in C label an edge-
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disjoint union of dipaths Q1, Q2, . . . , Qt of R with exactly one of the following
conditions satisfied:

1. Q1, Q2, . . . , Qt start at the root s.

2. Q1, Q2, . . . , Qt−1 start at the root s and Qt and P start at a vertex
q �= s (if P is empty, Qt can start from any vertex).

A clause is simple extended Horn w.r.t. R if it is extended Horn w.r.t. R
and only condition 1 above is satisfied. A CNF formula is (simple) extended
Horn w.r.t. R if each of its clauses is (simple) extended Horn w.r.t. R.
A formula is (simple) extended Horn if it is (simple) extended Horn w.r.t.
some such rooted directed tree R.

One tree R for a given Horn formula is a star (one root and all leaves
with an edge for each variable in the formula). Hence, the class of extended
Horn formulas is a generalization of the class of Horn formulas.

Chandru and Hooker [42] showed that unit resolution alone can deter-
mine whether or not a given extended Horn formula is satisfiable. A satis-
fying truth assignment for a satisfiable formula may be found by applying
unit resolution, setting values of unassigned variables to 1/2 when no unit
clauses remain, and rounding the result by a matrix multiplication. This
algorithm cannot, however, be reliably applied unless it is known that a
given formula is extended Horn. Unfortunately, the problem of recognizing
extended Horn formulas is not known to be solved in polynomial time.

2.8.3 Formulas from Balanced Matrices

The class of formulas from balanced (0,±1) matrices, which we call bal-
anced formulas here, has been studied by several researchers (see [54] for a
detailed account of balanced matrices and a description of balanced formu-
las). The motivation for this class is the question, for SAT, when do Linear
Programming relaxations have integer solutions?

Express a CNF formula of m clauses and n variables as an m×n{0,±1}
matrix M of the system of linear inequalities representing a SAT instance
(see chapter 1). A CNF formula is a balanced formula if in every submatrix
of M with exactly two nonzero entries per row and per column, the sum of
the entries is a multiple of four [247].

Let a CNF formula be cast, in standard fashion, as a linear programming
problem of the form {x : Mx ≥ 1 − n(M), 0 ≤ x ≤ 1} where n(M) is the
number of negated literals in every clause. If M is balanced, then for every
submatrix S of M , the solution to {x : Sx ≥ 1−n(S), 0 ≤ x ≤ 1} is integral.
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From this follows that balanced formulas may be solved in polynomial time
using linear programming.

Balanced formulas have the property that, if every clause contains more
than one literal, then for every variable x there are two satisfying truth as-
signments, one with x = True and one with x = False. Thus, the following
is a simple linear time algorithm for finding solutions to known balanced
formulas [54]. Apply unit resolution to the given formula. If a clause is
falsified, the formula is unsatisfiable. Otherwise, repeat the following as
long as possible: choose a variable and set its value to true, then apply unit
resolution. If a clause becomes falsified, then the formula is unsatisfiable,
otherwise all clauses have been satisfied by the assignment resulting from
the variable choices and unit resolution. Unlike extended Horn formulas,
balanced formulas are known to be recognized in polynomial time [54].

2.8.4 Single-Lookahead Unit Resolution

This class was developed as a generalization of other classes including Horn,
extended Horn, simple extended Horn, and balanced formulas [231]. It is
peculiar in that it is defined based on an algorithm rather than on properties
of formulas. The algorithm, called SLUR, selects variables sequentially and
arbitrarily and considers both possible values for each selected variable. If,
after a value is assigned to a variable, unit resolution does not result in
a clause that is falsified, the assignment is made permanent and variable
selection continues. If all clauses are satisfied after a value is assigned to a
variable (and unit resolution is applied), the algorithm returns a satisfying
assignment. If unit resolution, applied to the given formula or to both
subformulas created from assigning values to the selected variable on the
first iteration, results in a clause that is falsified, the algorithm reports that
the formula is unsatisfiable. If unit resolution results in falsified clauses as
a consequence of both assignments of values to a selected variable on any
iteration except the first, the algorithm reports that it has given up.

A formula is in the class SLUR if, for all possible sequences of selected
variables, SLUR does not give up on that formula. SLUR takes linear time
with the modification, due to Truemper [247], that unit resolution be ap-
plied simultaneously to both branches of a selected variable, abandoning one
branch if the other finishes first without falsifying a clause. Note that due
to the definition of this class, the question of class recognition is avoided.

All Horn, extended Horn, and balanced formulas are in the class SLUR.
Thus, an important outcome of the results on SLUR is the observation that
no special preprocessing or testing is needed for a variety of special subclasses
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of SAT when using a reasonable variant of the DPL algorithm.
A limitation of all the classes above is that they do not represent many

interesting unsatisfiable formulas. There are several possible extensions to
SLUR which improve the situation. One is to add a 2-SAT solver to the
unit resolution step. This extension is at least able to handle all 2-SAT for-
mulas which is something SLUR cannot do. This extension can be elegantly
incorporated into SLUR due to an observation of Truemper: ”Whenever
SLUR completes a sequence of unit resolutions, and if at that time the re-
maining clauses are nothing but a subset of the original clauses (which they
would have to be if all clauses have at most two literals), then effectively the
SLUR algorithm can start all over. That is, if fixing of a variable to both
values leads to an empty clause, then the formula has been proved to be
unsatisfiable. Thus, one need not augment SLUR by the 2-SAT algorithm,
because the 2-SAT algorithm (at least one version of it) does exactly what
the modified SLUR does.”

Another extension of SLUR is to allow a polynomial number of back-
tracks, giving up if at least one branch of the DPL tree does not terminate
at a leaf where a clause is falsified. Thus, unsatisfiable formulas with short
DPL trees can be solved. However, such formulas are uncommon.

2.8.5 q-Horn Formulas

This class of propositional formulas was developed by Boros, Crama, Ham-
mer, Saks, and Sun in [24, 27]. We choose to characterize the class of q-Horn
formulas as a special case of monotone decomposition of matrices [248, 250].

Express a CNF formula of m clauses and n variables as an m×n{0,±1}
matrix M of the system of linear inequalities representing a SAT instance
(see chapter 1). Consider the monotone decomposition of M , where columns
are scaled by -1 and the rows and columns are partitioned as follows.

(
A1 E

D A2

)

A1 has at most one +1 entry per row, D contains only -1 or 0 entries,
A2 has no restrictions other than the three values of -1, 0, +1 for each entry,
and E has only 0 entries.

If the monotone decomposition of M is such that A2 has no more than
two non-zero entries per row, then the formula represented by M is q-Horn.

A recent result by Truemper [250] can be used to find a monotone de-
composition for a matrix associated with a q-Horn formula in linear time.
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Once a q-Horn formula is in its decomposed form it can be solved in linear
time as follows. Treat submatrix A1 as a Horn formula and solve it in linear
time using a method such as in [71, 143, 233] which returns a minimum,
unique truth assignment for the formula with respect to true. If the Horn
formula is unsatisfiable then the q-Horn formula is unsatisfiable. Otherwise,
the returned assignment satisfies A1 and some or all rows of D. The set
of true variables in every truth assignment satisfying A1 contains the set of
variables true in the returned minimum, unique truth assignment. There-
fore, since elements of D are either 0 or -1, no truth assignment satisfying
A1 can satisfy any rows of D that are not satisfied by the minimum unique
truth assignment.

Hence, the only way A1 and D both can be satisfied is if A2, minus the
rows collinear with those of D that are satisfied by the minimum, unique
truth assignment, can be satisfied. Since A2 represents a 2-SAT formula,
any subset is also 2-SAT and can be solved in linear time. If the answer
is unsatisfiable then the q-Horn formula is unsatisfiable; if the answer is
satisfiable then such a satisfying assignment plus the minimum, unique truth
assignment returned earlier are a solution to the q-Horn formula.

The developers of the class q-Horn also offer a linear-time solution to
formulas in this class. The main result of [27] is that a q-Horn formula can
be recognized in linear time. See [23] for a linear-time algorithm for solving
q-Horn formulas.

Formulas in the class q-Horn are thought to be close to what might
be regarded as the largest easily definable class of polynomially solvable
propositional formulas because of a result due to Boros, Crama, Hammer,
and Saks [24]. Let {v1, v2, . . . vn} be a set of Boolean variables, and Pk and
Nk, Pk ∩ Nk = φ be subsets of {1, 2, . . . , n} such that the k-th clause in a
CNF formula is given by ∨

i∈Pk

vi

∨
i∈Nk

¬vi

Construct the following system of inequalities:
∑
i∈Pk

αi +
∑

i∈Nk

(1 − αi) ≤ Z k = 1, 2, . . . ,m, 0 ≤ αi ≤ 1 i = 1, 2, . . . , n

where Z ∈ IR+. If all these constraints are satisfied with Z ≤ 1 then the
formula is q-Horn. On the other hand, the class of formulas such that the
minimum Z required to satisfy these constraints is at least 1+1/nε, for any
fixed ε < 1, is NP-complete. For more information on the subject of q-Horn
formulas see [250].
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2.8.6 Renamable Formulas

Suppose clauses of a CNF formula F are constructed from a set V of vari-
ables and let V ′ ⊂ V . Define switch(F , V ′) to be the formula obtained as
follows: for every v ∈ V ′, reverse all unnegated occurrences of v to negated
occurrences and all negated occurrences of v to unnegated occurrences. For
a given formula F , if there exists a V ′ ⊂ V such that switch(F , V ′) is
Horn, extended Horn, etc., then the formula is said to be renamable Horn,
renamable extended Horn, etc., respectively.

The algorithms given above work even if a given formula is renamable
to a formula in the class for which they apply. Additional classic references
to Horn renamability are [170] and [9]. It is interesting to note that there
exist formulas in the class of SLUR formulas that are not members of either
renamable extended Horn formulas or balanced formulas [231].

2.8.7 Formula Hierarchies

Some sets of clauses not falling into one of the polynomially solvable classes
defined above may be reduced to “equivalent” formulas that are members
of at least one of these classes. If such reductions are efficient, these sets
can be solved in polynomial time. Such reductions can take place in stages
where each stage represents a class of polynomially solved formulas, and
lower stages represent classes of perhaps lower time complexity than classes
represented by higher stages. The lowest stage is a polynomially solved base
class, such as one of the classes above.

An example of such a hierarchy is found in [95]. The base class, at stage
0, is Horn. Consider a stage 1 formula that is not Horn. By definition of
the hierarchy, there is a variable v which, if set to true, leaves a set of non-
satisfied clauses and non-falsified literals that is Horn. If this Horn formula is
found to be satisfiable, we can conclude the original formula is. Otherwise,
setting v to false leaves a set of clauses that is a stage 1 formula (empty
formulas are considered to belong to every stage). Thus, the above process
can be repeated (on stage 1 formulas) to exhaustion. Since it takes linear
time to solve Horn formulas and in the worstcase a linear number of Horn
systems must be considered, the process for solving formulas at stage 1 has
quadratic complexity.

The above concept can be expanded to higher stages to form a hierarchy:
at stage i, when setting v to true, a subformula is at stage i − 1, and when
setting v to false, a sub-formula is at stage i. Thus, solutions to stage i
formulas are carried out recursively leading to a time complexity that is
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bounded by mi. An alternative way to solve formulas at stage i in the
hierarchy is to use i-resolution (resolution is not applied unless at least one
clause has at most i literals) [37].

The only remaining question is to determine whether a given formula is
a stage i formula. This can be done with a bottom-up approach described
in [95]. For other information on such Hierarchies see, for example, [61, 97].

2.8.8 Pure Implication Formulas

Pure implication formulas are defined recursively as follows:

• A variable is a pure implication formula.

• If F1 and F2 are pure implication formulas then (F1 ⇒ F2) is a pure
implication formula.

Eliminating parentheses on right to left associativity, a pure implication
formula can be written F1 ⇒ F2 ⇒ . . . ⇒ Fp ⇒ z, where z is a variable. We
call the z variable of a formula the right-end variable.

The satisfiability problem is trivial for a pure implication formula but
the problem of falsifiability is NP-complete even if all variables except the
rightend variable occur at most twice in the formula. Furthermore, the com-
plexity of determining falsifiability seems to increase at least exponentially
with the number of occurrences of the rightend variable [134]; this yields a
hierarchy of classes starting from linear time solvability and going through
NP-completeness. This is possibly due to the fact that the expressive power
of pure implication formulas at the lower levels of the hierarchy is extremely
limited. Despite this lack of expressibility, it seems that the lower levels of
the hierarchy are incomparable with other special polynomial timesolvable
classes such as 2-SAT and SLUR. More details can be found in [118].

2.8.9 Easy class for Nonlinear Formulations

In some restricted cases, nonlinear methods have polynomial time complex-
ity. Thus, the rich literature on this subject can be carried over to the
domain of propositional satisfiability to provide low complexity algorithms
for SAT under corresponding conditions. More details can be found in [118].

2.8.10 Nested and Extended Nested Satisfiability

The complexity of nested satisfiability has been studied in [161]. That study
was inspired by Lichtenstein’s theorem of planar satisfiability [172]. Index
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all variables in a CNF formula. A clause C1 straddles a clause C2 if the index
of a literal of C2 is strictly between two indices of literals of C1. Two clauses
overlap if they straddle each other. A formula is nested if no two clauses
overlap. The problem of determining satisfiability for nested formulas, the
clauses ordered so that clause Ci does not straddle clause Cj when i < j,
can be solved in linear time [161].

An extension to nested satisfiability has been proposed in [128]. This
extension can be recognized and solved in linear time.

2.9 Probabilistic and Average-Case Analysis

Probabilistic and average-case analysis can give useful insight into the ques-
tion of what SAT algorithms might be effective under certain circumstances.
Sometimes, one or more structural properties shared by each of a collection
of formulas may be exploited to solve such formulas efficiently; or structural
properties might force a class of algorithms to require superpolynomial time.
Such properties may be identified and then, using probabilistic analysis, one
may hope to argue that these properties are so common for a particular class
of formulas that the performance of an algorithm or class of algorithms can
be predicted for most of the formulas in the class.

Algorithms can be developed based on probabilistic analysis. We men-
tion the two best positive results to date and one negative result. The first
algorithm, called SC for Short Clause, iteratively selects a variable and as-
signs it a value until either a solution is found or it gives up because it
has reached a dead end. Such an assignment may satisfy some clauses and
falsify some literals. There is no backtracking in SC. Variables are selected
as follows: if there is a clause with one non-falsified literal, choose the vari-
able and value that satisfies that clause; otherwise, if there is a clause with
two non-falsified literals, choose one of the variables and value that satis-
fies that clause; otherwise, choose the variable arbitrarily. This algorithm
is a restricted version of GUC [45] (Generalized Unit Clause) that always
chooses a variable and value that satisfies a clause with the fewest number
of nonfalsified literals. The analysis of SC is given in [51]. By adding a
limited amount of backtracking to GUC, Frieze and Suen get an algorithm
for 3-SAT, called GUCB, that finds a satisfying assignment, in probability,
when m/n < 3.003 [93].

Finally, we mention the important result in [50] that resolution proofs
must be exponentially large, in probability, for random unsatisfiable SAT
formulas generated with fixed clause length and fixed ratio m/n.



Chapter 3

A Complete Adaptive Solver

3.1 Introduction

We describe here a complete approach to propositional satisfiability which
makes use of a new adaptive branching rule. Moreover, we use a new search
framework to speed-up the procedure while preserving completeness. In
order to introduce it, let us recall from chapter 2 some element charac-
terizing enumeration procedures. Branching techniques, sometimes called
Davis-Putnam-Loveland [64, 86] variants, are the most used among complete
methods, and they result to be the more reliable in solving hard instances.

They have the following general structure:

DPL scheme

1. Choose a variable according to some branching rule, e.g. [18, 64, 101,
146]. Every reasonable branching rule gives priority to variables ap-
pearing in unit clauses (i.e. clauses containing only one literal).

2. Fix that variable to a truth value and cancel from the formula all
satisfied clauses and all falsified literals, because they would not be
able to satisfy the clauses in which they appear.

3. If an empty clause is obtained, i.e. every literal is deleted from a clause
which is still not satisfied, that clause would be impossible to satisfy.
We therefore need to backtrack and change former choices. Usually,
we change the last truth assignment, by switching its truth value, or,
if both of them are already tried, the last but one, and so on. This
means a depth-first exploration of the search tree.

75
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The above is repeated until one of the two following conditions is
reached:

- a satisfying solution is found: the formula is satisfiable.

- an empty clause is obtained and every truth assignment has been
tried, i.e. the branching tree is completely explored: the formula
is unsatisfiable.

A crucial choice is the adopted branching rule. In fact, although it does
not affect complexity of the worst case, it shows its importance in the average
case, which is the one we have to deal with in real world.

We propose a technique to detect hard subsets of clauses. Evaluation of
clause hardness is based on the history of the search, and keeps improving
throughout the computation, as illustrated in section 2. Our branching rule
consists in trying to satisfy at first such hard sets of clauses, while visiting a
clause-based branching tree [39, 135], as showed in section 3. Moreover, we
develop a search technique that can speed-up enumeration, as explained in
section 4. It is essentially based on the idea of considering only a hard subset
of clauses (a core, as introduced in [184]), and solve it without propagating
assignments to clauses out of this subset. Subsequently, we extend such
partial solution to a bigger subset of clauses, until solving the whole formula.
The proposed procedure is tested on a set of artificially generated hard
problems from the Dimacs collection. Results are in section 5.

3.2 Individuation of hard clauses

Although a truth assignment S satisfies a formula F only when all Cj are
satisfied, there are subsets P ⊂ F of clauses which are more difficult to
satisfy, i.e. which have a small number of satisfying truth assignment S,
and subsets which are rather easy to satisfy, i.e. which have a large number
of satisfying truth assignment S. In fact, every clause Cj actually forbids
some of the 2n possible truth assignments.

Hardness of F is typically not due to a single clause in itself, but to
a combination of several, or, in other words, to the combinations of any
generic clause with the rest of the clauses in F . Therefore, we will speak
about the difficulty of a clause when being part of the particular instance
we are solving, and this would often be implicit. The same clause can, in
fact, make difficult an instance A, because it combines in an unfortunate
way with other clauses, while let another instance B be easy.
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The following is an example of a P ⊂ F constituted by short clauses
containing always the same variables:

. . . Cp = (α1 ∨ α2), Cq = (¬α1 ∨ ¬α2), Cr = (α1 ∨ ¬α2), . . .

P restricts the set of satisfying assignment for F to those which have
α1 = True and α2 = False. Hence, P has the falsifying assignments:

S1 = {α1 = False, α2 = False, . . .}

S2 = {α1 = True, α2 = True, . . .}

S3 = {α1 = False, α2 = True, . . .}

Each Si identifies 2n−2 (2 elements are fixed) different points of the
solution space. Thus, we forbid 3(2n−2) points. This number is as much as
three forth of the number 2n of points in the solution space.

On the contrary, an example of P ⊂ F constituted by long clauses
containing different variables is:

. . . Cp = (α1∨¬α2∨α3), Cq = (α4∨¬α5∨α6), Cr = (α7∨¬α8∨α9), . . .

In this latter case, P has the falsifying assignments:

S1 = {α1 = False, α2 = True, α3 = False, . . . . . . . . .}

S2 = {. . . , α4 = False, α5 = True, α6 = False, . . . . . .}

S3 = {. . . . . . , α7 = False, α8 = True, α9 = False, . . .}

Each Si identifies 2n−3 (3 elements are fixed) points of the solution space,
but this time the Si are not pairwise disjoint. 2n−6 of them falsifies 2 clauses
at the same time (6 elements are fixed), and 2n−9 falsifies 3 clauses at the
same time (9 elements are fixed). Thus, we forbid 3(2n−3) − 3(2n−6) +
(2n−9) assignments. This number, for values of n we deal with, is much less
then before. Hence, this P does not restrict too much the set of satisfying
assignment for F .

Starting assignment by satisfying the more difficult clauses, i.e. those
which admit very few satisfying truth assignments, or, in other words, repre-
sent the more constraining relations, is known to be very helpful in reducing
backtracks [19, 135]. This holds because, if such clauses are considered some-
where deep in the branching tree, where many possible truth assignments
are already dropped, they would probably result impossible to satisfy, and
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would cause to backtrack far. If, on the contrary, such clauses are consid-
ered at the beginning of the branching tree, they would cause to drop a
lot of truth assignments, but they would be satisfied earlier, or, if this is
not possible (because they are an unsatisfiable set), unsatisfiability would
be detected faster. Indeed, there would be no need to backtrack far. As
for clauses considered deep in the branching tree, they should be the easier
ones, which would probably not cause any backtrack.

The point is how to find the hardest clauses. An a priori parameter
is the length, which is quite inexpensive to calculate. In fact, unit clauses
are universally recognized to be hard, and the procedure of unit propaga-
tion, which is universally performed, satisfies them at first. Other a priori
parameters could be the observations made before, not exactly formalized,
but probably quite expensive to compute. Remember also that hardness is
due both to the clause itself and to the rest of the instance. For the above
reasons, a merely a priori evaluation is not easy to carry on.

We say that a clause Cj is visited during the exploration of the tree if
we make a truth assignment aimed at satisfying Cj . The technique we used
to evaluate the difficulty of a clause Cj when appearing in the particular
instance F , is to count how many times Cj is visited during the exploration
of the tree, and how many times the enumeration fails on Cj. Failures can
be either because an empty clause is generated due to truth assignment
made on Cj, or because Cj itself becomes empty. Visiting Cj many times
shows that Cj is difficult, and failing on it shows even more clearly that Cj is
difficult. Counting visits and failures has the important feature of requiring
very little overhead.

Clause hardness adaptive evaluation
Let vj be the number of visits of clause Cj, fj the number of failures

due to Cj, p the penalty considered for failures, and lj the length of Cj. An
hardness evaluation of Cj in F is given by

ϕ(Cj) = (vj + pfj) / lj

Therefore, during the elaborations performed by a DPL-style procedure,
we can evaluate the value of branching in order to satisfy a generic clause
Cj by calculating the above fitness function ϕ(Cj). Moreover, as widely
recognized, unit clauses should be satisfied as soon as we have them in the
formula, by performing all unit resolutions. Altogether, we use the following
branching rule:
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Adaptive clause selection

1. Perform all unit resolutions.

2. When no unit clauses are present, make a truth assignment satisfying
the clause:

Cmax = arg max
Cj ∈ F

Cj still unsat.

ϕ(Cj)

The variable assignment will be illustrated in next section, after intro-
duction of a not binary tree search paradigm. Due to the above adaptive
features, the proposed procedure can perform good on problems which are
difficult for algorithms using static branching rules.

3.3 Clause based Branching Tree

Being our aim to satisfy Cmax, the choice is restricted to the variables which
are present in Cmax, one of which must be assigned to the unique value that
satisfies the clause. A variable appearing positive must be fixed at True,
and a variable appearing negative must be fixed at False [39].
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Figure 3.1: Branching node structure. An example of selected clause appears
in the rectangle, and the consistent branching possibilities appear in the
ellipses

If such a truth assignment causes a failure, i.e. generates an empty
clause, and thus we need to backtrack and change it, the next assignment
would not be, as usual [176], the opposite truth value for the same variable,
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because it would not permit to satisfy Cmax. Instead, we backtrack and
select another variable in Cmax. Moreover, since the former truth assignment
was not successful, we can also fix the opposite truth value for that variable.
The resulting node structure is shown in figure 1. If we have no more free
variables in Cmax, or if we tried all of them without success, we backtrack
again to the truth assignments made to satisfy the previous clause, until we
have another choice.

The above is a complete scheme: if a satisfying truth assignment exists, it
will be reached, and, if the search tree is completely explored, the instance is
unsatisfiable. Completeness is guaranteed by being this a Branch and Bound
scheme. Completeness would be guaranteed even in the case of branching
only on all-positive clauses [135] (or on all-negative). However, being our
aim to select a set of hard clauses, as explained below, this could not be
reached by selecting only all-positive clauses.

This scheme leads to explore a branching tree that is not, in general,
binary: every node has as many successors as the number of unassigned
variables appearing in Cmax. In practical case, however, very few of this
successors need to be explored. On the other hand, this scheme allows to
avoid even to try some truth assignments: the useless ones, namely those
containing values which do not satisfy any still unsatisfied cause.

As usual in branching techniques, the solution that satisfies the entire set
of the clauses may contain some variables that are still free, i.e. not assigned.
This happens when such variables were not used to satisfy clauses, so their
value can be called ”don’t care”. If d is the number of variables put to ”don’t
care”, the number of satisfying solutions trivially is 2d. They are explicitly
obtainable by substitution of each ”don’t care” with True and False. At
present, variable assignment order is just their original order within Cmax,
because reordering seems not to improve computational times.

3.4 Minimally Unsatisfiable Subformulas

In the case of unsatisfiable instances, one or more subsets of clauses (within
the unsatisfiable instance) are still unsatisfiable. Such subsets can be either
proper or not. We can call them unsatisfiable subformulas.

By considering the cardinality of an unsatisfiable subformula, we can
define a minimal unsatisfiable subformula. We call minimally unsatisfiable
subformula (MUS) any collection G ⊆ F of clauses of the original instance
having the following properties:
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1. A MUS is a subformula (proper or not) of the original formula.

2. A MUS is unsatisfiable.

3. Every proper subset of a MUS is satisfiable

Of course, if any subformula is unsatisfiable, the whole problem is. On
the other hand, an unsatisfiable formula always contains a MUS. In the
general case they can be more than one. Given any two MUS, they can be
either disjoint, or overlapping, but they cannot be contained one in another.

There are tight connections between the concept of MUS and that of
Irreducible Infeasible Systems (IIS) in the case of systems of linear inequal-
ities.

There are procedures that, given a set of clauses, recognize whether is a
MUS or not in polynomial time [79] [165]. The key point is how to select a
MUS. We propose a procedure to rapidly select a good approximation of a
MUS, that means an unsatisfiable set of clauses having almost as few clauses
as the smallest MUS.

3.5 Adaptive core search

The adaptive branching scheme presented above can be modified in order to
speed-up the entire procedure. Roughly speaking, the idea is that, when we
have a hard subset of clauses, that we call a core, we can at first work on it,
just ignoring other clauses. After solving such core, if that is unsatisfiable,
the whole formula is unsatisfiable. Conversely, if the core admits a satisfying
solution, we try to extend such solution to a bigger subset of clauses, until
solving the whole formula. Selection of hardest clauses within a clause-set
of cardinality m is always intended as the selection of the top c · m values
for ϕ, with 0 < c < 1.

The algorithm works as follows:
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Adaptive core search

0. (Preprocessing) Perform p branching iterations using just shortest clause
rule. If the instance is already solved, Stop.

1. (Base) Select an initial collection of hardest clauses C1. This is the first
core. Remaining clauses form O1.

k. (Iteration) Perform b branching iteration on Ck, ignoring Ok, using adap-
tive clause rule. We have one of the following:

k.1. Ck is unsatisfiable ⇒ F is unsatisfiable, then Stop.

k.2. No answer after b iteration ⇒ select a new collection of hardest clauses
Ck+1 within Ck, put k := k + 1, goto k.

k.3. Ck is satisfied by solution Sk ⇒ try Sk on Ok. One of the following:

k.3.a All clauses are satisfied ⇒ F is satisfied, then Stop.

k.3.b There is a set Tk of falsified clauses ⇒ add them to the core: put
Ck+1 = Ck ∪ Tk, k := k + 1, goto k.

k.3.c No clauses are falsified, but there is a set Vk of still not satisfied clauses
⇒ select a collection C′

k of hardest clauses in Vk, put Ck+1 = Ck ∪ C′
k,

k := k + 1, goto k.

The preprocessing step has the aim to give initial values of visits and
failures, in order to compute ϕ. After that, we select the clauses that resulted
hard during this branching phase, and try to solve them as if they were our
entire instance. If they really are an unsatisfiable instance, we have done.
If, after b branching iterations we cannot solve them, our instance is still too
big, and it must be reduced more. Finally, if we find a satisfying solution
for them, we try to extend it to the rest of the clauses. If some clauses are
falsified, this means that they are difficult (together with the clauses of the
core), and therefore they should be added to the core. In this case, since
the current solution falsifies some clauses now in the core, it results faster to
rebuilt it completely. The iteration step is repeatedly applied to instances
until their solution.

In order to ensure termination to the above procedure, solution rebuild-
ing is allowed only a finite number of times. After that, the solution is not
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entirely rebuilt, but modified by performing backtrack. This choice makes
the above algorithm a complete one.

Core Search has the important feature of solving, in average case, smaller
subproblems at the nodes of the search tree, hence the operation performed,
such like unit propagation consequent to any truth assignment, are per-
formed only on the current Ck. Such idea of delaying (at least partially) the
unit propagation subsequent to any variable fixing is recently recognized to
be successful [278], and nowadays state of the art solvers (as Sato [277]) try
in different ways to incorporate it.

Moreover, when an instance is declared unsatisfiable, the current core
selection is an unsatisfiable subset. Core selection is performed in order to
contain a small number of hard clauses, and, typically, when the core be-
comes unsatisfiable, it was satisfiable in the previous iteration. This means
that we have an unsatisfiable set of clauses which was satisfiable before
adding a small number of clauses. Such set of clauses is therefore an ap-
proximation of a MUS, in the sense that it may contain some clauses more
than a MUS. On the other hand, such set should contain the hardest clauses
of the instance, hence it should be an approximation of a small MUS.

3.6 Computational results

The algorithm was coded in C++. The following results are obtained on
a Pentium II 450 MHz processor running MS Windows NT operating sys-
tem. In the tables, columns labeled n and m shows respectively number of
variables and number of clauses. Column labeled literals shows the number
of all literals appearing in the formula, hence the sum of the lengths of the
clauses. Column labeled sol reports if satisfiable or unsatisfiable. Column
labeled ACS reports times for solving the instance by Adaptive Core Search.
Other table specific columns are described in following subsection. Times
are in CPU seconds. We set a time limit of 600 sec. When this is exceeded,
we report > 600. When a running time is not available, we report n.a.

Computational tree size was not considered because the different solvers
compared here do not perform similar node processing, hence times to per-
form such node processing can greatly vary. It would not help to know that
a procedure needs to explore only a small number of nodes if their explo-
ration requires a very long time. Therefore, for the following comparisons,
we consider meaningful only computational time.

Parameter p appearing in hardness evaluation function ϕ was set at 10.
During our experiments, in fact, such choice seems to give better and more
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uniform results.
We choose the test problems available from the DIMACS 1 , since they

are widely-known, and the test instances 2 , together with computational
results, are easily available. Some problems are randomly generated in-
stances, such like the series aim, jnh, while some other are encoding of real
logic problems, such like the series ii, par, ssa. In addition, we solved some
real-life problems arisen from a cryptography application, the des series.

Running times of Adaptive Core Search are compared with those of
other complete algorithms. In such comparisons, either we could make the
algorithms run on our machine, or we considered times reported in literature
but, when possible, normalized as if they were run on our machine. In order
to compare times taking into account such machine performance, we measure
it by using the DIMACS benchmark dfmax 3 , although it had to be slightly
modified to be compiled with our compiler. The measure of our machine
performance in CPU seconds is therefore:

r100.5.b = 0.01 r200.5.b = 0.42 r300.5.b = 3.57 r400.5.b = 22.21 r.500.b = 86.63

3.6.1 The series ii32

The series ii32 is constituted by instances encoding inductive inference prob-
lems, contributed from M.G.C. Resende [153]. They essentially contain two
kind of clauses: a set of binary clauses and a set of long clauses. Their size
is quite big. On this problem we compare the algorithm of Adaptive Core
Search with two simpler branching algorithm: Adaptive Branching Rule and
Shortest Clause Branching Rule. Adaptive Branching Rule is a branching
algorithm which does not use core search, but uses the adaptive branching
rule based on ϕ. Its times are in column labeled ABR. Shortest Clause
Branching Rule is a branching algorithm which does not use core search,
and just uses shortest-clause-first branching rule. Its times are in column
labeled SCBR. Results on this set are in table 1.

1NFS Science and Technology Center in Discrete Mathematics and Theoretical Com-
puter Science - A consortium of Rutgers University, Princeton University, AT&T Bell
Labs, Bellcore.

2Available from ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/benchmarks/cnf/
3Available from ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/volume/Machine/.
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Problem n m literals sol ACS ABR SCBR

ii32a1 459 9212 33003 SAT 0.02 475.57 > 600

ii32b1 228 1374 6180 SAT 0.00 20.65 356.74

ii32b2 261 2558 12069 SAT 0.03 36.56 > 600

ii32b3 348 5734 29340 SAT 0.03 108.57 > 600

ii32b4 381 6918 35229 SAT 1.53 311.62 > 600

ii32c1 225 1280 6081 SAT 0.00 2.67 1.75

ii32c2 249 2182 11673 SAT 0.00 27.29 0.02

ii32c3 279 3272 17463 SAT 2.84 57.03 > 600

ii32c4 759 20862 114903 SAT 5.07 > 600 > 600

ii32d1 332 2730 9164 SAT 0.01 409.21 > 600

ii32d2 404 5153 17940 SAT 0.76 > 600 > 600

ii32d3 824 19478 70200 SAT 7.49 > 600 > 600

ii32e1 222 1186 5982 SAT 0.00 1.24 0.01

ii32e2 267 2746 12267 SAT 0.01 82.13 > 600

ii32e3 330 5020 23946 SAT 0.08 131.38 > 600

ii32e4 387 7106 35427 SAT 0.02 312.28 > 600

ii32e5 522 11636 49482 SAT 1.03 382.36 > 600

Table 1: Results of ACS on the ii32 series: inductive inference problems.
From M.G.C. Resende

ACS distinctly is the fastest, and solves all problems in remarkably short
times. ABR is generally faster than SCBR, although not always. The very
simple SCBR is sometimes quite fast, but its results are very changeable,
and in most of the cases exceeds the time limit.

3.6.2 The series par16

The series par16 is constituted by instances arisen from the problem of
learning the parity function, for a parity problem on 16 bits. Contributed
from J. Crawford. They contain clauses of different length: unit, binary
and ternary. Their size is sometimes remarkably big. par16-x-c denotes an
instance which represent a problem equivalent to the corresponding par16-x,
except that the first instance have been expressed in a compressed form. For
this set, we compare with the latest version (3.2) 4 of the state-of-the-art sat
solver Sato [277]. Results are in table 2. They are extremely encouraging.
We can observe a sort of complementarity in computational time results:
ACS is fast on the compressed versions of the problems, where Sato is slow.
The converse happen on the expanded versions. Our hypothesis is that ACS
is faster when it can take advantage of the identification of the hard part
of the instances, but, due to an implementation and a data structure still

4Available from ftp.cs.uiowa.edu/pub/sato/.
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not refined as Sato’s ones, has more difficulties on bigger instances. On the
contrary, due to its very carefully implementation, which has been improved
for several years, Sato 3.2 can handle more efficiently bigger instances, but on
smaller and harder instances, cannot compensate the advantages of adaptive
branching and core search.

Problem n m literals sol ACS 1.0 Sato 3.2

par16-1 1015 3310 8788 SAT 10.10 24.16

par16-1-c 317 1264 3670 SAT 11.36 2.62

par16-2 1015 3374 9044 SAT 52.36 49.22

par16-2-c 349 1392 4054 SAT 100.73 128.15

par16-3 1015 3344 8924 SAT 103.92 40.81

par16-3-c 334 1332 3874 SAT 8.19 78.91

par16-4 1015 3324 8844 SAT 70.82 1.51

par16-4-c 324 1292 3754 SAT 5.10 133.07

par16-5 1015 3358 8980 SAT 224.84 4.92

par16-5-c 341 1360 3958 SAT 72.29 196.33

Table 2: Results of ACS and Sato 3.2 on the par16 series: instances arisen
from the problem of learning the parity function. From J. Crawford.

3.6.3 The series aim100

The series aim100 is constituted by 3-SAT instances artificially generated by
K. Iwama, E. Miyano and Y. Asahiro [6], and have the peculiarity that the
satisfiable ones admit only one satisfying truth assignment. Such instances
are not big in size, but can be very difficult. Results on these sets are
reported in table 3.

Some instances from this set were used in the test set of the Second
DIMACS Implementation Challenge [149]. We also report the results of the
four faster complete algorithms of that challenge, normalizing their times
according to the results with dfmax declared in the original papers, in order
to compare them in a machine-independent way.

C − sat, presented by O. Dubois, P. Andre, Y. Boufkhad and J. Carlier
[76], is a backtrack algorithm with a specialized branching rule and a local
preprocessing at nodes of search tree. It is considered one of the fastest
algorithms for SAT. Its times are in column labeled C-SAT. 2cl, presented by
A. Van Gelder and Y. K. Tsuji [101], consists in a combination of branching
and limited resolution. Its times are in column labeled 2cl. TabuS, presented
by B. Jaumard, M. Stan and J. Desrosiers [145], is an exact algorithm which
includes a tabu search heuristic and reduction tests other than those of the
Davis-Putnam-Loveland scheme. Its times are in column labeled TabuS.



3.6. COMPUTATIONAL RESULTS 87

BRR, presented by D. Pretolani [211], makes use of directed hypergraph
transformation of the problem, to which it applies a B-reduction, and of a
pruning procedure. Its times are in column labeled BRR.

A noticeable performance superiority of ACS can be observed, expecially
on unsatisfiable problems.

Problem n m lit sol ACS C-sat 2cl TabuS BRR

aim-100-1 6-no-1 100 160 480 UNSAT 0.20 n.a. n.a. n.a. n.a.

aim-100-1 6-no-2 100 160 480 UNSAT 0.93 n.a. n.a. n.a. n.a.

aim-100-1 6-no-3 100 160 480 UNSAT 1.35 n.a. n.a. n.a. n.a.

aim-100-1 6-no-4 100 160 480 UNSAT 0.96 n.a. n.a. n.a. n.a.

aim-100-1 6-yes1-1 100 160 479 SAT 0.09 n.a. n.a. n.a. n.a.

aim-100-1 6-yes1-2 100 160 479 SAT 0.03 n.a. n.a. n.a. n.a.

aim-100-1 6-yes1-3 100 160 480 SAT 0.26 n.a. n.a. n.a. n.a.

aim-100-1 6-yes1-4 100 160 480 SAT 0.01 n.a. n.a. n.a. n.a.

aim-100-2 0-no-1 100 200 600 UNSAT 0.01 52.19 19.77 409.50 5.78

aim-100-2 0-no-2 100 200 600 UNSAT 0.38 14.63 11.00 258.58 0.57

aim-100-2 0-no-3 100 200 598 UNSAT 0.12 56.63 6.53 201.15 2.95

aim-100-2 0-no-4 100 200 600 UNSAT 0.11 0.05 11.66 392.23 4.80

aim-100-2 0-yes1-1 100 200 599 SAT 0.03 0.03 0.32 16.75 0.29

aim-100-2 0-yes1-2 100 200 598 SAT 0.09 0.03 0.21 0.24 0.43

aim-100-2 0-yes1-3 100 200 599 SAT 0.22 0.03 0.38 2.10 0.06

aim-100-2 0-yes1-4 100 200 600 SAT 0.04 0.12 0.11 0.03 0.03

aim-100-3 4-yes1-1 100 340 1019 SAT 0.44 n.a. n.a. n.a. n.a.

aim-100-3 4-yes1-2 100 340 1017 SAT 0.53 n.a. n.a. n.a. n.a.

aim-100-3 4-yes1-3 100 340 1020 SAT 0.01 n.a. n.a. n.a. n.a.

aim-100-3 4-yes1-4 100 340 1019 SAT 0.12 n.a. n.a. n.a. n.a.

aim-100-6 0-yes1-1 100 600 1797 SAT 0.08 n.a. n.a. n.a. n.a.

aim-100-6 0-yes1-2 100 600 1799 SAT 0.07 n.a. n.a. n.a. n.a.

aim-100-6 0-yes1-3 100 600 1798 SAT 0.19 n.a. n.a. n.a. n.a.

aim-100-6 0-yes1-4 100 600 1796 SAT 0.04 n.a. n.a. n.a. n.a.

Table 3: Results of ACS, C-SAT, 2cl(limited resolution), DPL with Tabu Search,
B-reduction, on the aim-100 series: 3-SAT artificially generated problems. From
K. Iwama, E. Miyano and Y. Asahiro. Times are normalized according to dfmax
results, as if they were obtained on the same machine.

3.6.4 The series jnh

The series jnh is constituted by random instances generated by J. Hooker.
As stated in [130], the parameter were carefully chosen to result in hard
problems [193], because otherwise random problem tend to be too easy.
Each variable occurs in a given clause with probability p, and it occurs
direct or negated with equal probability. The probability is chosen so that
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the expected number of literals per clause is 5. Empty clauses and unit
clauses are rejected. Such problems are hardest [139] when the number of
variable is 100 and the number of clauses is between 800 and 900. Results
on this set are reported in table 4 (part a and b).

Problem n m lit sol ACS DPL JW GU B&C CS

jnh1 100 850 4392 SAT 0.03 10.5 18.6 53.1 20.8 107.9

jnh2 100 850 4192 UNSAT 0.05 1007.2 15.4 363.1 26.3 37.0

jnh3 100 850 4168 UNSAT 0.28 672.4 239.1 970.1 148.0 195.0

jnh4 100 850 4160 UNSAT 0.07 661.0 50.3 2746.9 108.9 36.0

jnh5 100 850 4164 UNSAT 0.06 670.8 42.8 120.2 88.3 39.1

jnh6 100 850 4155 UNSAT 0.32 1274.5 84.2 23738.2 149.9 217.0

jnh7 100 850 4160 SAT 0.03 5.9 7.2 160.3 51.4 69.2

jnh8 100 850 4147 UNSAT 0.05 165.6 62.8 624.4 58.7 95.8

jnh9 100 850 4156 UNSAT 0.09 345.2 78.9 1867.9 82.6 81.3

jnh10 100 850 4164 UNSAT 0.08 340.4 36.9 313.6 82.0 160.2

jnh11 100 850 4132 UNSAT 0.19 2280.6 135.1 4182.2 165.0 134.6

jnh12 100 850 4171 SAT 0.03 120.6 5.1 398.0 28.8 70.1

jnh13 100 850 4132 UNSAT 0.06 776.8 45.3 503.1 34.6 139.7

jnh14 100 850 4163 UNSAT 0.04 184.2 69.0 2610.4 76.7 39.9

jnh15 100 850 4126 UNSAT 0.08 1547.2 83.1 585.3 65.3 130.5

jnh16 100 850 4172 UNSAT 4.92 13238.7 542.4 20112.2 573.6 434.4

jnh17 100 850 4133 SAT 0.03 140.1 10.8 32.3 58.1 143.1

jnh18 100 850 4169 UNSAT 0.62 2261.0 158.2 2980.6 132.0 191.5

jnh19 100 850 4148 UNSAT 0.07 294.5 87.5 4184.4 153.8 132.3

jnh20 100 850 4154 UNSAT 0.07 648.6 124.5 203.7 126.3 187.3

Table 4a: Results of ACS, Davis-Putnam-Loveland, Jeroslow-Wang, Gallo-Urbani,
Branch and Cut, Column Subtraction on the jnh series: randomly generated hard
problems. From J.N. Hooker. In this table only, the last five columns show times
on a different machine, hence times cannot be directly compared.

For most of them we have also results obtained by several other com-
plete algorithms coded in Fortran and run on a Sun Sparc Station 330 in
Unix environment, as shown in [130]. In this case only, we cannot calcu-
late the exact computational performance relationship between their and
our machine (probably our is at least an order of 10 faster), so we simply
report the original times for Davis-Putnam-Loveland [176] (column labeled
DPL), Jeroslow-Wang [146] (column labeled JW ), Gallo-Urbani [96] (col-
umn labeled GU), Branch and Cut [139] (column labeled B&C), Column
Subtraction [131] (column labeled CS) methods.
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Problem n m lit sol ACS DPL JW GU B&C CS

jnh201 100 800 4154 SAT 0.02 8.0 6.3 5.9 28.4 40.2

jnh202 100 800 3962 UNSAT 0.03 3515.2 47.4 710.5 42.7 34.6

jnh203 100 800 3906 UNSAT 0.18 939.8 66.6 294.6 186.3 241.6

jnh204 100 800 3914 SAT 0.41 1109.9 8.4 8905.8 78.1 220.0

jnh205 100 800 3911 SAT 0.05 309.1 12.7 1176.5 57.2 149.3

jnh206 100 800 3905 UNSAT 0.18 1556.6 126.6 3863.9 96.4 85.0

jnh207 100 800 3936 SAT 0.03 3.2 119.8 1037.0 65.1 48.0

jnh208 100 800 3908 UNSAT 0.17 388.3 51.6 958.0 63.6 33.8

jnh209 100 800 3902 SAT 0.11 4.2 50.8 1239.2 77.9 175.4

jnh210 100 800 3915 SAT 0.04 6.1 9.3 576.0 37.6 39.6

jnh211 100 800 3888 UNSAT 0.08 n.a. n.a. n.a. n.a. n.a.

jnh212 100 800 3932 SAT 0.26 n.a. n.a. n.a. n.a. n.a.

jnh213 100 800 3900 SAT 0.04 n.a. n.a. n.a. n.a. n.a.

jnh214 100 800 3896 UNSAT 0.12 n.a. n.a. n.a. n.a. n.a.

jnh215 100 800 3898 UNSAT 0.08 n.a. n.a. n.a. n.a. n.a.

jnh216 100 800 3888 UNSAT 0.19 n.a. n.a. n.a. n.a. n.a.

jnh217 100 800 3939 SAT 0.23 n.a. n.a. n.a. n.a. n.a.

jnh218 100 800 3905 SAT 0.01 n.a. n.a. n.a. n.a. n.a.

jnh219 100 800 3889 UNSAT 0.24 n.a. n.a. n.a. n.a. n.a.

jnh220 100 800 3923 SAT 0.06 n.a. n.a. n.a. n.a. n.a.

jnh301 100 900 4654 SAT 0.12 12528.6 65.8 271.3 116.0 77.5

jnh302 100 900 4441 UNSAT 0.03 161.6 13.0 380.4 17.0 84.3

jnh303 100 900 4380 UNSAT 0.16 388.6 111.4 307.1 98.2 40.0

jnh304 100 900 4417 UNSAT 0.15 132.0 27.3 409.2 43.4 43.0

jnh305 100 900 4406 UNSAT 0.06 652.7 68.0 138.9 101.7 196.2

jnh306 100 900 4425 UNSAT 1.25 4202.2 195.7 32270.0 221.9 205.1

jnh307 100 900 4365 UNSAT 0.04 6.7 32.1 19.7 25.6 180.3

jnh308 100 900 4410 UNSAT 0.20 1196.5 127.7 6188.3 159.7 164.6

jnh309 100 900 4415 UNSAT 0.03 131.0 14.7 298.2 48.1 42.7

jnh310 100 900 4369 UNSAT 0.03 262.8 25.9 406.7 9.8 43.9

Table 4b: Results of ACS, Davis-Putnam-Loveland, Jeroslow-Wang, Gallo-Urbani,
Branch and Cut, Column Subtraction on the jnh series: randomly generated hard
problems. From J.N. Hooker. In this table only, the last five columns show times
on a different machine, hence times cannot be directly compared.

3.6.5 The series ssa

The series ssa is constituted by instances generated by A. Van Gelder and Y.
Tsuji. They are encoding of application problems of circuit fault analysis,
used in checking for circuit ”single-stuck-at” fault. These instances are large
in size but not particularly hard. Results on this set are reported in table 5.

The series were used in the test set of the Second DIMACS Implementa-
tion Challenge [149]. We also report the results of the four faster complete
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algorithms of that challenge: C − sat, 2cl, TabuS, and BRR, already de-
scribed in 5.3. Times are normalized according to their result with dfmax,
in order to compare them in a machine-independent way.

Problem n m literals sol ACS C-sat 2cl TabuS BRR

ssa7552-038 1501 3575 8248 SAT 0.19 0.49 0.86 0.01 0.25

ssa7552-158 1363 3034 6827 SAT 0.08 0.33 0.53 5.41 0.17

ssa7552-159 1363 3032 6822 SAT 0.15 0.36 0.53 0.75 0.20

ssa7552-160 1391 3126 7025 SAT 0.20 0.36 0.67 0.75 0.21

Table 5: Results of ACS on the ssa series: circuit fault analysis problems.

3.6.6 The series des

The series des is constituted by instances 5 arising from a practical appli-
cation: verification and Cryptanalysis of Cryptographic Algorithms [232].
Such problems, which are nowadays showing their importance, can be en-
coded into instances which can be also very large. They are always satis-
fiable by construction, but we are interested in finding the satisfying truth
assignment. Results on this set are reported in table 9.

Problem n m literals sol ACS 1.0 SATO 3.2

des-1-1 316 1687 5186 SAT 0.11 1.94

des-1-4 1010 6446 20016 SAT 0.98 0.11

des-2-1 600 3531 10746 SAT 0.66 0.09

des-2-4 2062 13387 41224 SAT 2.45 0.19

Table 6: Results of ACS on the des series: cryptography problems.

3.7 MUS Selection

In the following tables, we report results of core selection on some series of
unsatisfiable instances. columns labeled n and m shows, as before, num-
ber of variables and number of clauses. On the contrary, column labeled
’Core n’ report the number of variables appearing in the unsatisfiable sub-
formula selected. Column labeled ’Core m’ are the number of clauses of the
unsatisfiable subformula selected.

5Available upon request.
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Problem n m Core n Core m

aim-50-1 6-no-1 50 80 20 22

aim-50-1 6-no-2 50 80 28 32

aim-50-1 6-no-3 50 80 28 31

aim-50-1 6-no-4 50 80 18 20

aim-50-2 0-no-1 50 100 21 22

aim-50-2 0-no-2 50 100 28 31

aim-50-2 0-no-3 50 100 22 28

aim-50-2 0-no-4 50 100 18 22

Table 7: Results of core selection on the aim-50 series: 3-SAT artificially
generated problems.

Problem n m Core n Core m

aim-100-1 6-no-1 100 160 43 48

aim-100-1 6-no-2 100 160 46 54

aim-100-1 6-no-3 100 160 51 57

aim-100-1 6-no-4 100 160 43 48

aim-100-2 0-no-1 100 200 18 19

aim-100-2 0-no-2 100 200 37 40

aim-100-2 0-no-3 100 200 25 27

aim-100-2 0-no-4 100 200 26 32

Table 8: Results of core selection on the aim-100 series: 3-SAT artificially
generated problems.

Problem n m Core n Core m

aim-200-1 6-no-1 200 320 52 55

aim-200-1 6-no-2 200 320 76 87

aim-200-1 6-no-3 200 320 73 86

aim-200-1 6-no-4 200 320 45 48

aim-200-2 0-no-1 200 400 49 55

aim-200-2 0-no-2 200 400 46 50

aim-200-2 0-no-3 200 400 35 37

aim-200-2 0-no-4 200 400 36 42

Table 9: Results of core selection on the aim-200 series: 3-SAT artificially
generated problems.
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Problem n m Core n Core m

jnh2 100 850 100 223

jnh3 100 850 100 311

jnh4 100 850 100 295

jnh5 100 850 100 254

jnh6 100 850 100 291

jnh8 100 850 100 278

jnh9 100 850 100 250

jnh10 100 850 100 176

jnh11 100 850 100 202

jnh13 100 850 100 253

jnh14 100 850 100 175

jnh15 100 850 100 217

jnh16 100 850 100 428

jnh18 100 850 100 261

jnh19 100 850 100 198

jnh20 100 850 100 174

Table 10: Results of core selection on the jnh series: randomly generated
hard problems.

Smaller unsatisfiable subformulae are detected in all the unsatisfiable
instances solved. These can be remarkably smaller then the original formula,
and give an approximation of a MUS. Such subformule represent the core
problems of the solved instances.

3.8 Conclusions

We present a clause based tree search paradigm for Satisfiability testing,
which makes use of a new adaptive branching rule, and the original tech-
niques of core search, used to speed-up the procedure although maintain-
ing the feature of complete method. We therefore obtain an enumeration
technique altogether denominated Adaptive Core Search, which is able to
sensibly reduce computational times.

By using the above technique, we observed a better performance im-
provement on instances which are not uniformly hard, in the sense they
contain subsets of clauses having different difficulty degrees. This is mainly
due to the ability of our adaptive device in pinpointing hard sub-formulae
during the branching tree exploration earlier than other methods. We stress
that techniques to perform a fast complete enumeration are widely proposed
in literature. Adaptive Core Search, on the contrary, can reduce the set that
enumeration works on.
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Comparison of ACS with two simpler versions of it, one not using core
search, and one not using neither core search nor the adaptive part of the
branching rule, clearly reveals the great importance of this two strategies.
Comparison with several published results shows the effectiveness of the pro-
posed procedure. Comparison of ACS with the state-of-the-art solver Sato
is particularly encouraging. In fact, ACS, in its first release 1.0, is some-
times faster that Sato 3.2, which has evolved for several years. In particular,
Sato is faster mainly when the instances are big and flat, due to its very
carefully implementation. We belive running times can further improve on
big-sized instances by further polishing our implementation, and by using
several techniques available in literature to perform a fast enumeration. Ex-
ample of this could be to reduce clause revisits by saving and reusing global
inferences revealed during search, as some other modern solvers do. This
could be suitably introduced in our core search scheme, by evaluating our
fitness function for the global inferences as well, and using this as a criterion
to discard them. Future work will explore the introduction of similar tighter
bounds in presented scheme, in order to reduce branching tree exploration.

In addition, a core search is a successful approach to the problem of MUS
detection. This problem is of great practical relevance. In many practical
application, in fact, it is useful to know, in addition to the unsolvability of
an instance, which parts of the instance cause the unsolvability.
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Chapter 4

Orthogonalization of a Logic
Formula

4.1 Introduction

In addition to the normal forms presented in chapter 1, we can define in this
chapter the orthogonal boolean form. Such form is of great relevance in many
practical applications. We moreover propose a procedure for transforming
an arbitrary CNF or DNF to an orthogonal one, and present the results
of computational experiments carried out on randomly generated Boolean
formulae.

Consider B = {0, 1}, or, equivalently, {True, False}. A Boolean func-
tion (see chapter 1) f(x1, x2, ..., xn) from the Boolean hypercube Bn to the
Boolean set B can be represented by means of a Boolean formula F in
Conjunctive (CNF) or Disjunctive (DNF) normal form.

A Boolean CNF formula is the logic conjunction (∧) of m clauses, which
are logic disjunction (∨) of literals, which can be either posited proposition
(xi) or negated (¬xi). The general structure is therefore the following.

(xi1 ∨ ...∨xj1 ∨¬xk1 ∨ ...∨¬xn1)∧ . . .∧ (xim ∨ ...∨ xjm ∨¬xkm ∨ ...∨¬xnm)

Conversely, a Boolean DNF formula is the logic disjunction (∨) of m
terms, which are logic conjunction (∧) of literals. The general structure is:

(xi1 ∧ ...∧xj1 ∧¬xk1 ∧ ...∧¬xn1)∨ . . .∨ (xim ∧ ...∧ xjm ∧¬xkm ∧ ...∧¬xnm)

In order to handle both CNF and DNF, in section 2 we introduce a
general notation for normal forms. The orthogonal form results of great

95
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relevance in solving several hard problems, e.g. in the reliability theory.
A basic procedure to reach the orthogonal form is described in section 4.
During the above process, the size of the formula tends to exponentially
increase. We therefore present, in section 5, some improvements of the basic
procedure, with the aim of minimizing the size of the formula both in the
final result and during the computation. The proposed procedure is tested
on a set of artificially generated Boolean formulae. Results are in section 6.

4.2 Notation

We will develop a procedure that applies both to CNF and DNF. We there-
fore need a notation which can represent both forms.

Clauses and terms can be viewed as sets of literals. We will call both of
them monomials mi. A CNF or DNF formula F is therefore a collection of
sets of literals, hence a collection of monomials. We have an operator applied
between monomial, that will be here indicated with the symbol ⊥ (external
operator), and an operator applied between literals of the same monomial,
that will be here indicated with the symbol � (internal operator). Both
CNF and DNF will therefore be represented as follows.

(xi1�...�xj1�¬xk1�...�¬xn1)⊥ . . .⊥(xim�...�xjm�¬xkm�...�¬xnm)

Where the following conventions hold:

⊥ means ∧ if we are considering CNF, and ∨ if we are considering DNF
� means ∨ if we are considering CNF, and ∧ if we are considering DNF

Given a monomial mi, we have a set Ti ⊆ Bn where mi is 1 (True), and
a set Fi ⊆ Bn (the complement of Ti with respect to Bn) where mi is 0
(False). When solving several NP problems on Boolean formulae, e.g. the
Satisfiability problem, what we actually want to know is some information
about the set of True points T = {X ∈ Bn : f(X) = 1} or, equivalently,
about the set of False points F = {X ∈ Bn : f(X) = 1} for the whole
function. Due to normal form, we already have some relations between the
Ti and the global T , and between the Fi and F .

Proposition 2.1. In the case of CNF (a conjunction), it results:

T =
n⋂

i=1

Ti
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whereas, in the case of DNF (a disjunction), it results:

T =
n⋃

i=1

Ti

Of course, specular results hold for the False set F :

Proposition 2.2. In the case of CNF (a conjunction) it results:

F =
n⋃

i=1

Fi

whereas, in the case of DNF (a disjunction), it results:

F =
n⋂

i=1

Fi

In the general case, such sets are not disjoint, but can overlap each
other: it can be Ti ∩ Tj �= φ or Fi ∩ Fj �= φ for some i, j ∈ {1 . . . n}. For
the above reason, to find respectively the cardinality |T | and |F |, we need
to identify, at least in an implicit way, respectively all the Ti and all the Fi.
The cardinality |T | or |F | gives us, for example, the solution of the feasibility
version of the propositional Satisfiability problem, which is well known NP-
complete. This theoretically means, moreover, that every problem in NP
can be polynomially reduced to the problem of finding this cardinality.

Since the number of points in Ti and Fi is, in the worst case, exponential
in the length of the monomials mi, the approach of identifying all the Ti and
all the Fi has exponential worst-case time complexity. This is not surprising.
On the other hand, if all the Ti (resp. all the Fi) would be pairwise disjoint
sets, in order to find the cardinality |T | (resp. |F |) it would suffice to know
the cardinality of the Ti (resp. Fi), and sum them. Such cardinalities are,
in fact, trivially computable.

In order to complete notation unification, let us consider again the Sat-
isfiability problem. In the case of CNF formulae, it consists in finding if,
in the Boolean hypercube Bn, there is at least one true point for all the
clauses. Conversely, for DNF formulae, it consists in finding if there is at
least one false point for all the terms. Altogether, false points are bad for
CNF, while true points are bad for DNF.

We will call the set of such bad points U , with the convention that U = F
for CNF, and U = T for DNF. Moreover, every monomial mi has his set
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of bad points Ui of the Boolean hypercube Bn, with the convention that
Ui = Fi for CNF, and Ui = Ti for DNF. (More intuitively, every mi forbids
a set of points: in the case of CNF, every mi forbids its Fi, while, in the
case of DNF, every term mi forbids its Ti).

Conversely, we will call V the set of good points, with the convention
that V = T for CNF, and V = F for DNF. Every monomial mi has therefore
his set of good points Vi, with the convention that Vi = Ti for CNF, and
Vi = Fi for DNF.

Form internal op. external op. bad pt. good pt.
Unified � ⊥ U V

CNF ∨ ∧ F T

DNF ∧ ∨ T F

Table 4.1: Convention used to unify notation for CNF and DNF.

Proposition 2.3. The cardinality of the above Ui and Vi are easily
computable. Let n be the number of variables, and l(mi) be the number
of distinct literals appearing in monomial mi, we have |Ui| = 2n−l(mi), and
|Vi| = 2n − |Ui| = 2n − 2n−l(mi).

We will indicate with (φ) the empty monomial, i.e. the monomial mφ

which is an empty set of literals. According to proposition 2.3, Uφ = Bn,
(mφ has only bad points). We will instead indicate with φ the empty formula,
i.e. the formula Fφ which is an empty set of monomials. By definition, Fφ

will always evaluate to (V ).

4.3 The Orthogonal form

We declare a formula to be in orthogonal form when, for every pair of mono-
mials mi and mj, at least one boolean variable xk appears direct in one (for
instance mi) and negated in the other (for instance mj). Any two monomials
have therefore the following structure:

mi = (. . .�xk� . . .), mj = (. . .�¬xk� . . .) ∀ i, j ∈ {1 . . . n}

We will say that the above terms are orthogonal, or clash [49] on xk, or
resolve [223] on xk, or also hit [38] on xk. This holds both for CNF and
DNF.
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Theorem 3.1. For a Boolean formula in orthogonal form, the sets Ui

are pairwise disjoint.
This particularizes for CNF as:

Fi ∩ Fj = φ ∀ i, j ∈ {1 . . . m}

(Ti ∩ Tj can be �= φ for some i, j ∈ {1 . . . m})
and for DNF as:

Ti ∩ Tj = φ ∀ i, j ∈ {1 . . . m}

(Fi ∩ Fj can be �= φ for some i, j ∈ {1 . . . m})

Proof: Orthogonal form ⇒ Ui ∩ Uj = φ ∀ i, j ∈ {1 . . . m}.
Ui corresponding to monomial mi is a set of points in Bn defined by

a pattern obtainable from the mi itself. For example, Ui corresponding to
the CNF clause (x1 ∨ ¬x3) on B4 is defined by the pattern ( 0, *, 1, *
), representing the 4 points (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 1, 0), (0, 1,
1, 1). If two monomials mi and mj clash on at least one variable xc, the
corresponding Ui and Uj are defined by two patterns which respectively have
0 and 1 in at least position c, hence they define two sets Ui and Uj which
cannot have any common point.

Proof: Orthogonal form ⇐ Ui ∩ Uj = φ ∀ i, j ∈ {1 . . . m}.
Let us consider two Boolean point x′ = (x′

1, x
′
2, ..., x

′
n) ∈ Ui and x′′ =

(x′′
1, x

′′
2, ..., x

′′
n) ∈ Uj , with Ui ∩ Uj = φ. x′ and x′′ must be different (and

binary), hence at least one component is respectively 0 and 1. Let us call
that component xc Monomials mi and mj corresponding to Ui and Uj must
therefore both contain the variable xc, and clash on it.

Example: Suppose we are interested in solving the Satisfiability prob-
lem for the following CNF. To solve our problem we need to check whether
the global F covers the whole B5. In the general case, we can only proceed
by identifying F as the intersection of the Fi.

It is straightforward to find the corresponding Fi (and their cardinality).

( x1 ∨ ¬x2 ∨ x3 ∨ x4 ∨ x5) → F1 = {0, 1, 0, 0, 0} |F1| = 1
(¬x1 ∨ ¬x2 ∨ x3 ∨ x4 ∨ x5) → F2 = {1, 1, 0, 0, 0} |F2| = 1

( x2 ∨ x3 ∨ x4 ∨ x5) → F3 = {∗, 0, 0, 0, 0} |F3| = 2
( x3 ∨ ¬x4 ∨ x5) → F4 = {∗, ∗, 0, 1, 0} |F4| = 4
( x3 ∨ x4 ∨ ¬x5) → F5 = {∗, ∗, 0, 0, 1} |F5| = 4
( x3 ∨ ¬x4 ∨ ¬x5) → F6 = {∗, ∗, 0, 1, 1} |F6| = 4
(¬x3) → F7 = {∗, ∗, 1, ∗, ∗} |F7| = 16
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No more in a straightforward way, by identifying all the points of the
intersection of the Fi , we can observe that F actually covers B5 (see picture
1 below). Hence, given CNF is unsatisfiable. The number of points in this
intersection is, unfortunately, exponential (in the worst case) in the size
of the formula. This gives worst case exponential time complexity to such
procedure.

On the other hand, we could observe that the CNF is in orthogonal form,
hence we have pairwise disjoint Ui. In the case of CNF, this means pairwise
disjoint Fi.

On this basis, we easily have |F | = |F1|+ |F2|+ |F3|+ |F4|+ |F5|+ |F6|+
|F7| = 32. Since F covers B5 iff |F | = 25 = 32, this is the case, and given
CNF is unsatisfiable. This is obtained just by counting, as shown in [144].

11111 

01111 10111 11011 11101 11110 

00111 01011 01101 01110 10011 10101 10110 11001 11010 11100 

11000 10100 10010 10001 01100 01010 01001 00110 00101 00011 

10000 01000 00100 00010 00001 

00000 
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Figure 4.1: Individuation of the False sets Fi on the Boolean hypercube B5

4.4 Basic Orthogonalization operation

Given an arbitrary Boolean formula F in normal form, representing the
Boolean function f(x1, x2, ..., xn), our aim is to put it in the orthogonal
form O while still representing the same f(x1, x2, ..., xn). This can always
be done as follows.
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We define the multiplication (�) of two monomials mi and mj as a new
monomial containing all their literals (but without repeated ones) when the
two monomials are not orthogonal, and φ when they are orthogonal. Note
that φ means an empty formula, i.e. a formula for which there are only good
points, and not a formula made by an empty monomial, i.e. a formula for
which there are only bad points. Formally:

mi�mj = (xih�...�xik)�(xjh�...�xjk) =

{
φ if mi and mj are orthogonal
(xih�xjh�...�xik�xjk) else

Proposition 4.1. Consider any two monomials mi and mj, with their
corresponding sets Ui, Vi, Uj and Vj. Let mk = mi � mj be their product.
The set of the bad points for mk is Uk = Ui∩Uj, while the set of good points
is Vk = Vi ∪ Vj

We can use such multiplication operation to make any two monomials
orthogonal each other. In fact:

Theorem 4.1. Consider an arbitrary Boolean formula F in normal
form representing the Boolean function f(x1, x2, ..., xn). If we multiply an
arbitrary monomial mi ∈ F by the negation ¬mj of another arbitrary mono-
mial mj ∈ F , we obtain a new Boolean formula F ′ still representing the same
f(x1, x2, ..., xn).

Uj = V¬j

Vi

V 

Vj

Figure 4.2: Individuation of the False sets Fi on the Boolean hypercube B5
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Proof: We need to prove that sets U and V are the same for F and F ′.
As we can observe in the above figure 4.2, monomial mj determines in Bn

a partition in Uj and Vj . Its negation ¬mj determines a partition U¬j = Vj

and V¬j = Uj.
Now we multiply another monomial mi by ¬mj, obtaining the new mono-

mial m′
i, add m′

i and remove mi form the formula. The set V ′
i corresponding

to this new monomial, by proposition 4.1, is Vi ∪ V¬j , which is ⊇ Vi. So the
set of good points for the formula V , which is the intersection of all the
Vi, cannot decrease. It could increase in the area of V¬j , but such area is
forbidden by the fact that V ⊆ Vj. Hence, V is the same for F and F ′, and
therefore U also remains the same. The thesis follows.

Given an arbitrary monomial mi = (xh�xh+1�...�xk), its negation (by
De Morgan’s laws) is easy computable as the following set of monomials con-
nected by our external operator. (¬xh)⊥(¬xh+1)⊥...⊥(¬xk) = ¬(mi). But
the expression for ¬mi is not unique. We could, in fact, consider a negation
which is in orthogonal form, namely the orthogonal negation ¬o(mi) of mi.
¬o(mi) is made of k monomials omi

1 ⊥omi
2 ⊥ . . .⊥omi

k corresponding to the
negation of the first literal, the first and the negation of the second, and so
on, as follows.

(¬xh)⊥(xh�¬xh+1)⊥...⊥(xh�xh+1�...�¬xk)

Example The orthogonal negation of

m = (x1�x2�¬x3)

is
¬o(m) = om

1 ⊥om
2 ⊥om

3 = (¬x1)⊥(x1�¬x2)⊥(xi�x2�x3)

Basing on the above results, we can develop the following procedure.

Basic Orthogonalization Operation: Without loss of generality, con-
sider any two monomials m1 and m2 not already orthogonal.

m1 = (xi�...�xj�xj+1�...�xh) m2 = (xj+1�...�xh�xh+1�...�xk)

m1 and m2 have, in general, a common set of literals c1,2 = (xj+1�...�xh)
and two sets of literals d1 and d2 which are not in common: d1 = (xi�...�xj)
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for m1, and d2 = (xh+1�...�xk) for m2. Note that, since they are not orthog-
onal, they cannot contain complementary literals: if xi ∈ m1 ⇒ ¬xi �∈ m2.

Choose one of them, say d1, and consider its orthogonal negation ¬o(d1) =
od1
1 ⊥od1

2 ⊥ . . .⊥od1
j .

The (sub)formula m1⊥m2, is equivalent to the following (sub)formula,
in the sense that they both represent the same Boolean function.

m1 ⊥ od1
1 � m2 ⊥ od1

2 � m2 ⊥ . . .⊥ od1
j � m2

Note that the obtained (sub)formula is in orthogonal form. The number
of monomials is 1 plus the cardinality of the set of non-common literals (d1)
we used. In order to obtain a smaller number of monomials, we always
choose the set of non-common literals of minimum cardinality.

Example Given a formula made up of the two monomials m1 and m2.

m1 = (x1�¬x2�x5)⊥(¬x2�x3�x4) = m2

the sets of non-common literals are

d1 = (x1�x5) and d2 = (x3�x4)

Their cardinality is the same. We choose d1, and its orthogonal negation
is the following.

(¬x1)⊥(x1�¬x5)

By performing the orthogonalization operation, the above formula is
equivalent to

(x1�¬x2�x5)⊥((¬x1) � (¬x2�x3�x4))⊥((x1�¬x5) � (¬x2�x3�x4))

which is the following orthogonal formula.

(x1�¬x2�x5)⊥(¬x1¬x2�x3�x4)⊥(x1�¬x2�x3�x4�¬x5)

The above is a general procedure to orthogonalize any two monomials.
Given any formula, by iterating this orthogonalization operation to exhaus-
tion, until every pair of monomials are orthogonal, we can always reach the
orthogonal form.
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4.5 Improvements

Unfortunately, by repeatedly applying above operation to exhaustion, the
size of the formula tends to exponentially increase. To reduce the size of the
formula, we will make use of the following observation.

4.5.1 Recognition of Internally Orthogonal Sets of Terms

A set of monomials S is internally orthogonal when each monomial mi ∈ S
of them is orthogonal to every mj ∈ S, for all mi,mj ∈ S. Given a generic
formula, some sets of monomials may already be internally orthogonal.

We can partition the set of monomials in sets Si which are already inter-
nally orthogonal S1, ...,Sp. The original formula can therefore be represented
as follows.

S1⊥...⊥Sp

Given a set of monomials Si, we can consider its orthogonal negation
¬o(Si), which is a set of new monomials oSi

j corresponding to the negation
of Si in orthogonal form. This is obtainable in a straightforward way from
the definition of orthogonal negation of a monomial.

¬o(Si) = oSi
1 ⊥oSi

2 ⊥ . . .⊥oSi
k

This lead us to the extended orthogonalization operation: We define the
multiplication (�) of two sets of monomials S1 and S2 as a new set of all the
monomials obtained by calculating mi �mj for all mi ∈ S1 and all mj ∈ S2.
(The multiplication mi � mj is defined above.)

Without loss of generality, given any two internally orthogonal sets, the
multiplication (�) of

S1 = (mi⊥mi+1⊥ . . .⊥mj) S2 = (mh⊥mh+1⊥ . . .⊥mk)

The (sub)formula S1⊥S2 is equivalent, in the sense specified above, to
the following (sub)formula.

S1⊥¬o(S1) � S2

The above is a general procedure to orthogonalize any two sets of inter-
nally orthogonal monomials. Given any formula, by iterating this orthog-
onalization operation to exhaustion, we can always reach the orthogonal
form.

We can moreover take advantage of the two following simplifying oper-
ations.
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4.5.2 Absorption

One monomial is implied by another one if it contains another one. Given
a formula containing the following two monomials,

m1 = (xi� . . . xj�xj+1� . . .�xh�xh+1� . . .�xk) m2 = (xj+1� . . .�xh)

the first can be deleted obtaining a new formula which is equivalent, in
the sense specified above, to the original one. This operation is particularly
useful in reducing the number of monomials in the formula.

4.5.3 Synthesis Resolution

This operation is a special case of the general operation called resolution
[223, 21] in the case of CNF, and consensus [220] in the case of DNF. Given
a formula containing two monomials which are identical except for one literal
xi appearing positive in one monomial and negative in the other, hence with
the following structure:

m1 = (xi�xh� . . .�xk) m2 = (¬xi�xh� . . .�xk)

we can add to the formula their resolvent [223] obtaining a new formula
which is equivalent, in the sense specified above, to the original one.

t3 = (xh� . . .�xk)

In particular, in this case, such resolvent absorbs both its parents. We
can therefore remove from the formula both its parents, obtaining a new
formula which is equivalent, in the sense specified above, to the original one.
This operation helps in reducing the number of monomials in the formula.

4.6 Complete Orthogonalization Operation

So far, we have a set of operation that can be performed on the original
formula in order to put it in orthogonal form. Being our aim not to increase
too much the size of the formula, we define the quality Q of an orthogonal-
ization step as the number of clauses orthogonalized divided by the number
of new clauses created. A simple way to The algorithm is therefore

1. Find a partition in already orthogonal sets of clauses S1, ...,Sp

2. Perform all extended orthogonalization steps of quality Q ≥ Qlimit1
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3. Perform all basic orthogonalization steps of quality Q ≥ Qlimit2

4. Perform all possible synthesis resolution.

5. Perform all possible absorption

6. Repeat until all orthogonal

4.7 Testing

The algorithm was tested on a set of CNF formulae representing satisfiability
instances. They are obtained from the SATLIB web site of the Darmstadt
University of Technology. Such instances are 3-sat artificially generated
problem.

Problem n m literals sol time morthogonal

uf20-01 20 91 273 Y 6.52 130

uf20-02 20 91 273 Y 5.00 100

uf20-03 20 91 273 Y 5.32 132

uf20-04 20 91 273 Y 3.42 134

uf20-05 20 91 273 Y 0.32 31

uf20-06 20 91 273 Y 1.80 40

uf20-07 20 91 273 Y 1.54 85

uf20-08 20 91 273 Y 5.55 136

uf20-09 20 91 273 Y 15.47 144

uf20-010 20 91 273 Y 5.84 128

uf20-011 20 91 273 Y 1.07 130

uf20-012 20 91 273 Y 8.34 190

uf20-013 20 91 273 Y 2.28 65

uf20-014 20 91 273 Y 7.07 167

uf20-015 20 91 273 Y 5.67 120

uf20-016 20 91 273 Y 4.77 102

uf20-017 20 91 273 Y 4.22 109

uf20-018 20 91 273 Y 8.06 105

uf20-019 20 91 273 Y 3.56 70

uf20-020 20 91 273 Y 9.17 98

uf20-021 20 91 273 Y 1.92 73

uf20-022 20 91 273 Y 2.48 79

uf20-023 20 91 273 Y 11.53 211

uf20-024 20 91 273 Y 5.28 171

uf20-025 20 91 273 Y 4.39 82

uf20-026 20 91 273 Y 3.50 59

uf20-027 20 91 273 Y 2.49 63

uf20-028 20 91 273 Y 3.38 93

uf20-029 20 91 273 Y 2.24 66

uf20-030 20 91 273 Y 1.96 90
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From the above table we can observe that the number of monomials
in the orthogonalized formula generally increase, although in some cases
this does not hold. Moreover, intermediate formulae contains many more
monomials. This turn out to be a general rule in performing such kind of
operation. However, there are practical applications where the orthogonal
form is of great relevance, and the advantages completely surmount the
disadvantage of such size increase.

An example comes from the Reliability theory, in the case we need to
compute the fault probability of a system which is made of a connection
(serial and\or parallel) of elements whose fault probabilities are known.

4.8 Conclusions

The orthogonal form of a Boolean formula has remarkable properties. Sev-
eral hard problems become easy when in orthogonal form. Every logic
formula can be transformed in orthogonal form. A general procedure for
orthogonalization is developed. The problem is indeed computationally de-
manding. As predictable, in the initial phase of the procedure, the size of
the formula tends to exponentially increase. On the other hand, the size of
the formula decreases again when approaching to the final phase. In spite
of this size growth, orthogonalization appears to be the preferable way to
solve some practical problems, for instance in the field of Reliability theory.
Due to relatively novelty of the topic, the presented algorithm is still under
construction.
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Chapter 5

Logic Programming
Techniques for an Error Free
Data Collecting

When dealing with a large number of collected information, a relevant prob-
lem arises: perform all the requested elaboration considering only correct
data. Examples of data collecting are for instance cases of statistical in-
vestigations, marketing analysis, experimental measures, etc. Correspond-
ing examples of data elaboration could therefore be calculating statistical
parameters, tracing consumers profiles, estimating unknown measured pa-
rameters, etc. Data correctness is a crucial aspect of data quality, and,
in practical cases, it has always been a very computationally demanding
problem.

Seldom data are single values. Generally, they are structured into sets of
values, whose elements have a specific meaning, and are binded by specific
relations. This set of p values vi (the data) for a set of p fields fi (their
meaning) is usually called a record R (among other, in the field of databases).
We will therefore consider records in the following form.

R = {f1 = v1, f2 = v2, . . . , fp = vp}

The problem of error detection is generally approached by formulat-
ing a set of rules that the records must respect in order to be reliable, or
consistent. In the absence of further information, consistent records are
declared correct. Instead, inconsistent records are declared erroneous. The
more accurate and careful the rules are, the more truthful individuation of
correct and erroneous data can be achieved. Such rules can involve the value

109



110 CHAPTER 5. LOGIC FOR ERROR FREE DATA COLLECTING

of a single field (e.g. a value vi must be within a set V ) or a combination
of values within a record (e.g. a value vi must be equal to a value vj plus a
value vk).

A first problem arising from this fact is the validation of such set of
rules. In fact, the rules could contain some contradiction among themselves,
or some rule could be implied by some other. This could result in erroneous
records to be declared correct, and vice versa. This point is discussed in
more detail is in section 2. The above problem of checking the set of rules
against inconsistencies and redundancies is transformed in a Propositional
Logic problem. This is done by encoding the rules in clauses, as explained
in section 3. A sequence of propositional Satisfiability problems (SAT for
short) is therefore solved, as illustrated in section 4. This procedure allows,
moreover, to check if a new rule is in contradiction with the previous ones,
or if they already imply it. This will reveal its importance in a phase of
updating.

By choosing this clausal representation, the detection of erroneous records
simply becomes the problem of testing if a truth assignment for its logical
variables satisfies a propositional logic formula. See section 5 for details.

In the subsequent phase of error correction [186], the erroneous (or
inconsistent) records must be changed in order to satisfy the above rules.
This should be done by keeping as much as possible the correct informa-
tion contained in such erroneous records. Two general principles should be
followed: to apply the minimum changes to erroneous data, and to modify
as less as possible the marginal and joint frequency distribution of the data
[78]. This is described in more detail in section 6. The above problem is
modeled by encoding the rules by linear inequalities, and solving a sequence
of set covering problems, as explained in section 7.

The proposed procedure is tested by performing the entire process of
error detection and correction in the case of a real world Census. The
application and part of the data were kindly provided by the Italian National
Statistic Institute (ISTAT). Results are in section 8.

5.1 Data Collecting through Questionnaires

Our attention will be focused on the problem of statistic projections carried
out by processing answers obtained through a collection of questionnaires.
We stress that such problem is used just as an example to apply our method-
ology, and of course does not exhaust field of application of the proposed
procedure.
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A record, in this case, is the set of the answers to one questionnaire Q.
We therefore have

Q = {f1 = v1, f2 = v2 . . . , fp = vp}

We will consider, in particular, the case of a census of population. Ex-
amples of fields fi are age or marital status, corresponding examples of
values vi are 18 or single. Fields can be distinguished in quantitative and
qualitative ones. Roughly speaking, a quantitative field require its value to
be either a real number a in some interval [a1, a2], or an integer number n in
some set N , or at least a value belonging to an ordered set. In a quantitative
field, in fact, the order operators ’<’, ’≤’, ’>’, ’≥’ must be defined. On the
other hand, a qualitative field require its value d to be a member of some
discrete set D = {d1, d2, . . . , dn}.

Errors, or, more precisely, inconsistencies between answers or out of
range answers, can be due to the original compilation of the questionnaire,
or can be introduced during any later phase of information processing, such
as data input or conversion. Inconsistent questionnaires could contain infor-
mation that deeply modifies the aspects of interest (just think of maximum
or minimum of some value), and thus, without their detection, our statistical
investigation would produce erroneous results. We can distinguish between
stochastic errors and systematic errors. Stochastic errors are randomly in-
troduced, and can therefore be unpredictable and have in general low or no
correlation. On the other hand, systematic errors consists in a repetition
of the same error. This can be, for instance, due to some defect in the
questionnaire. Of course, both of these kinds of errors must be identified.

Generally, real world statistics involve such a high number of question-
naires that an automatic procedure to carry out error detection is needed.
Usually, National Statistic Offices perform the task of detecting inconsis-
tencies by formulating rules that must be respected by every correct set of
answers. More precisely, rules are written in form of edits. An edit expresses
the error condition. The following example will clarify this point.

Example 2.1. An inconsistent answer can be to declare

marital status as married and age as 10 years old.

The rule to detect this kind of errors could be the following

if marital status is married, age must be not less than, say, 14.
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The rule must be put in form of an edit, which expresses the error condition.
Since we have the error if marital status = married and age < 14, the
edit for this example would therefore be

(marital status = married) ∧ (age < 14)

The set of all the edits is sometimes called the set of edit rules, or Check
plan, or Compatibility plan, of a statistical investigation. Such set of edits
is used to split the set of all questionnaires in the two subsets of correct ones
and erroneous ones. Questionnaires which verify the condition defined in at
least one edit are declared erroneous. We will say that such questionnaires
activate the edits.

Obviously, the individuation of the set of edits itself plays a crucial role.
In fact, the set of edits must be free from inconsistency (i.e. edits must not be
in contradiction each other), and, preferably, from redundancy (i.e. do not
contain edit which are logically implied from other edits). In the case of real
questionnaires, edits can became very numerous. The cardinality of the set
of edits, in fact, increases with the number of questions in the questionnaire.
Moreover, a high number of edits allows a more accurate error detection.
Test for contradictions and redundancies must be automatically performed
as well. Therefore, a form of edits representation that can be treated by
automatic elaboration is needed.

Many commercial software systems deal with the problem of question-
naires correction, and they make use of a variety of different (and sometimes
naive) edits encoding and solution algorithm [10, 269, 209]. In practical case,
however, they suffer from severe limitations, due to the inherent computa-
tional complexity of the problem. Some methods ignore edit testing, and
just separate erroneous questionnaires from correct ones. Their limitations
are that results are incorrect if edits are incorrect, and edits updating turns
out to be very difficult. This cause that number of edits must be small
enough to be validated by inspection by a human operator.

On the other hand, other methods try to check for contradiction and
redundancy by generating all implied edits, such as the ’Fellegi Holt’ proce-
dure [78]. Their limitation is that, as the number of edits slightly increases,
they produce very poor performance. This happens, of course, because of
the huge demand of computational resources required for generating all im-
plied edits, whose number exponentially grows with the number of original
edits. The above limitations prevented to now the use of a set of edits
whose cardinality is above a certain value. Another serious drawback is
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that simultaneous processing of quantitative and qualitative fields is seldom
allowed.

5.2 A Logical Representation of the Set of Edits

The usefulness of logic or Boolean techniques is proved by many approaches
to similar problems of information representation ([25, 221] among others).
This should not be surprising, when considering the role of the science of
Logic. A representation of the set of edit by means of first-order logic is not
new. This methodology turns out to be equivalent to the ’Fellegi-Holt’ one
[13], with consequent computational limitations. In this paper we propose
an edit encoding by means of the simpler propositional logic. Treatment of
numerical data is performed by a process called binarization [25].

A propositional logic formula is composed of propositions, i.e. logical
variables (also called binary, or Boolean, variables), which assume values in
the set {True, False}, or, equivalently, {1, 0}, and of the logical connectives
{∧,∨,⇒,⇔}, with their usual meaning of ’and’, ’or’, ’implies’, ’is equiv-
alent’. Propositions can be positive (a logical variable α) or negative (a
negated logical variable ¬α). Every Propositional Logic formula can be put
in conjunctive normal form (CNF), namely a conjunction (∧) of disjunc-
tions (∨). A CNF formula F , with n logical variables and m clauses, has
the following general structure:

(αi1 ∨ ...∨αj1 ∨¬αk1 ∨ ...∨¬αn1)∧ . . .∧ (αim ∨ ...∨αjm ∨¬αkm ∨ ...∨¬αnm)

Given truth values (True or False) to the logical variables, we have a
truth value for the whole formula. A formula F is satisfiable if and only if
there exists a truth assignment that makes the formula True [65, ?, 146, 101].
If this does not exist, the formula F is unsatisfiable.

The problem of testing satisfiability of propositional formulae in conjunc-
tive normal form, named SAT, plays a protagonist role in mathematical logic
and computing theory. Actually, it is fundamental in Artificial Intelligence,
Expert Systems, Deductive Database theory, due to its ability of formalizing
deductive reasoning, and thus solving logic problems by means of automatic
computation. It is known to be NP-complete [98]. Satisfiability problems
indeed are used for encoding and solving a wide variety of problems arisen
from different fields, e.g. VLSI logic circuit design and testing, programming
language project, computer aided design.

A SAT formulation can be used to solve the problem of logical impli-
cation, i.e. to detect if a given proposition is logically implied by a set of
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propositions [163, 102, 176, 64].
In the case of questionnaires, every edit can be encoded in a proposi-

tional logic clause. Moreover, since the edit have a very precise syntax, this
encoding can be done by an automatic procedure [31]. The set of edits E,
written by the person entrusted of this task at the ISTAT, and according
to the grammar used by them, is therefore transformed in a CNF proposi-
tional formula E , following the sequence of steps listed below and described
in further subsections:

Edit propositional encoding procedure

1. Identification of the domains Df for each one of the p field f , consid-
ering that we are dealing with errors.

2. Identification of subsets S1
f , S2

f , . . . in every domain Df , defined by

breakpoints, or cut points, b1
f , b2

f , . . . obtained from the edits.

3. Identification of equivalent subsets Sj
f , Sq

k, . . ., and definition of equiv-

alence classes Ch
f = [Sj

f ].

4. Definition of n logical variables α
[Sj

f
]

to represent the equivalence

classes [Sj
f ].

5. Expression of all the edits by means of clauses defined over the intro-
duced logical variables α

[Sj
f
]
.

6. Identification of congruency clauses to supply the information not con-
tained in edits.

Note that the above procedure is merely formal, i.e. not depending
by the meaning of the involved propositions. Therefore, it can be entirely
performed by means of automatic elaboration.
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5.2.1 Identification of the domains for the fields

In this step, the totality of possible answers need to be identified, including
incorrect ones and blank answer. Such possibilities depend, of course, on
the nature of the field (qualitative or quantitative), but also on the typo-
graphical aspect of the question in the questionnaire (for instance, single
choice question, text box question, etc.). Such sets of possible answer, for
the generic field f , will be indicated as Df . Df can include intervals of real
numbers, sets of elements, etc. A generic value belonging to domain Df will
be indicated as vf ∈ Df .

Example 3.1. Consider a field marital status represented as follows:

Marital status:

separate widowdivorcedmarriedsingle

Answer can vary only on a discrete set of possibilities in mutual exclusion,
or, due to errors, be missing or not meaningful (for instance when we have
more than one choice). Both latter cases are expressed with the value blank.

Dmarital status = {single, married, separate, divorced, widow, blank}

Example 3.2. Consider a field age represented as follows:

Age: _________ years

Due to errors, the totality of possible answers can be any number or be
blank. Although this may seem too pessimistic, note that similar choices
improve robustness of the procedure. We have

Dage = (−∞,+∞) ∪ {blank}

From the above example we can see that a quantitative field can have a
domain whose elements are not only numbers. To perform such identification
of the domains Df , a characterization of the qualitative or quantitative
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nature of every field and of its typographical aspect must be given in input
to the procedure.

5.2.2 Identification of the breakpoints for the fields

Edits are propositions involving one or more values vf1 ∈ Df1 , vf2 ∈ Df2 , . . .
for one or more fields f1, f2, . . .. As told, they state the error condition. In
our application, they may have one of the two following logical structure:

f1 < relation > vf1

(f1 < relation > vf1) < logic connective > (f2 < relation > vf2)

where < relation > is one of ’=’, ’<’, ’>’, ’≤’, ’≥’, ’∈’, etc., and <
logic connective > is one of ⇒, ⇔, ∧ (cfr. Example 2.1.). Of course, order
relations are used only in the case of ordered domains (quantitative fields).

Values vf appearing in the edits are called breakpoints, or cut points,
for the domains. They represent the logical watershed between values of the
domain. Such particular values will be indicated with bj

f . All the breakpoints
bj
f can be automatically detected by reading the edits.

We can observe that the expression (f < relation > vf ) represents a set
of values of the domain Df . This can be a single values df ∈ Df (when
the relation is ’=’), or a sets of values with cardinality > 1, or an interval
of numbers. In all the above cases, anyway, (f < relation > vf ) denotes
a subset of domain Df , and, in order to avoid too many case distinctions,
they will all be called subsets Sj

f ⊆ Df . We congruently have

Df =
⋃
j

Sj
f

In order to identify all subsets Sj
f , the breakpoints bj

f are used to par-
tition domain Df according to the edits. Some domains can be also very
fragmented.

Example 3.3. For the field marital status, by reading an imaginary
set of edits, we have the following breakpoints

b1
marital status = single

b2
marital status = married

b3
marital status = separate

b4
marital status = divorced

b5
marital status = widow

b6
marital status = blank
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and, by using the breakpoints and the edits to cut the domain Dmarital status,
we have the subsets

S1
marital status = {single}

S2
marital status = {married}

S3
marital status = {separate}

S4
marital status = {divorced}

S5
marital status = {widow}

S6
marital status = {blank}

Example 3.4. For the field age, by reading an imaginary set of edits,
we have the following breakpoints

b1
age = 0

b2
age = 14

b3
age = 18

b4
age = 26

b5
age = 120

b6
age = blank

and, by using the breakpoints and the edits to cut the domain Dage, we have
the subsets

S1
age = (−∞, 0)

S2
age = [0, 14)

S3
age = [14, 18)

S4
age = {18}

S5
age = (18, 26)

S6
age = [26, 120]

S7
age = (120,+∞)

S8
age = {blank}

Note that, for real valued numerical fields, depending on the relations in
the edit (’<’, ’>’ ’≤’, ’≥’), subsets are intervals close, open, left close, left
open, etc.

5.2.3 Individuation of equivalent classes of subsets

Depending on the edits, some subsets Sa
f , Sb

f , . . . can be equivalent. This
happens when, given a value df for a field f , the following alternative cases

df ∈ Sa
f , df ∈ Sb

f , . . .
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activate exactly the same edits for every other combination of values for
other fields. This means that, if df is in Sa

f ∪Sb
f ∪ . . ., changing its value still

in Sa
f ∪Sb

f ∪ . . . can never change correctness result for any questionnaire. By
considering such equivalence relationship, we introduce equivalence classes
for that. The above equivalence class will be indicated as [Sa

f ]. Such equiv-
alent subsets, can be identified from the edits as follows. Given a group of
subsets df ∈ Sa

f , df ∈ Sb
f , . . ., if all the edits where they appear are identical

except for < relation > and value di (the two elements which define the sub-
set of the field f - see edit structure in subsect. 3.2) df ∈ Sa

f , df ∈ Sb
f , . . . are

equivalent. Equivalence classes can therefore be automatically identified.

Example 3.5. If all the edits where married and separate appear
would be

marital status = married ∧ age < 14
meaning: if marital status is married, age must be not less than 14.

marital status = separate ∧ age < 14
meaning: if marital status is separate, age must be not less than 14
(must be married to be separate).

the two subsets married and separate would be equivalent. Since, in-
stead, they also appear in other edits which do not satisfy the above condi-
tion, married and separate are not equivalent. In this case the equivalence
condition never holds for the field marital status, hence we have no equiv-
alent subset in it. Therefore, there is a different class for every subset.

Example 3.6. On the contrary, for the field age, some subsets are
equivalent. In particular, edits representing the concept out of normal are

(age < 0)
meaning: age cannot be less than 0.

(age > 120)
meaning: age cannot be more than 120.

(age = blank)
meaning: age cannot be blank.

The above subsets does not appear in any other edit, and the above
edits are identical except for < relation > and value di, hence the subsets
{(−∞, 0)}, {(120,+∞)}, {blank} are equivalent and collapse in to the same
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class. Moreover, also the subsets {18} and {(18, 26)} results to be equiva-
lent. There are no further equivalent subsets. Altogether, for the field age,
we have the classes

C1
age = [{blank}] = {(−∞, 0), (120,+∞), blank}

C2
age = [[0, 14)] = {[0, 14)}

C3
age = [[14, 18)] = {[14, 18)}

C4
age = [(18, 26)] = {18, (18, 26)}

C5
age = [[26, 120]] = {[26, 120]}

5.2.4 Definition of logic variables

The logical variables are used to encode the information about which class
contains the value of every field. This can be done in several ways, and
pursuing different aims. We choose the following, with the aim to produce
an easier CNF formula. The definition of logical variables is slightly different
in the case of qualitative or quantitative fields.

For every qualitative field with n classes, we use n− 1 logic variables αi

corresponding to n−1 classes. If the qualitative field f has a value belonging
to the class Cj

f we put α
Cj

f
= True. The same holds for the other classes of

the field, except for one, for instance the last one Cn
f . When the field f has

a value in this last class Cn
f , we put all variables at False.

Example 3.7. The field marital status is divided in 6 equivalence
classes (see example 3.5). We therefore have 6-1 = 5 logical variables
α[single], α[married], α[separate], α[divorced], α[widow], as shown below.
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vmarital status ∈ [single] ⇒




α[single] = True

α[married] = α[separate] =
= α[divorced] = α[widow] = False

vmarital status ∈ [married] ⇒




α[single] = False

α[married] = True

α[separate] = α[divorced] = α[widow] = False

vmarital status ∈ [separate] ⇒




α[single] = α[married] = False

α[separate] = True

α[divorced] = α[widow] = False

vmarital status ∈ [divorced] ⇒




α[single] = α[married] = α[separate] = False

α[divorced] = True

α[widow] = False

vmarital status ∈ [widow] ⇒




α[single] = α[married] =
= α[separate] = α[divorced] = False

α[widow] = True

vmarital status ∈ [blank] ⇒
{

α[single] = α[married] = α[separate] =
= α[divorced] = α[widow] = False

For every quantitative field with n classes, we use n − 1 variables. The
difference with former case is that these variables do not correspond to
classes. They correspond instead to nested intervals, all of them having as
initial point the smaller feasible value for that field, and as final point the
identified breakpoints. Externally from the bigger nested interval it remains
the ’out of range’ class. This choice for variable association results, in our
case, in shorter clauses. In fact, in most of edits appear similar intervals.
They can therefore be expressed with one variable instead of more ones.

If the quantitative field f has a value in one of the nested intervals
[a,b] we put α[a,b] = True. The other variable must be set accordingly, as
illustrated below. The same holds for the other classes of the field, except
for one, for instance the last one Cn

f . When the field has a value in the ’out
of range’ class, we put all variables at False.

Example 3.8. The field age is divided in 5 equivalence classes (see
example 3.6). We therefore have 5-1 = 4 logical variables α[0,14), α[0,18),
α[0,26), α[0,120], as illustrated below.
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vage ∈ [[0, 14)] ⇒
{

α[0,14) = α[0,18) =
= α[0,26) = α[0,120] = True

vage ∈ [[14, 18)] ⇒
{

α[0,14) = False

α[0,18) = α[0,26) = α[0,120] = True

vage ∈ [[18, 26)] ⇒
{

α[0,14) = α[0,18) = False

α[0,26) = α[0,120] = True

vage ∈ [[26, 120]] ⇒
{

α[0,14) = α[0,18) = α[0,26] = False

α[0,120] = True

vage ∈ [blank] ⇒
{

α[0,14) = α[0,18) =
= α[0,26] = α[0,120] = False

We therefore have the following graphical representation of the nested
intervals.

α 0,14

α 0,120

α 0,26

18

+∞

0 26 120

- ∞

14

α 0,18

Figure 5.1: Nested subsets for the field age.

5.2.5 Encoding of edits as clauses

So far, every edit can be encoded in clauses by using the defined variables.
Every expressions (fi < relation > vfi

) can in fact be substituted by the cor-
responding logical variable, obtaining therefore a sequence of logic variables
connected by logic operators, hence a logic formula.
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We are interested in producing clauses which are satisfied by consistent
answers. Being edits the description of the error condition, we now need to
negate the obtained logic formula. This negated logic formula can be then
transformed in CNF format, by following simple syntactical logic rules. The
so generated CNF formula is satisfied by every set of correct questionnaires
answers, and are not satisfied by every set of inconsistent or out of range
answer. With the particular edit structure considered, every edit produces
one and only one clause. However, in a general case, this could not hold,
but the procedure works fine as well.

Example 3.9. Following the above example 3.1, the given edit is

marital status = married ∧ age < 14

By substituting the logical variables, we have the following logic formula

α[married] ∧ α[0,14)

By negating it, and applying De Morgan’s law, we obtain the following
clause

¬α[married] ∨ ¬α[0,14)

5.2.6 Identification of congruency clauses

In addition to information given by edits, there is information which is not
contained in edits, and that a human operator would consider obvious, but
which must be provided to an automatic elaboration. In our case, we need
to express that fields must have one and only one value, and therefore other
clauses, named congruency clauses, need to be added.

By using n − 1 variables for n equivalence classes, there is no need to
add clauses expressing that we must have a value being in at least one class,
because it does not exist a truth assignment for variables that doesn’t verify
this.

Instead, it must be expressed that the value for a field must be in only
one class. Considering the case of qualitative fields (such as the example of
marital status), we have the n variables corresponding to the n+1 disjoint
classes. The above condition becomes that only one variable can be true.
This is imposed by adding clauses constituted by all the possible couples of
negated variables. Their number is therefore

(n
2

)
(number of combination of

class 2 of n objects).
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Example 3.10. In the case of the qualitative field marital status, we
have 5 variables, hence the congruency clauses are

(5
2

)
= 10, as follows:

¬α[single] ∨ ¬α[married]

¬α[single] ∨ ¬α[separate]

¬α[single] ∨ ¬α[divorced]

¬α[single] ∨ ¬α[widow]

¬α[married] ∨ ¬α[separate]

¬α[married] ∨ ¬α[divorced]

¬α[married] ∨ ¬α[widow]

¬α[separate] ∨ ¬α[divorced]

¬α[separate] ∨ ¬α[widow]

¬α[divorced] ∨ ¬α[widow]

Considering now the case of quantitative fields (such as the example of
age), we have n variables corresponding to n nested subsets. As observed
above, we can have either the case of a quantitative field divided into nested
intervals of reals, or the case of a quantitative field divided into nested sets
of integer numbers. We will discuss the procedure speaking about nested
intervals, but, of course, the case of nested sets of integers is completely
analogous.

The congruency condition becomes that, if a variable α[a1,b1], correspond-
ing to an interval [a1, b1], is True, also all the variables α[a2,b2], α[a3,b3], . . . ,
corresponding to all the intervals [a2, b2], [a3, b3], . . . , containing [a1, b1], must
be True. The above condition is imposed by adding (n−1)+(n−2)+. . .+1 =(n
2

)
clauses expressing

α[a1,b1] ⇒ α[a2,b2], α[a1,b1] ⇒ α[a3,b3], . . . , α[a2,b2] ⇒ α[a3,b3], . . . ,

Converting in CNF by applying elementary logic rules (αa ⇒ αb is equivalent
to ¬αa ∨ αb), we obtain

¬α[a1,b1] ∨ α[a2,b2],¬α[a1,b1] ∨ α[a3,b3], . . . ,¬α[a2,b2] ∨ α[a3,b3], . . . ,

Example 3.11. In the case of the quantitative field age, we have 4
variables corresponding to 4 nested subsets, hence the congruency clauses
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are
(4
2

)
= 6, as follows:

¬α[0,14) ∨ α[0,18)

¬α[0,14) ∨ α[0,26)

¬α[0,14) ∨ α[0,120]

¬α[0,18) ∨ α[0,26)

¬α[0,18) ∨ α[0,120]

¬α[0,26) ∨ α[0,120]

So far, given the set of edits, we have a set of m clauses, and, given
the set of answers to a questionnaire, we have a truth assignment for the
n logical variables. By construction, a record which does not activate any
edit, will satisfy all the clauses, and a record which activates some edits
will not satisfy the corresponding clauses. We therefore have that the truth
assignment given by a record must satisfy all the clauses to be declared
correct. We will hence consider the conjunction of all the clauses, that is a
CNF formula E , and say, briefly, that the questionnaire Q must satisfy E to
be declared correct.

5.3 Edits Validation

As told, edits must be free from inconsistency (i.e. edits must not be in con-
tradiction each other), and, preferably, from redundancy (i.e. do not contain
edit which are logically implied from other edits). The test for contradic-
tions and redundancies is very hard for a human operator, and impossible
above a certain number of edits. On the other hand, when such test is au-
tomatically performed, it historically turns out to be very computationally
demanding.

A diffuse approach follows the so-called ’Fellegi-Holt’ methodology [78].
This consists in checking for contradiction and redundancy by generating
all the (new) edits which are implied by the given edits. The generation of
all implied edits allows to check if the given edits imply some hidden rule
that should not hold. Unfortunately, but predictably, the number of implied
edits is exponential in the number of given edits. This is the main reason for
which this methodology, although theoretically irreprehensible, is recently
recognized to be not applicable for many real-world problems.

Edit representation by means of first-order logic was already proposed,
for instance in [13]. This allows a formal and convenient description of the
edit and the operations. However, something analogous to the generation
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of all implied edits must be performed in this case also. The computational
complexity of the problem remains exponential.

Being our proposal to perform edit validation in the case of real world
problems, we must get rid of the generation of all implied edits. By means
of a propositional logic representation, the problem of checking for inconsis-
tency and redundancy can be formalized as follows.

5.3.1 Complete Inconsistency in the Set of Edits

When every possible set of answers to the questionnaire is declared incorrect,
we have the situation called complete inconsistency of the set of edits. In
fact, reminding that edits describe the inconsistent situation, let’s consider
the following example.

Example 4.1. The following is a situation of Complete Inconsistency.
This is, of course, a very simple and evident one. More complex ones,
involving dozens of edits, are not so easily visible. Below every edit its
meaning is explained.

seaside house = no
meaning: everybody must have a seaside house.

mountain house = no
meaning: everybody must have a mountain house.

(seaside house = yes) ∧ (mountain house = yes)
meaning: it is not allowed to have both seaside and mountain house.

Using these edits, every questionnaire fails the check, because it cannot
exist any set of answers which appear consistent. Edits are always activated.

In a large set of edits, or in a phase of edits updating performed by
people different from the original edit writers, the situation of complete
inconsistency may occur.

Claim 4.1. By encoding edits in clauses, complete inconsistency corre-
spond to a CNF formula that cannot be satisfied, namely an unsatisfiable
formula.

Complete inconsistency can therefore be detected by checking the satis-
fiability of the whole CNF formula.



126 CHAPTER 5. LOGIC FOR ERROR FREE DATA COLLECTING

Moreover, when having a complete inconsistency and in order to restore
consistency, it would be very useful to know which are the inconsistent edits.
This corresponds to selecting which part of the unsatisfiable CNF cause the
unsolvability, i.e. a minimal unsatisfiable subformula (MU) [164, 79, 33].

This could be done by means of the used SAT solver, which, in the
case of unsatisfiable instances, is able to select a subset of clauses which are
still unsatisfiable, and thus causes the unsatisfiability of the whole instance
[33]. Therefore, the inconsistent edits are the ones corresponding to such
clauses, and should be changed (by the human adviser who writes the edits,
of course). The usefulness of the individuation of such inconsistent subset
of edits is easily understandable when thinking of the prospect of checking,
for instance, a dozen of edits instead of one thousand.

5.3.2 Partial Inconsistency in the Set of Edits

More insidious because less easy to detect without an automatic procedure
in a large set of edits is the situation of partial inconsistency of the set
of edits. This happens when some questionnaires, which are correct, are
declared erroneous, only due to a particular value v†f of a single field f .

In the intentions of the edit writer, v†f was a feasible value for the field f .
Due to an unfortunate edit combination, however, there is an hidden and
unwanted implied edit which forbids the value v†f for the field f .

v†f will be called a sentence value. When a correct questionnaire contains
a sentence value, it is (erroneously) declared incorrect, due to edit’s fault.
For questionnaires not containing sentence values, partial inconsistency does
not cause any problem. Let us consider indeed the following example.

Example 4.2. The following is a situation of partial inconsistency.
Below every edit its meaning is explained.

(annual income ≥ 1000) ⇒ (seaside house = no)
meaning: if annual income is greater then or equal to 1000, then the

subject must have a seaside house.

(annual income ≥ 2000) ⇒ (mountain house = no)
meaning: if annual income is greater then or equal to 2000, then the

subject must have a mountain house.

(seaside house = yes) ∧ (mountain house = yes)
meaning: it is not allowed to have both seaside and mountain house.
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Using the above edits, every questionnaires where the subject has an
annual income ≥ 2000 is declared erroneous, even if it should not. In fact,
that answer necessarily activates the edits. Note that, for annual income <
2000, this partial inconsistence does not show any effect, and error detection
proceeds in the correct way. The value 2000, (and any other greater value)
is a sentence value for the field annual income.

We can have more than one sentence value v†f forbidden by the same
unwanted implied edit. The set of all values forbidden by an unwanted
implied edit is in fact constituted by the subset Sj

f containing v†f , together
with all other subsets belonging to the same equivalence class (see sec. 3).
The logical variable corresponding to the equivalence class [Sj

f ] will be called

sentence variable α†
f for the field f . The set of all the values forbidden by

one unwanted implied edit will be called sentence set S†
f .

S†
f =

⋃
k: Sk

f
∈[Sj

f
], v†

f
∈Sj

f

Sk
f

We will therefore say that we have partial inconsistency with regard to
the set S†

f for the field f , or, equivalently, with regard to the variable α†
f for

the field f . Note that we can have more unwanted implied edits forbidding
more variables of the same field.

In case of partial inconsistency, the CNF formula obtained from the
edits is satisfiable. However, if for field f we have a sentence value, this
corresponds to fixing the sentence variable α†

f to True.

Claim 4.2. If we fix α†
f to True, and remove, as standard, satisfied

clauses and all negated occurrence of that variable, the resulting formula
becomes unsatisfiable.

Basing on the above result, partial inconsistency with regard to any
single variable αk of the CNF formula can be detected by checking the
satisfiability of all the CNF formulae obtained by independently fixing αk =
True, for k = 1, . . . , n.

Partial inconsistency with respect to a single variable αk, will be called
first-level partial inconsistency. Partial inconsistency with respect to a cou-
ple of variables αk and αh, will be called second-level partial inconsistency,
and so on. We don’t check all levels, otherwise we could not get rid from
the exponential complexity that affects other procedures. What we do is
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to check all first-level partial inconsistencies, and provide a tool that allows
to check, if desired, higher-level partial inconsistencies. Note that neither
’Fellegi-Holt’ methods check such partial inconsistencies, since they do dot
lead to a complete contradiction when deriving all implied edits, and there-
fore are not automatically signaled. With ’Fellegi-Holt’ methods, in fact,
they could only be found by a (hypothetic) human inspector which exam-
ines every implied edit generated.

Moreover, in order to restore consistency, the used SAT solver is still
able to select a subset of clauses which are unsatisfiable, and thus causes
the situation of partial inconsistency. Individuation of inconsistent edits can
therefore be carried out also in the case of partial inconsistency.

5.3.3 Redundancy in the set of edits

Some edits could be logically implied by others, being therefore redundant.
It would be obviously preferable if we could remove them, because decreas-
ing the number of edits while maintaining the same power of inconsistency
detection can simplify the whole process and make it less error prone.

Example 4.3. The following is a (very simplified) situation of edit
redundancy. Below every edit its meaning is explained.

(role = head of the house) ∧ (annual income < 100)
meaning: head of the house must have an annual income greater then or

equal to 100.

annual income < 100
meaning: everybody must have an annual income greater then or equal

to 100.

The first edit is clearly redundant.

A SAT formulation is generally used to solve the problem of logical im-
plication, i.e., given a set of statements S called axioms, to decide whether
another statement s logically derives from them, in symbols S ⇒ s. Repre-
senting statements S and s with clauses, we have S ⇒ s if and only if S∪¬s
is an unsatisfiable formula [163, 176]. In our case this means:

Claim 4.3. The clausal representation of an edit ej is implied by the
clausal representation of a set of edits E if and only if the CNF formula
obtained by E ∪ ¬ej is unsatisfiable.
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It can be consequently checked if an edit is redundant by removing its
clausal representation ej from the CNF formula, by adding its negation ¬ej

to the formula, and by testing if the resulting formula is unsatisfiable. The
redundancy of every edit can be checked by independently applying to each
one of them the above operation

5.4 Individuation of Erroneous Records

Once we have a valid set of edit rules, they are used to detect erroneous
records, in our case questionnaires. A correct questionnaire will be indi-
cated with Qr (right) and an erroneous one with Qw (wrong). By using
the propositional logic representation, this trivially becomes the problem of
checking if the truth assignment corresponding to each questionnaire Q sat-
isfies the CNF formula E obtained from the set of edits plus the congruency
clauses. This operation can be performed with an extremely small computa-
tional effort. It results therefore suitable to check even a very large number
of questionnaires.

5.5 The Problem of Imputation

After detection of erroneous records, if information collecting has no cost,
we could just cancel erroneous records and collect new information until
we have enough correct records. Since usually information collecting has a
cost, we would like to use also the information contained in the erroneous
records. This means changing the erroneous records in order to try to restore
the unknown correct values. Such operation is called imputation.

We will call original data the unknown data that we would have if we
had no errors, and original frequency distributions the unknown frequency
distributions that we would have if we had no errors. We will correspond-
ingly call original questionnaire Qo the questionnaire that we would have if
we had no errors.

In our case, therefore, given an erroneous questionnaire Qw, the impu-
tation process consists in changing some of his values in order to obtain a
corrected questionnaire Qc which satisfies the formula E .

Imputation should be done by keeping as much as possible the correct
information contained in erroneous data. Two general principles should be
followed [78]:

• To apply the minimum changes to erroneous data.
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• To modify as less as possible the marginal and joint original frequency
distribution of the data.

The above principles frequently clash. We give an example to clarify this
point.

Example 6.1. Consider this case of error: someone whose age is 70
and marital status is married. The original questionnaire would be

Qo = { ... age = 70, ... marital status = married, ... }

However, the subject forgets to write the zero of 70 and writes 7. The
questionnaire we actually have is

Qw = { ... age = 7, ... marital status = married, ... }

Such record is immediately detected as erroneous, since we have an edit
which says ’if marital status is married, age must be ≥ 14’. Suppose
that, in virtue of some procedure (presented below), we know that the errors
is in the field age. We therefore want to correct the value of age. The point
is how to correct that. Imagine in fact that we have many records which are
in the above situation, in the sense that their original values for age were
any value above 14, but the erroneous values we have on the questionnaire
are all below 14. If we just try to correct age by changing it as less as
possible, we put all of such values at 14, as follows.

Qc = { ... age = 14, ... marital status = married, ... }

The statistical distribution of the original age would therefore be re-
markably altered, by having a wrong peak in 14. Note that, even if we try
to correct age by choosing a random value above 14 which has the same
frequency distribution of the age of married people (distribution obtained
from the correct questionnaires) we could alterate the joint frequency distri-
bution of the field age with respect to other fields. To continue the example,
imagine that our subject (who is 70 years old), has, for the field work, the
value retired. Imagine that the random value used to correct age is 50
(quite plausible). We have:

Qc ={ ... age= 50, ... marital status= married, ... work = retired}

We can observe that the original (unknown) joint frequency distribution
of the two fields age and work is altered. The same could happen for the
other original joint frequency distributions.
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There are two main approaches to the above problem of imputation: the
deterministic and the probabilistic one. Such approaches can sometimes be
combined.

Given an erroneous record, a deterministic imputation reconstruct the
record with a deterministic procedure, renouncing to keep the original un-
known joint frequency distributions. Note that errors can be stochastic or
systematic. Stochastic errors are randomly introduced, and can therefore be
unpredictable and have in general low or no correlation. Systematic errors
consists in a repetition of the same error. This can be, for instance, due
to some structural defect in the questionnaire. Deterministic methods are
valid in the case of systematic errors, being in fact a systematic correction.
Deterministic imputation just require a priori decisions, and therefore do
not present specific computational difficulties.

A probabilistic imputation, on the contrary, for every erroneous record,
tries to correct it by choosing new values which are not predetermined.
The same erroneous records can therefore be corrected in more than one
way. Such methods are generally preferred in the case of stochastic errors,
because they assure a more uniform data correction, and can salvage the
original frequency distributions. The drawback of probabilistic procedures
usually is their computational burden.

5.5.1 Error Localization

A first problem arising when a questionnaire is declared erroneous, is to
locate the error, namely to understand which are the erroneous fields. We
could assume that the erroneous fields are the smallest set of fields that, if
changed, permit to restore consistency, in the sense of not activating the edits
anymore. This assumption is based on the fact that, when error is something
unintentional, the more likely event is that errors are the smaller number.
This is coherent with the principle of minimum change. In addiction to the
above, one can argue that some fields can be more reliable than others. This
means that the probability they are erroneous is lower. What is generally
done is to give, for every field fi, a measure ri ∈ IR+ of the reliability, which
corresponds to a ”preference” in keeping unchanged the value of field fi.
We define the total cost of a correction as the sum of the reliabilities ri of
the fields to modify fw

i . By calling W the set of the fw
i , the cost of such

correction is
c (W ) =

∑
i:fw

i ∈W

ri

Therefore, the problem of error localization is the following. Given the
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erroneous questionnaire Qw and the CNF formula E to be satisfied, we want
to find a set W of fields fw

i such that:

• The corrected questionnaire Qc satisfying E can be obtained from the
erroneous one Qw by changing (only and all) the values of the fw

i ∈ W .

• The total cost of required changes c(W ) is minimum.

We can in fact have more than one set of fields whose imputation can
restore consistency, and we are interested in the one which changes as few
as possible Qw.

As for the values to put in such fields, two approaches are generally con-
sidered. One is to generate the imputed values by means of some (stochas-
tic) function, although this could change the original unknown frequency
distribution of the data (see example 6.1). The second is to use a donor
questionnaire Qd.

5.5.2 Imputation through a Donor

A donor questionnaire Qd is a correct questionnaire which, according to
some distance function d(Qw, Qd) ∈ IR+, is the nearest one to the erroneous
questionnaire Qw we want to correct. Therefore, it represents a subject
which has very similar characteristics. Given Qw and Qd, we simply copy
the values of the fields fw

i that we need to change from the donor Qd to
the erroneous Qw. This procedure is generally recognized to cause a low
alteration of the original frequency distributions.

Example 6.2. Consider this case of the error in example 6.1: someone
whose age is 70 and marital status is married. The erroneous question-
naire we have is

Qw = { ... age = 7, ... marital status = married, ... }

Assume that the field marital status has a cost cmarital status = 8, and
the field age has a cost cage = 3. This means that the answer to the field
marital status is considered more reliable than the answer to the field
age. We find that the set W of minimum cost is just the field {age}. We
therefore want to perform the imputation of the field age.

Assume that, if we consider the values of all the fields of Qw, the subject
appears to be an elderly man. Let therefore assume that, by searching for a
correct questionnaire at minimum distance (considering all fields) from Qw

we find another elderly man:
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Qd = { ... age = 72, ... }

We can now proceed with the imputation of the field age from the donor.
This restores consistency. We obtain

Qc ={ ... age = 72, ... marital status = married, ... }

Note that, in this case, the corrected questionnaire Qc is very similar
to the original one Qo. This does not happen by chance, but is due to the
mechanism of imputation trough a donor.

However, two problems arise from the use of a donor. The first is that,
if we have not enough correct questionnaires to find a donor which is close
to Qw, the imputed values can be not so similar to the original ones. The
second is that, by using a donor, we are not guaranteed that the set of
erroneous fields of minimum cost W is enough to restore consistency of Qw.
In fact, W is that set of fields at minimum cost that can be changed to
restore consistency, but the use of a donor does not let to change such fields
as much as we like. We could need to take more fields from the donor, or
we could need to take the fields of another set W ′ �= W , before restoring
consistency. However, we have the guarantee that, since the donor is a
correct questionnaire, there exists in Qd at least one set of fields whose
values are able to restore consistency of Qw. The second problem is related
to the first, since, having a very numerous set of correct questionnaires, the
case when we need to copy from the donor a set of fields different from W
before restoring consistency is rare. Moreover, the number of fields we could
need to add in this case is low. Consider the following (very rough) example.

Example 6.3. We have an erroneous questionnaire Qw

Qw = { ... age = 17, ... car = no, ... city of residence = aaa, ...
..., city of work = bbb, ... time to go to work = 20, ... }

where the set of erroneous fields of minimum cost is { age, car }, with a
total cost of 5.5. Imagine we could restore consistency only if, for these two
fields, we have age≥ 18 and car = yes. Searching for a donor, however, we
find Qd such that

Qw = { ... age = 16, ... car = yes, ... city of residence = aaa, ...
... city of work = aaa, ... time to go to work = 20, ... }
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If we proceed with imputation of the two selected fields { age, car },
we do not restore consistency at all. We need to choose a different set of
fields. In this case, imagine that the imputation of the set of fields { age,
city of work }, with a total cost of c = 6, restores consistency. By taking
them from the donor, we obtain:

Qw = { ... age = 17, car = yes, city of residence = aaa, ...
... city of work = aaa, ... time to go to work = 20, ... }

Therefore, the problem of imputation trough a donor is the following.
Given the erroneous questionnaire Qw, the donor questionnaire Qd, and the
CNF formula E to be satisfied, we want to find a set D of fields fd

i such
that:

• The corrected questionnaire Qc satisfying E can be obtained from the
erroneous one Qw by copying from the donor Qd (only and all) the
values of the fd

i ∈ D.

• The total cost of the correction c(D) is minimum.

In this case also we can have more than one set of fields whose imputation
can restore consistency, and we are interested in the one which changes as
few as possible Qw. Due to the motivations noted above, we have that
c(W ) ≤ c(D). Variants to the above procedure are possible (the number of
donors, how to choose a donor), but the spirit of the imputation trough a
donor remains the same.

5.6 A Set Covering Formulation

We can observe that, in both the cases of the use of an imputation function
or of the use of a donor, we actually want to find a set of changes of minimum
cost such as we can restore consistency, i.e. satisfy the CNF formula E . The
above problem can be modeled as a weighted set covering problem [196].

Given a ground set S of n elements si, and a collection A of m subsets Aj

of S (for example, the collection may consists of all subsets of size k ≤ n),
the set covering problem is the problem of taking a set of elements si of
minimum cardinality such as we have at least one element for every Aj .
A little more general problem is the following. Given a ground set S of n
elements si, each one with a cost ci ∈ IR+, and a collection A of m sets Aj

of elements of S, the weighted set covering problem is the problem of taking
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the set of elements si of minimum total weight such as we have at least one
element for every Aj . Note that the first problem is a special case of the
second when all the costs are 1.

Let aj be the incidence vector of Aj , i.e. a vector in {0, 1}n whose i-th
component aj

i is 1 if si ∈ Aj , and 0 if si �∈ Aj. Consider a vector of variables
x ∈ {0, 1}n which is the incidence vector of the set of the elements si we
take. We can give the following mathematical model for the above problems.

min
n∑

i=1

cixi

s. t.
n∑

i=1

aj
ixi ≥ 1 j = 1 . . . m

(5.1)

The set covering problem is a classical combinatorial optimization prob-
lem, with binary variables which assume values in {0,1}. It is of great
relevance for modeling and solving a variety of problems arising form many
practical fields. It is known to be NP-complete [98]. Set covering formula-
tions are used, for instance, in the fields of telecommunications, transporta-
tion, facility location, crew scheduling, and, in general, when the problem
has the structure of a set of something that must be covered.

In order to work in the field of binary optimization, we now transform
the logic variables αi taking values in {True, False} into binary variables xi

taking values in {0,1}. The difference is only formal, and the conversion is
straightforward. While the operations defined on the logical variables where
{∧,∨, . . .}, the operations defined on the binary variables are {+,−, . . .} In
particular, a positive literal αi corresponds to a binary variable xi, and a
negative literal ¬αi corresponds to a negated binary variable x̄i. Note that
x̄i and xi must have opposite values, just like ¬αi and αi.

A set of answers to a questionnaire, which corresponded to a truth assign-
ment in {True, False}n, will now correspond to a binary vector in {0, 1}n.
The following propositional clause cj

(αi ∨ ... ∨ αj ∨ ¬αk ∨ ... ∨ ¬αn)

will now correspond to the following linear inequality, by defining the
set Aπ of the logical variables which appear positive in cj , and the set Aν

of the logical variables which appear negative in cj , and the corresponding
incidence vectors aπ and aν

n∑
i=1

aπ
i xi +

n∑
i=1

aν
i x̄i ≥ 1
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For each clause we have an inequality of the above type. If we write all
of them, we obtain that the logic formula E that the truth assignment must
satisfy

(αi1 ∨ ...∨αj1 ∨¬αk1 ∨ ...∨¬αn1)∧ . . .∧ (αim ∨ ...∨αjm ∨¬αkm ∨ ...∨¬αnm)

corresponds now to the following system of linear inequalities that the
binary vector must satisfy.


 aπ

1,1 ... aπ
1,n

...
aπ

m,1 ... aπ
m,n






x1
...

xn


+


 aν

1,1 ... aν
1,n

...
aν

m,1 ... aν
m,n






x̄1
...

x̄n


 ≥




1
...
1




Example 7.1. Suppose that the truth assignment corresponding to the
(correct) questionnaire Q is

{α1 = False, α2 = False, α3 = True}

and that the logic formula E used to detect erroneous questionnaires is

(¬α1 ∨ α2 ∨ ¬α3) ∧ (¬α1 ∨ ¬α2) ∧ (α2 ∨ α3)

The binary vector corresponding to the questionnaire Q is

{x1 = 0, x2 = 0, x3 = 1}

and the system of linear inequalities corresponding to E is

 0 1 0

0 0 0
0 1 1




 x1

x2

x3


+


 1 0 1

1 1 0
0 0 0




 x̄1

x̄2

x̄3


 ≥


 1

1
1




Moreover, in order to take into account the reliability of every field,
we estimate a vector of n costs {c1, . . . , cn} corresponding to the variables
{α1, . . . , αn}. We pay ci when we change αi. Note that, since every field
corresponds to more variables, such costs are not directly the reliability of
a field. On the other hand, an estimation of an individual cost for every
variable allows more subtile evaluations.

We can now model the imputation problems as follows.
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5.6.1 Error Localization

In the case of error localization, we have

• The binary vector e = {e1, . . . , en} ∈ {0, 1}n corresponding to the
erroneous questionnaire Qw.

• The binary variables x = {x1, . . . , xn} ∈ {0, 1}n and their comple-
ments x̄ = {x̄1, . . . , x̄n} ∈ {0, 1}n, with the coupling constraints xi +
x̄i = 1. The variables x represent the truth assignment corresponding
to the corrected questionnaire Qc that we want to find.

• The system of linear inequalities Aπx + Aν x̄ ≥ 1, with Aπ, Aν ∈
{0, 1}m×n, that e does not satisfy. We know that such system has
binary solutions, since E is satisfiable and has more than one solution.

• The vector c′ = {c1, . . . , cn} ∈ IRn
+ of costs that we pay for changing

e. We pay ci for changing ei.

We introduce furthermore a vector of binary variables y = {y1, . . . , yn} ∈
{0, 1}n representing the changes we introduce in e. We have

yi =

{
1 if we change ei

0 if we keep ei

According to the principle of the minimum change, we want to change
the erroneous questionnaire Qw minimizing the total cost of the changes.
This can be expressed as

min
yi∈{0,1}

n∑
i=1

ciyi = min
y∈{0,1}n

c′y (5.2)

We want a corrected questionnaire Qc which satisfies the system of in-
equalities

Aπx + Aν x̄ ≥ 1 (5.3)

A key issue is that there is a relation between variables y and x (and
consequently x̄). This depends on the values of e, as follows:

yi =

{
xi (= 1 − x̄i) if ei = 0
1 − xi (= x̄i) if ei = 1

(5.4)

In fact, when ei = 0, to keep it unchanged means to put xi = 0. Since we
do not change, yi = 0. On the contrary, to change it means to put xi = 1.
Since we change, yi = 1. Altogether, yi = xi.
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When, instead, ei = 1, to keep it unchanged means to put xi = 1. Since
we do not change, yi = 0. On the contrary, to change it means to put xi = 0.
Since we change, yi = 1. Altogether, yi = 1 − xi.

By using the above result, we can express the problem of error localiza-
tion with the following formulation. Our objective function (2) becomes

min
xi,x̄i∈{0,1}

n∑
i=1

(1 − ei)cixi +
n∑

i=1

eicix̄i (5.5)

Subject to the following constraints

Aπx + Aν x̄ ≥ 1
xi + x̄i = 1
x, x̄ ∈ {0, 1}n

We will call satisfiability constraints the first kind of constraints, de-
riving in fact from the propositional satisfiability problem. We will call
coupling constraints the second kind of constraint. The third kind are the
binary constraints over the variables. The above formulation is a set cover-
ing problem, as defined in (1).

5.6.2 Imputation through a Donor

The case of imputation through a donor is very similar. We have

• The binary vector e = {e1, . . . , en} ∈ {0, 1}n corresponding to the
erroneous questionnaire Qw.

• The binary vector d = {d1, . . . , dn} ∈ {0, 1}n corresponding to the
donor questionnaire Qd.

• The binary variables x = {x1, . . . , xn} ∈ {0, 1}n and their comple-
ments x̄ = {x̄1, . . . , x̄n} ∈ {0, 1}n, with the coupling constraints xi +
x̄i = 0. x corresponds to the corrected questionnaire Qc that we want
to find.

• The system of linear inequalities Aπx + Aν x̄ ≥ 1, with Aπ, Aν ∈
{0, 1}m×n, that e does not satisfy. We know that such system has
binary solutions, since E is satisfiable and has more than one solution.

• The vector c′ = {c1, . . . , cn} ∈ IRn
+ of costs that we pay for changing

e. We pay ci for changing ei.
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We use, as before, a vector of binary variables y = {y1, . . . , yn} ∈ {0, 1}n

representing the elements that we copy from d to e. We have

yi =

{
1 if we copy di in ei

0 if we keep ei

According to the principle of the minimum change, we want to change
the erroneous questionnaire Qw minimizing the total cost of the changes.
This can be expressed as

min
yi∈{0,1}

n∑
i=1

ciyi = min
y∈{0,1}n

c′y (5.6)

We want a corrected questionnaire Qc which satisfies the system of in-
equalities

Aπx + Aν x̄ ≥ 1 (5.7)

In this case also, there is a relation between variables y and x (and
consequently x̄). This depends on the values of e and d, as follows:

yi =




xi (= 1 − x̄i) if ei = 0 and di = 1
1 − xi (= x̄i) if ei = 1 and di = 0
0 if ei = di

(5.8)

In fact, when ei = 0 and di = 1, not to copy the element means to put
xi = 0. Since we do not change, yi = 0. On the contrary, to copy the
element means to put xi = 1. Since we change, yi = 1. Altogether, yi = xi.

When, instead, ei = 1 and di = 0, not to copy the element means to
put xi = 1. Since we do not change, yi = 0. On the contrary, to copy
the element means to put xi = 0. Since we change, yi = 1. Altogether,
yi = 1 − xi.

Finally, when ei = di, we have no gain from copying the element, and
therefore we do not change. Altogether, yi = 0.

By using the above result, we can express the problem of imputation
through a donor with the following formulation. Our objective function (2)
becomes

min
xi,x̄i∈{0,1}

n∑
i=1

(1 − ei)dicixi +
n∑

i=1

ei(1 − di)cix̄i (5.9)

Subject to the following constraints

Aπx + Aν x̄ ≥ 1
xi + x̄i = 1
x, x̄ ∈ {0, 1}n
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Similarly with the former case, we will call satisfiability constraints the
first kind of constraints, deriving in fact from the propositional satisfiability
problem. We will call coupling constraints the second kind of constraint.
The third kind are the binary constraints over the variables. Also the above
formulation is a set covering problem, as defined in (1).

The above problems are therefore solved with the volume algorithm [11],
which is a recently proposed and very effective combinatorial optimization
algorithm.

5.7 Implementation

We first implemented a series of procedures in order perform the automatic
conversion of the set of edits into a CNF formula. After that, in virtue of
modeling our problems as classical optimization problems, we could take
advantage of the huge amount of research done in the fields of satisfiability
and set covering solvers.

The satisfiability problems are solved by means of a procedure of Adap-
tive Core Search [33], in particular with the ACS solver. Such solver, in fact,
turns out to be a very effective one, as proved in [32]. Moreover, in the case
of unsatisfiable instances, ACS is able to select a subset of clauses which are
still unsatisfiable, and thus cause the unsatisfiability. This is a key feature
in our case, since, in the cases of inconsistencies, we need to remove them,
and this is possible only when the ’culprit’ edits can be located.

All the edits validation process was implemented to run sequentially, and
interactively asking, for every inconsistence of redundancy found, whether
stop the process and let the edit-writer mend the set of edit, or ignore it
and continue.

The set covering problems are then solved by implementing the Volume
Algorithm [11, 12]. This very effective procedure recently developed by
Barahona is an extension of the subgradient algorithm, with the key feature
is that is able to produce primal as well dual solutions. This gives a fast
method for producing approximations for large scale linear programs.

We added a simple heuristic in order to obtain an integer solution to our
set covering problem, together with a bound allowing to verify the quality of
such solution. Such heuristic consists in a rounding of the fractionary solu-
tion. Rounding is deterministic (and just cuts at 1/2) for some fractionary
values, while being probabilistic for particular combinations of fractionary
values.

The choice of the Volume Algorithm made possible to solve problems
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whose size is not solvable by a commercial Branch-and-Bound solver (Xpress).

5.8 Results

We performed the process of edits validation and data imputation in the
case of a Census of Population. The set of edits are kindly provided by
the Italian National Statistic Institute (ISTAT). In the course of this work,
we actually did several tests, by considering different sets of edits. They
ranged from 100 to 400 edits. Such procedure were considered to be quite
representative of how a real census proceeds.

All the described procedure were implemented in C++ and tested on a
Pentium II 450MHz PC under MS Windows Operating System.

In this census, the data of every family were collected by using a sin-
gle questionnaire. Individuals were identified by number, and edits were
originally written with this structure. Edits have been rewritten identifying
individuals by roles, which are: head of the family, consort, father of
head, mother of head, brother/sister of head, son, additional son,
father in law, mother in law, daughter in law, son in law, grandchild.
This was done by taking obviously care of maintaining the exact meaning of
the original edits. This choice produces a more compact set of edits, while
its congruency and redundancy properties remain the same.

Being a questionnaire for an entire family, we can have similar edits
repeated for every member of the family. Edit replication, called explosion,
is the first automatically performed step.

It is then applied the procedure of automatic conversion of edits into
clauses. The implemented software takes in input a file containing the set
of edits, a file containing a description of the fields, a file containing lists
of all feasible values of qualitative fields, and a file containing the list of
family roles. The procedure identifies logical variables, according to outlined
procedure, and gives in output a file listing the used logical variables, with
their meaning, and the CNF formula which encodes the set of edits. The
generation of the logic formula is not a costing operation.

For the problem we deal with, resulting formulas range from 315 vari-
ables and 650 clauses to 450 variables and 1100 clauses. Since this kind
of problems are solved quite easily, in order to test the limits of the pro-
cedure, we moreover considered artificially generated satisfiability instances
of bigger size. They ranged from 1000 variables and 5000 clauses to 15000
variables and 75000 clauses.



142 CHAPTER 5. LOGIC FOR ERROR FREE DATA COLLECTING

5.8.1 Edit Validation

Our algorithm begins with solving the satisfiability problem for the CNF
formula, in order to detect complete inconsistency for the set of edits. After
this, in order to detect all 1-level partial inconsistency, the procedure goes
ahead fixing in turn every variable to True and then all the variables of
every field to False, and solving at every step the resulting SAT instance.

The test for redundancies is then made by negating in turn every clauses,
and solving at every step the resulting SAT instance.

Hence, for every instance with n variables and m clauses, the imple-
mented algorithm solves in cascade about 1 + n + n/10 + m satisfiability
problems of non trivial size. Although such problems do not reveal to be
structurally hard, the computational burden is substantial. Therefore, there
is the need of an efficient SAT solver. We used ACS, a recently proposed
and very efficient SAT solver, which uses an enumeration scheme with a
new adaptive technique [33]. In the following tables we report number of
variables (n) and number of clauses (m) of the propositional CNF formula,
the number of problem we had to solve (# of problems), and total time for
solving all of them (time).

In table 1 we report results on formulas which are the encoding of the real
census edits. In table 2 we report results on artificially generated formulas.

n m # of problems time

315 650 975 0.99

350 710 1090 1.35

380 806 1219 1.72

402 884 1321 2.21

425 960 1428 2.52

450 1103 1599 3.24

Table 1: Results of the edit validation procedure on real sets of edits .

Our solver is able, in the case of an unsatisfiable instance, of providing a
set of clauses which cause the unsolvability, in order to understand were is
the inconsistency. In the analyzed set of real edits, which were supposed to
be error free, a partial inconsistency was found, that was due to one of the
edit concerning divorced people, as explained below. Married people must
be at least 14 years old, and a divorce procedure takes at least four years.
It results that divorced people must be at least 18 years old. There was an
edit representing this, and it was erroneously written

(marital status ∈ {single, married, separate, widow}) ∧ (age < 18)
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The correct edit should have been the following.

(marital status = divorced) ∧ (age < 18)

Such problem could have caused errors in the phase of individuation of
erroneous records.

By checking for redundancy, several clauses resulted redundant. Further
tests, performed after deliberately introduction of inconsistency or redun-
dancy in the set of edits, lead in the totality of the cases to their detection.

n m # of problems time

1000 5000 6101 15

3000 15000 18301 415

5000 25000 30501 1908

8000 40000 48801 7843

10000 50000 61001 16889

15000 75000 91501 >36000

Table 2: Results of the edit validation procedure on artificially generated
sets of edits .

In the case of artificially generated instances, partial inconsistencies and
redundancies were found. Their description is not significative, being arti-
ficially generated problems. They were used in order to understand which
size of problems the proposed procedure is able to treat.

Afterwards, detection of erroneous questionnaires answers have been per-
formed, as a trivial task. It proceeds converting the set of answers in values
for the logical variables, and simply testing if such truth assignment satisfies
the CNF formula obtained from the edits.

5.8.2 Data Imputation

The procedure for data imputation was tested on simulated questionnaires,
and by using the two sets of real edits and the artificially generated ones. We
considered both the problems of error localization and imputation through
a donor. For each set of edits we considered various simulated erroneous
answers. In particular, we considered the percentage of activated edits for
the erroneous answer. Since errors are usually a small part of the answers,
we realistically considered small edit activation percentages (1%, 2%, 3%,
etc.). Note that a set of edit corresponding to n logic variables and m
clauses corresponds here to a set covering formulation with 2n variables and
m satisfiability constraints plus n coupling constraints, altogether m + n.
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We solved the set covering formulation by means of a set covering solver
based on the Volume Algorithm. Moreover, since this is an approximate
procedure, we compared its results with the commercial Branch-and-Bound
solver Xpress. In some cases of high error percentage, the solver based on
the Volume Algorithm could not find a feasible integer solution. In those
cases we reported ”-”. We report a different table for each instance, with
time and solution value in all the above cases. Problems of error localization
follow.

Time Value

error VA B&B VA B&B

0.5% 0.01 3.18 43.0 43.0

0.9% 0.10 3.18 221.6 221.6

1.3% 0.10 3.45 328.4 328.4

2.4% 0.14 2.86 729.5 729.5

5.0% 0.22 3.50 300.8 300.8

Table 3: Error localization procedure on a real set of edits. The set
covering instance has 400 var. and 1400 const.

Time Value

error VA B&B VA B&B

0.4% 0.04 1.91 58.6 58.6

0.7% 0.10 1.91 108.6 108.6

1.0% 0.11 2.54 140.1 140.1

1.6% 0.16 1.90 506.7 506.7

2.5% 0.20 2.50 1490.1 1490.1

3.5% 0.23 2.98 2330.8 2330.8

Table 4: Error localization procedure on a real set of edits. The set
covering instance has 480 var. and 1880 const.

Time Value

error VA B&B VA B&B

0.7% 0.51 2.44 463.2 463.2

1.5% 0.68 3.02 394.5 394.5

2.1% 0.55 3.32 612.5 612.5

3.6% 0.98 3.73 1254.8 1254.8

6.7% 1.00 4.40 2341.2 2341.2

Table 5: Error localization procedure on a real set of edits. The set
covering instance has 800 var. and 3200 const.
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From the above tables, we can observe that real problems are solved
efficiently both by VA and B&B. Surprisingly, VA reaches in all cases the
optimal integer solution, given by the B&B. Times are very small in both
cases, and they increase with error percentage (and, of course, with the size
of the problem).

In addition, we tested the procedure on artificially generated instances,
corresponding to the artificially generated satisfiability instance considered
in the case of edit validation.

Time Value

error VA B&B VA B&B

0.4% 0.66 87.90 329.4 329.4

1.0% 1.30 81.88 1010.4 1010.4

1.1% 0.73 97.71 952.9 952.9

1.8% 1.92 109.05 1982.0 1982.0

4.3% 3.65 87.16 5549.8 5549.8

Table 6: Error localization procedure on an artificially generated set of
edits. The set covering instance has 2000 var. and 6000 const.

Time Value

error VA B&B VA B&B

0.5% 11.60 3813.4 1273.7 1273.6

0.8% 4.75 3477.7 2266.1 2266.1

1.0% 5.10 2796.9 3604.3 3604.3

2.1% 4.76 4117.2 6064.2 6064.2

4.0% 11.63 3595.0 1544.7 1544.6

Table 7: Error localization procedure on an artificially generated set of
edits. The set covering instance has 6000 var. and 18000 const.

Time Value

error VA B&B VA B&B

0.5% 8.27 18837.8 2018.1 2018.1

0.7% 10.87 19210.5 3817.1 3817.1

1.3% 11.80 19493.6 6409.2 6409.2

1.7% 28.58 18506.6 9673.7 9673.7

3.0% 41.35 17000.3 21742.5 21742.4

Table 8: Error localization procedure on an artificially generated set of
edits. The set covering instance has 10000 var. and 30000 const.
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Time Value

error VA B&B VA B&B

0.4% 9.16 >21600 3058.4 -

0.9% 20.36 >21600 6897.7 -

1.3% 40.64 >21600 11682.9 -

2.0% 66.60 >21600 20113.0 -

4.0% 73.54 >21600 37069.1 -

Table 9: Error localization procedure on an artificially generated set of
edits. The set covering instance has 16000 var. and 48000 const.

Time Value

error VA B&B VA B&B

0.5% 44.44 >21600 5135.4 -

0.8% 30.61 >21600 8640.5 -

1.3% 31.42 >21600 14466.7 -

2.1% 83.41 >21600 23093.7 -

3.6% 74.64 >21600 39448.2 -

Table 10: Error localization procedure on an artificially generated set of
edits. The set covering instance has 20000 var. and 60000 const.

Time Value

error VA B&B VA B&B

0.4% 35.74 >21600 6754.7 -

0.9% 47.33 >21600 12751.3 -

1.3% 107.97 >21600 20135.4 -

2.0% 94.42 >21600 31063.6 -

4.0% 186.92 >21600 66847.4 -

Table 11: Error localization procedure on an artificially generated set of
edits. The set covering instance has 30000 var. and 90000 const.

From the above tables, we can observe that artificially generated prob-
lems of very big size are all solved by VA, while B&B cannot solve the
bigger instance within the time limit of 6 hours. However, we begin to no-
tice that the solution found by VA is not optimal, although the difference is
numerically negligible.

Further occasional tests with higher error percentage shows that VA does
not increase running time, but the heuristic is not able to find a feasible
integer solution, hence we have no solution, while B&B would reach such
solution but in an a prohibitive amount of time.
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In the case of a donor, we considered a simulated donor, which is a
correct solution very similar to the erroneous one. Results both for real and
artificially generated sets of edits follow.

Time Value

error VA B&B VA B&B

0.5% 0.04 0.01 43.4 43.4

0.9% 0.04 0.01 227.5 227.5

1.3% 0.04 0.01 348.7 348.7

2.4% 0.04 0.04 726.6 726.6

5.0% 0.03 0.03 365.8 365.8

Table 12: Imputation through a donor on a real set of edits. The set
covering instance has 400 var. and 1400 const.

Time Value

error VA B&B VA B&B

0.4% 0.04 0.02 63.6 63.6

0.7% 0.06 0.02 144.7 144.7

1.0% 0.06 0.02 264.5 264.5

1.6% 0.06 0.02 643.5 643.1

2.5% 0.07 0.02 1774.3 1774.1

3.5% 0.06 0.03 2369.9 2369.5

Table 13: Imputation through a donor on a real set of edits. The set
covering instance has 480 var. and 1880 const.

Time Value

error VA B&B VA B&B

0.7% 0.08 0.04 280.1 280.1

1.5% 0.08 0.06 453.5 453.1

2.1% 0.08 0.06 655.4 655.0

3.6% 0.08 0.07 1378.0 1378.0

6.7% 0.10 0.07 2455.1 2455.0

Table 14: Imputation through a donor on a real set of edits. The set
covering instance has 800 var. and 3200 const.
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Time Value

error VA B&B VA B&B

0.4% 0.26 0.01 331.2 331.2

1.0% 0.10 0.31 1015.2 1015.1

1.1% 0.04 0.01 952.9 952.9

1.8% 0.08 0.31 1997.1 1997.1

4.3% - 0.20 - 5592.2

Table 15: Imputation through a donor on an artificially generated set of
edits. The set covering instance has 2000 var. and 6000 const.

Time Value

error VA B&B VA B&B

0.5% 0.17 0.30 1291.6 1291.4

0.8% 0.17 0.10 2305.4 2305.4

1.0% 0.70 0.30 3660.1 3660.1

2.1% 0.38 0.30 6124.0 6123.1

4.0% 0.65 0.30 1585.7 1585.0

Table 16: Imputation through a donor on an artificially generated set of
edits. The set covering instance has 6000 var. and 18000 const.

Time Value

error VA B&B VA B&B

0.5% 1.01 0.6 2120.1 2118.9

0.7% 1.30 0.6 3877.7 3877.2

1.3% 1.40 0.3 6411.7 6411.7

1.7% 1.60 0.6 9690.1 9690.1

3.0% 1.05 0.3 21823.1 21802.4

Table 17: Imputation through a donor on an artificially generated set of
edits. The set covering instance has 10000 var. and 30000 const.

Time Value

error VA B&B VA B&B

0.4% 0.44 0.6 3064.2 3064.2

0.9% 4.59 0.6 6899.7 6899.6

1.3% 0.86 0.8 11702.9 11698.3

2.0% - 0.6 - 19814.5

4.0% - 0.9 - 36496.7

Table 18: Imputation through a donor on an artificially generated set of
edits. The set covering instance has 16000 var. and 48000 const.
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Time Value

error VA B&B VA B&B

0.5% 2.85 0.9 5139.1 5139.0

0.8% 3.28 0.9 8688.0 8687.0

1.3% 3.41 0.9 14500.4 14478.5

2.1% 3.82 0.9 23411.7 23072.0

3.6% - 0.9 - 44026.8

Table 19: Imputation through a donor on an artificially generated set of
edits. The set covering instance has 20000 var. and 60000 const.

Time Value

error VA B&B VA B&B

0.4% 3.58 1.27 6788.1 6788.1

0.9% 3.22 1.27 12760.0 12759.5

1.3% 0.97 0.9 20140.1 20140.0

2.0% 2.89 1.27 31258.1 31082.2

4.0% - 1.59 - 67764.94

Table 20: Imputation through a donor on an artificially generated set of
edits. The set covering instance has 30000 var. and 90000 const.

From the above tables, we can observe that all problems are solved is
very short times. B&B is always able to find a solution within seconds. VA,
on the other hand, is not able to find a solution when error increases too
much. Moreover, the solution found by VA is not optimal in several cases,
although the difference is very small.

This can be explained by noting that, in the problem of imputation
through a donor, some variables are fixed to the value thy have in the donor.
This results in a problem with much less variables but with a high error
percentage. In this conditions the preferable solution method is a complete
one, such like B&B.

To summarize the results, VA outperform B&B in the case of error local-
ization in very big instances with a moderate error. On the contrary, in the
case of smaller problems with higher error (not realistic), or in some cases
of imputation through a donor, B&B is more reliable.

5.9 Conclusions

A binary encoding is the more direct and effective representation both for
records and for the set of edit rules in a process of data collecting. It al-
lows to automatically detect inconsistencies and redundancies in the set of
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edits rules. Erroneous records detection is carried out with an inexpensive
procedure. The proposed encoding allows, moreover, to automatically per-
form error localization and data imputation. The related computational
problems are overcome by using state-of-the-art solvers. Approached real
problems have been solved in extremely short times. Artificially generated
problems are effectively solved until sizes which are orders-of-magnitude
larger than the above real-world problems. Hence, noteworthily qualitative
improvements in a general process of data collecting are made possible. The
implemented software is tested in the case of a real Population Census. Ed-
its are kindly provided by the Italian National Statistic Institute (ISTAT).
Results are extremely encouraging.
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