Errors Detection and Correction
in Large Scale Data Collecting

Renato Bruni and Antonio Sassano

Dipartimento di Informatica e Sistemistica,
Universita di Roma “La Sapienza”, Via Buonarroti 12 - 00185 Roma, Italy,
E-mail: {bruni,sassano}@dis.uniromal.it

Abstract. The paper is concerned with the problem of automatic de-
tection and correction of inconsistent or out of range data in a general
process of statistical data collecting. Under such circumstances, errors
are usually detected by formulating a set of rules which the data records
must respect in order to be declared correct. As a first relevant point, the
set of rules itself is checked for inconsistency or redundancy, by encoding
it into a propositional logic formula, and solving a sequence of Satisfia-
bility problem. This set of rules is then used to detect erroneous data. In
the subsequent phase of error correction, the above set of rules must be
satisfied, but the erroneous records should be altered as little as possi-
ble, and frequency distributions of correct data should be preserved. As
a second relevant point, error correction is modeled by encoding the rules
with linear inequalities, and solving a sequence of set covering problems.
The proposed procedure is tested on a real-world case of Census.

1 Introduction

When dealing with a large amount of collected information, a relevant problem
arises: perform the requested elaboration considering only correct data. Exam-
ples of data collecting are cases of statistical investigations, marketing analysis,
experimental measures, etc. Our attention will be focused on the problem of
statistic projections carried out by processing answers to questionnaires. We
will consider, in particular, the case of a census of population. We stress that
such problem is just an example to apply our methodology, but does not exhaust
its field of application. A data record is a set of values v; for a set of fields f;. In
our case, a record is the set of the answers to one questionnaire Q.

Q={fi=v,fa=1v2,..., p:Up}

Examples of fields f; are age or marital status, corresponding examples of
values v; are 18 or single. Fields can be distinguished in quantitative and qual-
itative ones. A quantitative field is a field on whose values are applied (at least
some) mathematical operators (e.g. >, +), hence such operators should be de-
fined. Examples of quantitative field are numbers (real or integer), or even the
elements of an ordered set. A qualitative field requires its value to be member of
a discrete set with finite number of elements. Errors, or, more precisely, incon-
sistencies between answers or out of range answers, can be due to the original
compilation of the questionnaire, or introduced during any later phase of infor-
mation processing, such as data input or conversion. Inconsistent questionnaires
could contain information that deeply modifies the aspects of interest (just think



of maximum or minimum of some value), and thus, without their detection, our
statistical investigation would produce erroneous results. The problem of error
detection is generally approached by formulating a set of rules that the records
must respect in order to be consistent, or correct. Instead, inconsistent records
are declared erroneous. Rules are generally written in form of edits. An edit ex-
presses the error condition, as a conjunction of expressions (f; < relation > vy,).

Example 1.1. An inconsistent answer can be to declare
marital status as married and age as 10 years old.

The rule to detect this kind of errors could be: if marital status is married,
age must be not less than, say, 14. Hence, there is an error if marital status
= married and age < 14, and the edit, that is the error condition, is

(marital status = married) A (age < 14)

Questionnaires which verify the condition defined in at least one edit are declared
erroneous. Obviously, the set of edits must be free from inconsistency (i.e. ed-
its must not contradict each other), and, preferably, from redundancy (i.e. edits
must not be logically implied by other edits). In the case of real questionnaires,
edits can be very numerous, since a high number of edits allows a better quality
error detection. Many commercial software systems deal with the problem of
questionnaires correction. They make use of a variety of different edits encod-
ing and solution algorithm (e.g. [1],[12],[13]). In practical case, however, they
suffer from severe limitations, due to the inherent computational complexity of
the problem. Some methods ignore edit testing, and just divide erroneous ques-
tionnaires from correct ones. In such cases, since results are incorrect if edits
contains contradictions, the number of edits must be small enough to be vali-
dated by inspection by a human operator. Moreover, edits updating turns out to
be very difficult. Other methods try to check for contradiction and redundancy
by generating all implied edits, such as the ‘Fellegi Holt’ procedure [6]. Their
limitation is that, as the number of edits slightly increases, they produce very
poor performance. This happens because of the huge demand of computational
resources required for generating all implied edits, whose number exponentially
grows with the number of original edits. The above limitations prevented to now
the use of a set of edits whose cardinality is above a certain value. Another se-
rious drawback is that simultaneous processing of quantitative and qualitative
fields is seldom allowed.

By encoding the rules in clauses, the above problem of checking the set of
rules against inconsistencies and redundancies is here transformed into a proposi-
tional logic problem (Sect. 2). A sequence of propositional Satisfiability problems
is therefore solved (Sect. 3). Since generally information collecting has a cost, we
would like to utilize erroneous records as well, by performing an error correction.
During such phase, erroneous records are changed in order to satisfy the above
rules. This should be done by keeping as much as possible the correct informa-
tion contained in the erroneous records (Sect. 4). The above problem is modeled
by encoding the rules in linear inequalities, and solving a sequence of set cov-
ering problems (Sect. 5). The proposed procedure is tested by performing the
process of error detection and correction in the case of a real world Census. The
application and part of the data were kindly provided by the Italian National
Statistic Institute (Istat). Additional low-level details can be found in [5].



2 A Logical Representation of the Set of Edits

The usefulness of logic or Boolean techniques is proved by many approaches to
similar problems of information representation (e.g. [3]). A representation of the
set of edit by means of first-order logic is not new, with consequent computational
limitations. In this paper we propose an edit encoding by means of the easier-to-
solve propositional logic. A propositional logic formula F in conjunctive normal
form (CNF) is a conjunction of clauses C;, each clause being a disjunction of
literals [;, each literal being either a positive (a;) or a negative (—q;) logic
variable. By denoting the possible presence of — by [—], this is

A CV Fla) (1)

j=lom i=1.]0;]

Given truth values (True or False) to the logical variables, we have a truth
value for the whole formula. A formula F is satisfiable if and only if there exists
a truth assignment that makes the formula True (i.e. a model). If this does not
exist, F is unsatisfiable. The problem of testing satisfiability of propositional for-
mulae in conjunctive normal form, named SAT, is well-known to be NP-complete
[7], and plays a protagonist role in mathematical logic and computing theory. A
SAT formulation can be used to solve the problem of logical implication, that
is to detect if a given proposition is logically implied by a set of propositions
[8],[9],[10]. In the case of questionnaires, every edit can be encoded in a propo-
sitional logic clause. Moreover, since edits have a very precise syntax, encoding
could be performed by means of the following automatic procedure.

Edit propositional encoding procedure

1. Identification of the domains Dy for each one of the p fields f, considering
that we are dealing with errors.

2. Identification of ky subsets S}, S%,.. .,S;ff in every domain Dy, by using
breakpoints, or cut points, b; obtained from the edits, and by merging (pos-
sible) equivalent subsets within each domain Dj.

3. Definition of ny logical variables a},a%,... ,o/f” to encode the ky subsets
S} of each field f.

4. Expression of each edit by means of clauses defined over the introduced
logical variables ).

5. Identification of congruency clauses to supply the information not contained
in edits.

Example 2.1. For the qualitative field marital status, answer can vary on a
discrete set of possibilities in mutual exclusion, or, due to errors, be missing or
not meaningful. Both latter cases are expressed with the value blank.

Dyarital status = {Single,married, separate,divorced, widow, blank}

For the quantitative field age, due to errors, the domain is
Dage = (_OO, +OO) U {blank}

Values v appearing in the edits are called breakpoints, or cut points, for the
domains. They represent the logical watershed between values of the domain,



and will be indicated with b} Such breakpoints are used to split every domain
Dy into subsets S} representing values of the domain which are equivalent from
the edits’ point of view. We congruently have D, = ; S}.

Example 2.2. For the field age we have the following breakpoints

bige = 0, b2, = 14, b3, = 18, b, = 26, bJ,, = 120, b3, = blank

age age age age age
and, by using the breakpoints and the edits to cut D,g., we have the subsets

S;ge = (_0070)7 Szge = [07 14)7 Sgge = [147 18)7 S;Lge = {18}7
S5 . = (18,26), SS,. = [26,120], ST . = (120, +00), S5 . = {blank}

age age age age

Subsets (—00, 0), (120, +00), {blank}, representing out of range values, are equiv-

alent (can be automatically detected) and collapse in to the same subset S;ge.

Sage = (—00,0) U (120, +-00) U {blank},S2, . = [0,14),83 . = [14,18),

age » Page

S4 . ={18},85 . = (18,26),8¢ . = [26,120]

age age age

So far, subsets can be encoded with logic variables in several ways (for instance,
k subsets can be encoded by [log, k] logic variables). We choose to encode the
k¢ subsets of every domain with ny = k¢ — 1 variables, with the aim to produce
an easier-to-solve CNF. When the value v of field f belongs to subset S}, this

means ozgc = True and o/} = False, for h = 1,...,ny,h # j. The same holds
for the other subsets of f, except for the out of range subset (present for every
field), which is encoded by putting all variables ai}- at False, for h=1,...,ns.

Example 2.3. The field marital status is divided in 6 subsets. We therefore
have 6-1 = 5 logical variables

([single]s ¥[married]s ¥[separate]) O[divorced]s ¥[widow]

Now every edit can be encoded in clauses by using the defined variables. Every
expressions (f; < relation > vy,) can be substituted by the corresponding logical
variable, obtaining a conjunction of logic variables. Since we are interested in
clauses satisfied by correct records, and being edits the error condition, we need
to negate such conjunction, obtaining a disjunction, hence a clause.

Example 2.4. Consider the following edit.
marital status — married A age < 14

By substituting the logical variables, we have the logic formula parrieq) A 0,14)-
By negating it, and applying De Morgan’s law, we obtain the following clause

Tmarried] \ T(0,14)

In addition to information given by edits, there is other information that a human
operator would consider obvious, but which must be provided. With our choice
for variables, we need to express that fields must have one and only one value,
and therefore (") (number of combination of class 2 of ny objects) clauses,
named congruency clauses, are added. Altogether, the set of edits produces a set
of m clauses with n logical variables, and the set of answers to a questionnaire
produces a truth assignment for such logical variables. By construction, all and
only the truth assignments given by correct questionnaires satisfy all the clauses,
hence the CNF formula £. Briefly, a questionnaire ) must satisfy £ to be correct.



3 Edits Validation

In order to check the set of edits against inconsistency and redundancy, we can
study the models of £. When every possible set of answers to the questionnaire is
declared incorrect, we have the situation called complete inconsistency of the set
of edits. When the edit inconsistency appears only for particular values of par-
ticular fields, we have the (even more insidious) situation of partial inconsistency
of the set of edits.

Example 3.1. A very simple complete inconsistency, with edits meaning: (a)
everybody must have a seaside house, (b) everybody must have a mountain
house, (c) it is not allowed to have both seaside and mountain house. More
complex ones, involving dozens of edits, are not so easily visible.

seaside house = no (a)
mountain house = no (b)
(seaside house = yes) A (mountain house = yes) (c)

Example 3.2. A very simple partial inconsistency, with edits meaning: (a) the
subject must have a seaside house if and only if annual income is greater then or
equal to 1000, (b) the subject must have a mountain house if and only if annual
income is greater then or equal to 2000, (c) it is not allowed to have both seaside
and mountain house. For annual income < 2000, this partial inconsistence does
not show any effect, but every questionnaires where the subject has an annual
income > 2000 is declared erroneous, even if it should not. We have a partial
inconsistency with respect to the subset annual income > 2000.

(annual income > 1000) A (seaside house =no) (a)

(annual income > 2000) A (mountain house =no) (b)

mountain house = yes) A (seaside house = yes) (c
y y

In a large set of edits, or in a phase of edits updating, inconsistencies may easily
occur. Due to the following result, inconsistencies can be detected by solving a
series of the satisfiability problems.

Theorem 3.1. By encoding the set of edits in a CNF formula &, complete
inconsistency occurs if and only if £ is unsatisfiable. A partial inconsistency
with respect to a subset Sgp occurs if and only if the formula obtained from £ by
fixing gy = True is unsatisfiable.

Moreover, in the case of inconsistency, we are interested in restoring consistency.
The approach of deleting edits corresponding to clauses that we could not satisfy
is not useful. In fact, every edit has its function, and cannot be deleted, but
only modified by the human expert who writes the edits. On the contrary, the
selection of the set of conflicting edits can guide the human expert in modifying
them. This corresponds to selecting which part of the unsatisfiable CNF causes
the unsolvability, i.e. a minimal unsatisfiable subformula (MUS). Therefore, we
used a SAT solver which, in the case of unsatisfiable instances, is able to select
a MUS or at least an unsatisfiable subformula approximating a MUS [4].

Some edits could be logically implied by others, being therefore redundant.
It would be preferable to remove them, because decreasing the number of edits
while maintaining the same power of error detection can simplify the whole
process and make it less error prone.



Example 3.3. A very simple redundancy, with edits meaning: (a) head of the
house must have an annual income greater then or equal to 100, (b) everybody
must have an annual income greater then or equal to 100. (a) is clearly redundant.

(role = head of the house) A (annual income < 100) (a)
annual income < 100 (b)

A SAT formulation is used to solve the problem of logical implication. Given a
set of statements S and a single statement s, S = s if and only if S U —s is an
unsatisfiable formula [9] [10]. Therefore, the following holds.

Theorem 3.2. The clausal representation of an edit e; is implied by the clausal
representation of a set of edits I/ if and only if I U —e; is unsatisfiable.

It can be consequently checked if an edit with clausal representation e; is re-
dundant by testing if the formula (£ \ e;) U —e; is unsatisfiable. Redundancy of
every edit can be checked by applying to each one of them the above operation.
Detection of erroneous questionnaires Q¢ trivially becomes the problem of
checking if the truth assignment corresponding to ) satisfies the formula £.

4 The Problem of Imputation

After detection of erroneous records, if information collecting has no cost, we
could just cancel erroneous records and collect new information until we have
enough correct records. Since usually information collecting has a cost, we would
like to use also the correct part of information contained in the erroneous records.
Given an erroneous questionnaire Q¢, the imputation process consists in changing
some of his values, obtaining a corrected questionnaire Q¢ which satisfies the
formula £ and is as close as possible to the (unknown) original questionnaire QQ°
(the one we would have if we had no errors). Two general principles should be
followed [6]: to apply the minimum changes to erroneous data, and to modify
as less as possible the original frequency distribution of the data. Generally, a
cost for changing each field is given, based on the reliability of the field. It is
assumed that, when error is something unintentional, the erroneous fields are
the minimum-cost set of fields that, if changed, can restore consistency.

The problem of error localization is to find a set W of fields of minimum total
cost such that Q¢ can be obtained from Q¢ by changing (only and all) the values
of W. Imputation of actual values of W can then be performed in a deterministic
or probabilistic way. This cause the minimum changes to erroneous data, but
has little respect for the original frequency distributions.

A donor questionnaire Q% is a correct questionnaire which, according to some
distance function d(Q¢, Q%) € IR, is the nearest one to the erroneous question-
naire ¢, hence it represents a record with similar characteristics. The problem
of imputation trough a donor is to find a set D of fields of minimum total cost
such that Q¢ can be obtained from Q¢ by copying from the donor Q¢ (only and
all) the values of D. This is generally recognized to cause low alteration of the
original frequency distributions, although changes caused to erroneous data are
not minimum. We are interested in solving both of the above problems.

Example 4.1. We have the following erroneous questionnaire Q¢

{... age = 17, car = no, city of residence = A, city of work =B ...}



where the solution of error localization is W = { city of work }, with a total
cost of 2.5 (suppose in fact we could restore consistency if we have city of
work = A). Searching for a donor, however, we have Q¢ such that

{... age = 18, car = yes, city of residence = A, city of work =B ...}
The solution of imputation through a donor is D= { age, car }, with a total
cost of ¢ = 3. By copying D from the donor, we obtain Q°:

{... age = 18, car = yes, city of residence = A, city of work =B ...}

5 A Set Covering Formulation

Given a ground set S of n elements s;, each one with a cost ¢; € IR,, and a
collection A of m sets A; of elements of S, the weighted set covering problem
[11] is the problem of taking the set of elements s; of minimum total weight such
that at least one element for every A; is taken. Let a’ be the incidence vector of
Aj, i.e. a vector in {0,1}" whose i-th component a? is 1 if s; € A;, 0 if 5; & A;.
By using a vector of variables € {0,1}™ which is the incidence vector of the
set of taken elements s;, we have

n
min E CiT;
i=1

S.t.Zagxi21 j=1...m, =xe€{0,1}"
i=1

(2)

This problem is well-known NP-complete [7], and is of great relevance in many
applied fields. In order to work with binary optimization, a positive literal «;
becomes a binary variable x;, and a negative literal —a; becomes a negated
binary variable Z;. A questionnaire @), which mapped to a truth assignment in
{True, False}"™, will now map to a binary vector in {0,1}". A clause ¢;

a; V..Va;V-oap V.. Voo,
J

becomes now the following linear inequality, by defining the set A, of the log-
ical variables appearing positive in c;, and the set A, of the logical variables
appearing negated in ¢;, and the corresponding incidence vectors a” and a”

n n

Za;’xi—FZafiy >1

i=1 i=1
Example 5.1. Suppose that the (correct) questionnaire () maps to the truth
assignment {«; = False, ay = False,as = True}, and that & is

(—\Oll V (65) V —\043) A ("Oél V —|042) A (Olg V 043)

The binary vector corresponding to @ is {z; = 0,29 = 0,23 = 1}, and the
system of linear inequalities corresponding to £ is

010 1 101 1 1
000 z2 | +1110 T | > (1
011 T3 000 T3 1



We can now model the two above imputation problems as follows. We have

— The binary vector e = {ey,...,e,} € {0,1}" corresponding to the erroneous
questionnaire Q€.

— In the case of imputation through a donor only, the binary vector d =
{dy,...,d,} € {0,1}" corresponding to the donor questionnaire Q<.

— The binary variables z = {z1,...,z,} € {0,1}" and their complements
z={x1,...,%,} € {0,1}", with the coupling constraints x; + Z; = 1. They
correspond to the corrected questionnaire Q¢ that we want to find.

— The system of linear inequalities A"z + A¥Z > 1, with A™, AY € {0,1}™*"™,
that e does not satisfy. We know that such system has binary solutions, since
€ is satisfiable and has more than one solution.

— The vector ¢ = {c1,...,¢,} € RY} of costs that we pay for changing e. We
pay ¢; for changing e;.

We furthermore introduce a vector of binary variables y = {y1,...,y,} € {0,1}"
representing the changes we introduce in e.

~_J 1 if we change e;
Yi=l0 ifwe keep e;

The minimization of the total cost of the changes can be expressed with

n
. . /!
min cGY; = min c 3
yi€{01} ; T ey Y )
However, the constraints are expressed for z. A key issue is that there is a relation
between variables y and z (and consequently Z). In the case of error localization,

this depends on the values of e, as follows:

o i (:1—5@) if Gl':O
yl_{l—fﬂi (:fl) if ;=1 (4)

In the case of imputation trough a donor, this depends on the values of e and d.

xZ; (:1—i'l) if €i:03nddi:1
Y =1 1l—x; (: .’fl) if e,=1andd; =0 (5)
0 if e; =d;

By using the above results, we can express the two imputation problems with the
following set covering formulation. In the case of error localization, (3) becomes
n n
min 1—e)cizi + €iCiT; 6
BT WD SETICEED ST (6)
Conversely, in the case of imputation through a donor, our objective (3) becomes

n

min Z(l —e;)dicir; + Z ei(l—d;)e; (7)
i=1 i=1

z;,Z;€{0,1}
Subject, in both cases (6) and (7), to the following set of constraints

A"+ A¥Z > 1
i +x;, =1
x,T € {0,1}"



6 Implementation and Results

Satisfiability problems are solved by means of the efficient enumerative solver
Adaptive Core Search (ACS) [4]. In the case of unsatisfiable instances, ACS is
able to select a subset of clauses which are still unsatisfiable. Set covering are
solved by means of a solver based on the Volume Algorithm [2]. This effective
procedure recently presented by Barahona is an extension of the subgradient
algorithm, wich is able to produce primal as well as dual solutions. We added
a simple heuristic in order to obtain an integer solution to our set covering
problem. Moreover, since this is an approximate procedure, we compared its
results with the commercial branch-and-bound solver Xpress. The process of
edits validation and data imputation in the case of a Census of Population is
performed. Edits are provided by the Italian National Statistic Institute (Istat).
We checked different sets of real edits, and (in order to test the limits of the
procedure) artificially generated CNF instances of larger size (up to 15000 var.
and 75000 clauses) representing simulated sets of edits. When performing the
whole inconsistency and redundancy checking, every CNF with n variables and
m clauses, produces about 14+ n 4+ n/10 + m SAT problems of non trivial size.
Total times for sequentially solving all such SAT problems (on a Pentium II
450MHz PC) are reported. Inconsistency or redundancy present in the set of
edits were detected in the totality of the cases.

Real sets of edits Simulated sets of edits
n m |# of problems| time n m |# of problems| time
315| 650 975 | 0.99 1000{ 5000 6101 15
350 710 1090 | 1.35 3000{15000 18301 415
380( 806 1219 | 1.72 5000{25000 30501 1908
402( 884 1321 | 2.21 8000{40000 48801 7843
425 960 1428 | 2.52 10000{50000 61001 16889
450 1103 1599 | 3.24 15000{75000 91501 |>36000
Tables 1 & 2: Edit validation procedure on real and simulated sets of edits.
Real problems Simulated problems
480 var. and 1880 const. 30000 var. and 90000 const.
Time Value Time Value
error|| VA | B&B VA | B&B error|| VA | B&B VA | B&B
0.4%(|0.04| 1.91 58.6| 58.6 0.4%|| 35.74 |>21600|| 6754.7 -
0.7%[|0.10| 1.91 108.6| 108.6 0.9%|| 47.33 |>21600(|12751.3 -
1.0%]0.11] 2.54 140.1| 140.1 1.3%][107.97({>21600][20135.4 -
1.6%||0.16] 1.90 || 506.7| 506.7 2.0%[[ 94.42 |>21600([31063.6 -
2.5%[[0.20| 2.50 [[1490.1/1490.1 4.0%(|186.92|>21600(|66847.4 -
Tables 3 & 4: Error localization procedure on real and simulated sets of edits.
Real problems Simulated problems
480 var. and 1880 const. 30000 var. and 90000 const.
Time Value Time Value
error|| VA | B&B VA | B&B error|| VA | B&B VA B&B
0.4%1/0.04| 0.02 63.6] 63.6 0.4%|| 3.58 | 1.27 || 6788.1] 6788.1
0.7%1/0.06 [ 0.02 144.7( 144.7 0.9%(| 3.22| 1.27 [|12760.0] 12759.5
1.0%]|[0.06| 0.02 264.5| 264.5 1.3%(0.97] 0.9 |[20140.1| 20140.0
1.6%]|[0.06| 0.02 643.5| 643.1 2.0%[[2.89] 1.27 |[31258.1| 31082.2
2.5%(/0.07| 0.02 [|1774.3|1774.1 4.0%|| - 1.59 -167764.94

Tables 5 & 6: Imputation through a donor on real and simulated sets of edits.
Detection of erroneous questionnaires was performed, as a trivial task. In the
cases of error localization and imputation through a donor, for each set of edits



we considered various simulated erroneous answers with different percentage of
activated edits. Note that a CNF with n variables and m clauses corresponds
to a set covering problem with 2n variables and m + n constraints. In the case
of error localization, the heuristic VA can solve problems of size not solvable by
B& B within the time limit of 6 hours. Further occasional tests with higher error
percentage shows that VA does not increase its running time, but it is often
unable to find a feasible integer solution, while B&B would reach such solution
but in an a prohibitive amount of time. In the case of imputation through a
donor, the heuristic VA is unable to find a feasible integer solution for problems
with large error percentage, while B& B solves all problems in very short times.
This holds because, in the case of the use of a donor, many variables are fixed if
e; = d; (see (5)). Therefore, such problems become similar to error localization
problems with a smaller number of variables but a higher error percentage.

7 Conclusions

A binary encoding is the more direct and effective representation both for records
and for the set of edit rules, allowing automatic detection of inconsistencies and
redundancies in the set of edit rules. Erroneous records detection is carried out
with an inexpensive procedure. The proposed encoding allows, moreover, to au-
tomatically perform error localization and data imputation. Related computa-
tional problems are overcome by using state-of-the-art solvers. Approached real
problems have been solved in extremely short times. Artificially generated prob-
lems are effectively solved until sizes which are orders-of-magnitude larger than
the above real-world problems. Hence, noteworthily qualitative improvements in
a general process of data collecting are made possible.

References

1. M. Bankier. Experience with the New Imputation Methodology used in the 1996
Canadian Census with Extensions for future Census. UN/ECE Work Session on
Statistical Data Editing, Working Paper n.24, Rome, Italy, 2-4 June 1999.

2. F. Barahona and R. Anbil. The Volume Algorithm: producing primal solutions with
a subgradient method. IBM Research Report RC21103, 1998.

3. E. Boros, P.L. Hammer, T. Ibaraki and A. Kogan. Logical analysis of numerical
data. Mathematical Programming, 79:163—190, 1997.

4. R. Bruni and A. Sassano. Finding Minimal Unsatisfiable Subformulae in Satisfiabil-
ity Instances. in proc. of 6th Internat. Conf. on Principles and Practice of Constraint
Programming, Lecture Notes in Computer Science 1894, Springer, 500-505, 2000.

5. R. Bruni and A. Sassano. CLAS: a Complete Learning Algorithm for Satisfiability.
Dip. di Inf. e Sist., Univ. di Roma “La Sapienza” , Technical Report 01-01, 1999.

6. P. Fellegi and D. Holt. A Systematic Approach to Automatic edit and Imputation.
Journal of the American Statistical Association, 17:35-71(353), 1976.

7. ML.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, San Francisco, 1979.

8. M.R. Genesereth and N.J. Nillson. Logical Foundation of Artificial Intelligence.
Morgan Kaufmann, 1987.

9. R. Kowalski. Logic for Problem solving. North Holland, 1978.

10. D.W.Loveland. Automated Theorem Proving: a Logical Basis. North Holland 1978.

11. G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. J.
Wiley, New York, 1988.

12. C. Poirier. A Functional Evaluation of Edit and Imputation Tools. UN/ECE Work
Session on Statistical Data Editing, Working Paper n.12, Rome, Italy, 2-4 June 1999.

13. W.E. Winkler. State of Statistical Data Editing and current Research Problems.
UN/ECE Work Session on Stat. Data Edit., W. P. n.29, Rome, Italy, 2-4 June 1999.

10



