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Abstract. In this paper, a procedure is presented which allows the opti-
mal reconstruction of images from blurred noisy data. The procedure
relies on a general Bayesian approach, which makes proper use of all
the available information. Special attention is devoted to the informa-
tive content of the edges; thus, a preprocessing phase is included, with
the aim of estimating the jump sizes in the gray level. The optimization
phase follows; existence and uniqueness of the solution is secured. The
procedure is tested against simple simulated data and real data.
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1. Introduction

The issue of image reconstruction has received much attention in the
last decades. Models proposed in the current literature include the blurring
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enza, Rome, Italy.

3Professor, Dipartimento di Informatica e Sistemistica and Centro Interdipartimentale di
Ricerca per l’Analisi dei Modelli e dell’Informazione nei Sistemi Biomedici, Università di
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by various types of point spread functions and�or noise corruption effects.
In this context, a relevant aspect is the introduction of a suitable cost func-
tional which allows us to define the image reconstruction as an optimization
problem. Typically, the admissible image set is accounted for via hard con-
straints (Refs. 1–2) or via soft constraint penalty terms added to the cost
functional (Refs. 3–6).

In this paper, following a comprehensive approach to the problem
recently proposed in Refs. 1–2 and 7–9, we intend to design a procedure
which allows us to reconstruct images starting from blurred noisy data. The
procedure relies on a general Bayesian approach which makes proper use of
all the available information. We attach special attention to the informative
content of the edges; thus, information comes first from the prior knowledge
of the set of possible edge locations. Over that set, proper data prepro-
cessing provides us an estimate of the jump size, while inside the smoothness
regions the information is carried by the available gray level data.

After the formulation of the general set up, we discuss the image recon-
struction procedure with reference to a discretized model. In particular, we
illustrate data preprocessing and carry out the Bayesian approach to image
reconstruction until we get the overall cost function to be minimized.

Finally, some examples are reported with reference to both simulated
data and real data.

2. General Set Up

In the sequel, we shall use the following notations: IA is the indicator
function of the set A, i.e.,

IA (x)G�0,

1,

x∉A,

x∈A;

∂A denotes the boundary of the set A, Å denotes its interior, while Ā denotes
its closure.

Let us first introduce the set D of admissible images.

Definition 2.1. The class D of admissible images is defined as the set
of possibly discontinuos functions f: D→E which admit a representation

fG ∑
kG1

Nf

γ f
kIAk

f, NfFS, (1)

where EG[0, M ] and D is a compact square subset of �2; here,
{A f

k , kG1, 2, . . . , Nf} is a finite partition of D such that the atoms A f
k are
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connected, with A f
k GÅ f

k and ∂A f
k having zero 2D Lebesgue measure; also,

each γ f
k is continuous on D and its modulus of continuity is uniformly

bounded over D by KFS.

For any f∈D , we denote by Cf its discontinuity set. Clearly, we have

Cf ⊂SfG*

Nf

kG1
∂A f

k .

On D , we consider the topology induced by an L2-norm so that two images
f, g will be assumed to coincide whenever

f (x)Gg(x), a.e. in D.

The measured signal will be represented as

zGyCn, (2)

where

yGf ∗ NΣdGH( f ). (3)

In (2), n denotes an additive white Gaussian noise, with zero mean value
and variance σ2

n , while y denotes the blurred image. The blurring effect is
described by (3) where the asterisk denotes the convolution operator H and
NΣd denotes the 2D Gaussian kernel with zero mean and covariance matrix
Σd. That is, (3) amounts to

y(t)G�
D

f (τ )NΣd(tAτ ) dτ , t∈D. (4)

The covariance matrix Σd will be assumed to be diagonal with

ΣdGdiag(σ2
d1, σ2

d2),

and σ2
d1, σ2

d2H0, so that the following factorization holds:

NΣdGNd1Nd2 ,

where Nd is the 1D Gaussian kernel with zero mean and variance σ2
d . Here

and in the following, the assumption that the covariance matrix is diagonal
(that is, the 2D Gaussian kernel factorizes as the product of two 1D kernels)
is introduced for sake of simplicity, but does not affect essentially the
results.

If the set D of admissible images is endowed with a suitable prior
probability density p( f ), and if the available experimental information is
exhibited, it is possible to evaluate the goodness of any given estimate of
the unknown image via its posterior distribution.
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Let p( f �z), f∈D , denote the posterior probability density over D with
respect to a reference distribution. Then, the Bayesian approach leads to
assuming as an optimal estimate f̂ the value of f for which p( · �z) is maxi-
mum. The crucial problems in looking for the optimal solution are the exist-
ence and uniqueness of that solution. If p( · �z) is continuous and strictly
convex, in turn these properties, call for the compactness and convexity of
the admissible set. In this context, a general result is provided in Ref. 2,
Theorem 6.4, where it is shown that these properties are secured for a subset
D ′ defined by the functions f∈D such that Cf belongs to a coarse grid G
defined by a given ∆C-size lattice LC , where ∆C is a positive real number,

LCG{t∈D: tG(x, y), xGi∆C , yGj∆C , i, jG0, 1, 2, . . .}, (5)

Cf is the union of intervals whose lengths admit a uniform positive lower
bound and ∂D belongs to the grid G itself.

In the following, we will consider the optimal estimation problem over
such a subset D ′, which consequently will be the support of our probability
distribution. As a matter of fact, when embedding the optimization problem
in a discretized context, the assumption on D ′ does not imply any real loss
of generality.

As far as the prior distribution p( f ) is concerned, in the absence of
further information, we assume it to be uniform over D ′.

On the other hand, in the context of the image reconstruction, a num-
ber of instances might occur in which the knowledge of Cf is of primary
importance. Indeed, quite often most of the information carried by the sig-
nals concentrate in singularity points rather than in the regular part. This
is understood easily if one considers the fact that discontinuities might
account for the occurrence of rare events or abrupt changes in some under-
lying phenomenon. For instance, we can mention signals in the analysis
of gravitational waves, shocks, earthquakes, structure or material failures,
biomedical signals such as X-rays or NMRs, geophysical or meteorogical
data, airborne territory surveillance.

Taking the previous considerations into account, it appears convenient
to preprocess the observed available data z so as to enhance the contribution
of the discontinuous component over that of the regular part and damp
down the noise.

Clearly, preprocessing should be performed around the points of the
grid G which contains Cf and should preserve all the information about f
carried by the data. A preprocessing operator, which has been shown to
comply with all above requirements (Ref. 2), may be found within the con-
text of wavelet theory. In particular, we suggest here to convolute z via the
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kernels N (2),x
w and N (2),y

w , wG1, 2, . . . , W, defined as second-order deriva-
tives along the directions x, y respectively of a 2D Gaussian density with
zero mean and covariance matrix

ΣwGdiag(σ2,x
w , σ2,y

w ).

In Ref. 2, it is shown that these convolutions: (a) enjoy the property of
continuous invertibility; (b) smooth out the polynomial terms of degree 0
and 1 in f, thus enhancing the relative weight of the rapidly varying compo-
nents; and (c) contribute positively to the problem of identifying signal dis-
continuities in a noisy environment.

In particular, the third goal is achieved if more than one wavelet is
used, so that one can exploit the well-known advantages of multiscale analy-
sis (Refs. 10–11). Indeed, jump discontinuities do persist at any scale, while
the spurious ones due to noise happen to be highly sensitive to scale and
therefore can be smoothed out.

Clearly, a convolution by the second-order derivative of a Gaussian
kernel will be sensitive mostly to the discontinuities along a subset of Cf

locally orthogonal to the differentiation direction. Thus, the convolutions
via N (2),x

w and N (2),y
w are expected to enhance the discontinuities along the

directions x, y respectively. It follows that, in N (2),x
w and N (2),y

w , the choice
of σ2,y

w and σ2,x
w is inessential. Then, the simplest thing is to set σ2,y

w in
N (2),x

w to zero and σ2,x
w in N (2),y

w to zero, so as to reduce the 2D convolution
of z by N (2),x

w and N (2),y
w to the 1D convolution of z via the second-order

derivative of the 1D Gaussian kernels N (2)
w with zero mean and covariance

σ2
w .

3. Image Reconstruction Procedure

3.1. Discrete Model. The way discrete images are recorded suggests
us to consider the values f(i, j) that our functions f take on the finer lattice
LF defined as

LFG{t∈D: tG(x, y), xGi ∆F , yGj ∆F , i, jG0, 1, 2, . . . N},

where

∆FG∆C�r

and r is a fixed integer, rH1. For future convenience, we denote by F, C the
following sets of integers:

FG{0, 1, . . . , N}

CG{0, r, 2r, . . . , r [N�r]},
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where [N�r] denotes the integer part of N�r.
From the f(i, j), we derive the quantities

∆xfijGf (i, j )Af (i, jA1), i, j∈F, (6)

∆yfijGf (i, j )Af (iA1, j ), i, j∈F, (7)

and we set

f (−1, j )Gf (i, −1)G0, i, j∈F.

Within each ∆xfij , ∆yfij , we identify the components ∂xfij and ∂yfij due
to the continuous variation of f and the components δxfij and δyfij due to
the discontinuous variation. Thus,

∆xfijG∂xfijCδxfij , i, j∈F, (8)

∆yfijG∂yfijCδyfij , i, j∈F. (9)

The f(i, j) are subject to the following constraints which are inherited from
the constraints defining D ′:

0⁄ f (i, j )⁄M, i, j∈F, (10)

�∂xfij �⁄K∆F , i, j∈F, (11)

�∂yfij �⁄K∆F , i, j∈F, (12)

δxfijG0, i∈F, j∈F \C, (13)

δyfijG0, i∈F \C, j∈F. (14)

In a discretized context, the distinction between continuous and discontinu-
ous variations of f is loose. Thus, to keep this distinction, we have to
guarantee some difference in their relative size and add the following
constraints:

�δxfij �⁄αM, i∈F, j∈C, (15)

�δyfij �⁄αM, i∈C, j∈F, (16)

K∆F⁄βM, (17)

with

0Fβ[αF1.

The discretized versions of (2)–(3) are now

z(i, j )Gy(i, j )Cn(i, j ), i, j∈F, (18)

y(i, j )G ∑
h,k∈F

f (h, k) NΣd(iAh, jAk), i, j∈F, (19)
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where the samples f (i, j ), i, j∈F, satisfy the constraints (10)–(17), while the
samples n(i, j ), i, j∈F, are independent Gaussian variables with zero mean
and variance σ2

n .

3.2. Data Preprocessing. In Section 2, we stressed already the advan-
tages coming from data preprocessing via convolution by a family of 1D
Gaussian kernels N (2)

w with zero mean and variances σ2
w , wG1, 2,, . . . , W.

Of course, preprocessing is convenient only on the subset G of LF where
discontinuities are expected. Therefore, on G, we consider the following pre-
processed data:

z̃ x
ijwG ∑

k∈F

z(i, k)N (2)
w ( jAk), i∈F, j∈C, wG1, 2, . . . , W, (20)

z̃ xA
ijw Gz̃ x

i( jA1)w , i∈F, j∈C, wG1, 2, . . . , W, (21)

z̃ y
ijwG ∑

h∈F

z(h, j )N (2)
w (iAh), i∈C, j∈F, wG1, 2, . . . , W, (22)

z̃ yA
ijw Gz̃ y

(iA1)jw , i∈C, j∈F, wG1, 2, . . . , W, (23)

while on F \C we keep the original data zij . Let us consider the new vector
of size ν,

z̃G�
z̄

z̃ x

z̃ xA

z̃ y

z̃ yA

� ; (24)

ν is given by

νG(NA[N�r])2C4(NC1)([N�r]C1) W,

z̄ is the vector of size (NA[N�r])2, made up by z(i, j ), i, j∈F \C; z̃ x, z̃ y are
vectors of size (NC1) ([N�r]C1) W made up respectively of the samples
z̃ x

ijw , z̃ y
ijw given respectively by (20), (22); and z̃ xA, z̃ yA are vectors of size

(NC1) ([N�r]C1) W made up respectively of the samples z̃ xA
ijw , z̃ yA

ijw given
respectively by (21), (23).

We note that

z̃GT ′(z), (25)

where z is the vector of size (NC1)2 made up of all the samples
z(i, j ), i, j∈F, and T ′ is a suitable linear function. Furthermore, despite the
fact that νH(NC1)2, T ′ has an inverse over its range R (T ′ ); indeed, the
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values z(i, j ), i, j∈F \C, are already included in z̄, while the remaining values
z(i, j) (for i∈F, j∈C and for i∈C, j∈F ) are uniquely recovered respectively
for any fixed w from z̃ x

ijw , i∈F, j∈C, and z̃ y
ijw , i∈C, j∈F (see Section 6,

Appendix A).
Similarly, for future convenience, we consider the vector of size µ,

f̃G�
f̄

∆xf

∆yf
�, (26)

where µ is given by

µG(NA[N�r])2C2(NC1)([N�r]C1),

f̄ is the vector of size (NA[N�r])2 made up by f (i, j ), i, j∈F \C; ∆xf, ∆yf are
the vectors of size (NC1) ([N�r]C1) made up respectively of the samples
∆xfij , i∈F, j∈C, and ∆yfij , i∈C, j∈F, as in (6)–(7).

Again, we note that

f̃GT ′′ ( f ), (27)

where f is the vector of size (NC1)2 made up of all the samples
f (i, j ), i, j∈F and T ′′ is a suitable linear function. Also, T ′′ is shown easily
to have an inverse on R (T ′′ ).

3.3. Bayesian Approach to Image Reconstruction. As already men-
tioned in Section 2, we shall now assess the probability densities of relevant
quantities, so as to proceed to the formulation of the Bayesian estimation
problem. In the following, the probability densities will be taken implicitly
with respect to the Lebesgue measure of the corresponding dimension.

To proceed, we consider first the conditional densities

p( f̄ �∆xf, ∆yf ), p(z̄� f ), p(∆xf �z̃ x), p(∆yf �z̃ y),

in the case of no information about the subject represented in the image.
Now, p( f̄ �∆xf, ∆yf ) is a flat density over the admissible set defined by

(8)–(14); that is,

0⁄ f (i, j )⁄M, i, j∈F \C, (28)

� f (i, j )Af (iA1, j ) �⁄K∆F , i, j∈F \C, (29)

� f (i, j )Af (i, jA1) �⁄K∆F , i, j∈F \C. (30)
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In (29)–(30), the values of f (i, j ) out of f̄ are provided by conditioning on
∆xf, ∆yf.

p(z̄� f ) is the Gaussian N(H( f ), σ2
nI ), where H( f ) is the vector of size

NA[N�r] made up by the samples y(i, j ), i, j∈F \C, as in (19) and I is the
identity matrix of size (NA[N�r])2.

p(∆xf �z̃ x, z̃ xA) is the joint density of

∆xfijG∂xfijCδxfij , i∈F, j∈C,

conditioned on z̃ x, z̃ xA. Because any two entries in ∆xf do not operate on
any common value of f, we assume them to be independent. Since z̃ x, z̃ xA

yield virtually no information about ∂xfij , i∈F, j∈C, we may further assume
∂xfij , δxfij to be independent from each other, conditioned on z̃ x, z̃ xA. Thus,
we approximate

p(∆xf �z̃ x, z̃ xA)� ∏
i∈F
j∈C

p(∆xfij �z̃ x, z̃ xA)

G ∏
i∈F
j∈C

p(∂xfij �z̃ x, z̃ xA) ∗ p(δxfij �z̃ x, z̃ xA)

G ∏
i∈F
j∈C

p(∂xfij ) ∗ p(δxfij �z̃ x, z̃ xA). (31)

Now, p(∂xfij ) is a flat density over the admissible set

�∂xfij �⁄K∆F . (32)

As far as p(δxfij �z̃ x, z̃ xA) is concerned, it is possible to exploit the infor-
mation provided by z̃ x, z̃ xA (actually z̃ x

ijw , z̃ xA
ijw , wG1, 2, . . . , W, are enough)

to estimate δxfij in a linear Gaussian context. Denoting by δxfiĵ the estimate
and by σ2,x

ij its variance, p(δxfij �z̃ x, z̃ xA) turns out to be the Gaussian
N(δxfiĵ , σ2,x

ij ). Similarly, with an obvious use of notations, we have

p(∆yf �z̃ y, z̃ yA)� ∏
i∈C
j∈F

p(∂yfij ) ∗ p(δyfij �z̃ y, z̃ yA),

with p(∂yfij ) the flat density over the admissible set

�∂yfij �⁄K∆F (33)

and

p(δyfij �z̃ y, z̃ yA)GN(δyfiĵ , σ2,y
ij ).

Computation of δxfiĵ δyfiĵ , σ2,x
ij , σ2,y

ij is carried out in Section 6, Appen-
dix B, where it is shown also that the variances σ2,x

ij , σ2,y
ij are independent

of the pixel location.
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Now, we are ready to compute the posterior probability density of f,

p( f �z)Gp(z, f )�p(z)

Gp(T ′(z), f )�p(z)

Gp(z̄, z̃ x, z̃ xA, z̃ y, z̃ yA, f )�p(z)

Gp(z̄�z̃ x, z̃ xA, z̃ y, z̃ yA, f )p(z̃ x, z̃ xA, z̃ y, z̃ yA, f )�p(z)

�p(z̄� f )p(z̃ x, z̃ xA, z̃ y, z̃ yA, f )�p(z)

Gp(z̄� f )p( f � z̃ x,z̃ xA, z̃ y, z̃ yA) p(z̃ x, z̃ xA, z̃ y, z̃ yA)�p(z)

Gp(z̄� f )p(T ′′( f ) �z̃ x, z̃ xA, z̃ y, z̃ yA) p(z̃ x, z̃ xA, z̃ y, z̃ yA)�p(z)

Gp(z̄� f )p( f̄,∆xf,∆yf �z̃ x, z̃ x−, z̃ y, z̃ y−)p(z̃ x, z̃ x−, z̃ y, z̃ y−)�p(z)

Gp(z̄� f )p( f̄ �∆xf, ∆yf, z̃ x, z̃ xA, z̃ y, z̃ yA)

Bp(∆xf, ∆yf �z̃ x, z̃ xA, z̃ y, z̃ yA) p(z̃ x, z̃ xA, z̃ y, z̃ yA)�p(z)

�p(z̄� f )p( f̄ �∆xf, ∆yf )p(∆xf �z̃ x, z̃ xA)

Bp(∆yf �z̃ y, z̃ yA) p(z̃ x, z̃ xA, z̃ y, z̃ yA)�p(z). (34)

In (34), we approximated the probability p(z̄�z̃ x, z̃ xA, z̃ y, z̃ yA, f ) by p(z̄� f )
and the probability p( f̄ �∆xf, ∆yf, z̃ x, z̃ xA, z̃ y, z̃ yA) by p( f̄ �∆xf, ∆yf ), since
once we are given f the vectors z̃ x, z̃ xA, z̃ y, z̃ yA carry no significant further
information about the regular parts of f and z. Also, we approximated the
probability p(∆xf, ∆yf �z̃ x, z̃ xA, z̃ y, z̃ yA) by p(∆xf �z̃ x, z̃ xA)p(∆yf �z̃ y, z̃ yA) in
that, by the very way the relevant vectors were computed, ∆xf and ∆yf turn
out to be independent and there is no significant information between ∆xf
and z̃ y, z̃ yA, as well as between ∆yf and z̃ x, z̃ xA.

Finally, we note that, if p(∂xfij ), p(∂yfij ) are approximated by Gaussian
densities with zero mean and variance (K∆F)

2Gc2, p( f �z) is zero out of the
admissible set defined in (28)–(30), while inside the same set is proportional
(via a factor independent of f ) to the product

∏
i∈F \C
j∈F \C

exp{−[z(i, j )A(H( f ))ij ]
2�σ2

n}

B ∏
i∈F \C
j∈F \C

exp{−[(∆xfij )
2C(∆yfij )

2]�c2}

B ∏
i∈F
j∈C

exp{−[∆xfijAδxfiĵ]
2�(c−2Cσ−2)−1}

B ∏
i∈C
j∈F

exp{−[∆yfijAδyfiĵ]
2�(c−2Cσ−2)−1}.
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Thus the MAP estimate for f is achieved by minimizing on the admissible
set (28)–(30) the cost function

J( f )G ∑
i, j∈F \C

{[z(i, j )A(H( f ))ij ]
2�σ2

nC[(∆xfij )
2C(∆yfij )

2]�c2}

C ∑
i∈F
j∈C

[∆xfijAδxfiĵ]
2�(c−2Cσ−2)−1

C ∑
i∈C
j∈F

[∆yfijAδyfiĵ]
2�(c−2Cσ−2)−1. (35)

This minimization problem enjoys the following properties:

(i) it is a quadratic programming problem (the cost functional is a
quadratic form to be minimized under linear constraints);

(ii) standard routines are available for its numerical solution, even in
the case of large size problems;

(iii) the existence of solutions is guaranteed by the compactness of the
admissible set (28)–(30) and the continuity of J;

(iv) the uniqueness of the solution holds, by the convexity of the
admissible set and the strict convexity of J.

4. Testing the Procedure

In this section, we present some preliminary results obtained by apply-
ing the proposed procedure for image reconstruction to some simulated data
and real data.

As mentioned already in Section 3.2, the data have been preprocessed
via convolution by WG3 one-dimensional kernels N (2)

w , with zero mean and
variances σ2

w , wG1, 2, 3. The number of kernels as well as their variances
have been chosen in order to comply with different requirements: noise
filtering, smoothing of regular component, discriminating among adjacent
edges. Quantitative choice criteria are provided in Refs. 2–9, which of
course account for the variances σ2

d , σ2
n , the ratio rG∆C�∆F and the modu-

lus of continuity K.
The optimization phase, discussed in Section 3.3, follows such pre-

processing phase. The optimization problem has the convex quadratic cost
function (35) and the admissible set of constraints (28). Such a problem is
solved iteratively by means of a standard implementation of the barrier
method (Ref. 12). A Cholewsky factorization of the matrix of the quadratic
part of the cost function is performed. The constraints are then replaced
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by penalty terms (barrier function) added to the cost function. Then, an
unconstrained problem is solved. This is iterated by varying the barrier
terms, until the optimality conditions are satisfied numerically. Numerical
precision is of order 10−6.

To test the procedure, we generated simulated data corresponding to
simple geometrical forms. Those images (underlying data f ) are reported in
Figs. 1, 13, 19; in all cases, the regular component was taken as

γ (x, y)G0.1 sin(0.2xC0.08y);

the piecewise constant singular component f (x, y)Aγ (x, y) assumes the
values indicated in the same figures.

The above underlying data f have been degraded according to the
model (2)–(3) for different values of σ2

n , σ2
d , thus generating the measured

data z represented in Figs. 2, 7, 10, 14, 20. The results obtained for suitable
values of ∆C and σ2

w , wG1, 2, 3, are shown in Figs. 3, 4, 8, 9, 11, 12, 15, 16,
21. Note that the results given in Figs. 4 and 21 are obtained by images
featuring edges not belonging to the set LC: this in order to check the robust-
ness of the procedure.

The usefulness of the various steps in the preprocessing phase was
evaluated by waiving the convolution via the kernels N (2)

w (and therefore the

Fig. 1. First simulated uncorrupted image.
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Fig. 2. First simulated corrupted image, σ2
nG0.01, σ2

dG1.

Fig. 3. Reconstruction obtained from the data of Fig. 2 assuming ∆CG5, σwG1, 1.3, 1.5. It
leads to mG0.6.
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Fig. 4. Reconstruction obtained from the data of Fig. 2 assuming ∆CG5, σwG1, 1.3, 1.5, and
vertical edge out of the grid. It leads to mG0.8.

estimation of δxfij ,δyfij ) or even allowing edges to belong to the whole of
LF. The related results are reported in Figs. 5, 17, 6, 18.

An overall figure of the achieved improvement, in the case of simulated
data, has been drawn from the relative mean-square error

mGEf�Ei ,

where Ef is the mean-square error between the reconstructed image and the
true underlying image and Ei is the mean-square error between the initial
data and the true image. Obviously, m¤ 0; the case mG0 corresponds to
the ideal unrealistic case of perfect reconstruction of the true image; the
case m∈(0, 1) corresponds to an improvement of the reconstructed image
with respect to the data; while the case mH1 corresponds to a worsening
(this latter case is indeed possible in particular when the available data are
of very high quality).

The proposed procedure exhibits good capability of recovering the
edges which are actually included in LC, even in the case of severe data
corruption. The edges out of LC are also identified, although with an obvi-
ous increase in uncertainty. In any case, a priori knowledge of LC and esti-
mation of the jump size on LC via data preprocessing contribute positively
to the accuracy of the reconstructed image.
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Fig. 5. Reconstruction obtained from the data of Fig. 2 assuming ∆CG5 and without prepro-
cessing. It leads to mG0.8.

Fig. 6. Reconstruction obtained from the data of Fig. 2 without preprocessing and allowing
the edges to belong to the whole of LF. It leads to mG0.98.
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Fig. 7. First simulated corrupted image, σ2
nG0.01, σ2

dG4.

Fig. 8. Reconstruction obtained from the data of Fig. 7 assuming ∆CG5, σwG1, 1.3, 1.5. It
leads to mG0.7.
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Fig. 9. Reconstruction obtained from the data of Fig. 7 assuming ∆CG10, σwG2, 2.6, 3. It
leads to mG0.6.

Fig. 10. First simulated corrupted image, σ2
nG0.1, σ2

dG1.
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Fig. 11. Reconstruction obtained from the data of Fig. 10 assuming ∆CG5, σwG1, 1.3, 1.5.
It leads to mG0.5.

The last application refers to a real image corrupted by unknown blur-
ring and noise (Fig. 22). Now, the issue arises of preliminarily estimating
σ2

n , σ2
d : we did not deal with that issue here, and we simply used a few

guessed values for the above variances. The results shown in Figs. 23–25
were obtained by processing a detail of the whole image. Note that the
quality level of the three results is similar: the procedure features do not
seem critical with respect to the choice of the above parameters.

5. Appendix A

For any fixed i∈F, w∈{1, 2, . . . , W}, let us define the vectors

ζxG�
z(i, 0)

z(i, r)
···

z(i, r[N�r])
� , ζ̃ xG�

z̃i0wA ∑
k∈F \C

z(i, k)N (2)
w (0Ak)

z̃irwA ∑
k∈F \C

z(i, k)N (2)
w (rAk)

···
z̃i,r[N�r],wA ∑

k∈F \C

z(i, k)N (2)
w (r[N�r]Ak)

� .
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Fig. 12. Reconstruction obtained from the data of Fig. 10 assuming ∆CG10, σwG2, 2.6, 3.
It leads to mG0.44.

Fig. 13. Second simulated uncorrupted image.
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Fig. 14. Second simulated corrupted image, σ2
nG0.01, σ2

dG1.

Fig. 15. Reconstruction obtained from the data of Fig. 14 assuming ∆CG5, σwG1, 1.3, 1.5.
It leads to mG0.7.
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Fig. 16. Reconstruction obtained from the data of Fig. 14 assuming ∆CG5, σwG2, 2.6, 3. It
leads to mG0.64.

Fig. 17. Reconstruction obtained from the data of Fig. 14 assuming ∆CG5 and without
preprocessing. It leads to mG1.05.
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Fig. 18. Reconstruction obtained from the data of Fig. 14 without preprocessing and allowing
the edges to belong to the whole of LF. It leads to mG0.73.

Fig. 19. Third simulated uncorrupted image.
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Fig. 20. Third simulated corrupted image, σ2
nG0.1, σ2

dG1.

Fig. 21. Reconstruction obtained from the data of Fig. 20 assuming ∆CG5, σwG1, 1.3, 1.5.
It leads to mG0.9.
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Fig. 22. Real image corrupted by unknown blurring and noise (the detail which will be pro-
cessed is evidentiated).

Fig. 23. Reconstruction obtained from the data of Fig. 22 guessing σ2
nG0.1, σ2

dG1, and
assuming ∆CG5, σwG1, 1.3, 1.5.
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Fig. 24. Reconstruction obtained from the data of Fig. 22 guessing σ2
nG0.2, σ2

dG1, and
assuming ∆CG5, σwG1, 1.3, 1.5.

Note that ζ̃ x is known, once z̄, z̃ x are so, and that, from (20), we draw

ζ̃ xGHζx,

where

HG�
N (2)

w (0) N (2)
w (r) · · · N (2)

w (r [N�r])

N (2)
w (r) N (2)

w (0) · · · N (2)
w (r [N�r]A1)

· · · · · · · · · · · ·

N (2)
w (r [N�r]) N (2)

w (r [N�r]A1) · · · N (2)
w (0)

� .

In a similar way, we may define the vectors ζy, ζ̃ y and again we have

ζ̃ yGHζy.

The possibility of recovering uniquely ζx from ζ̃ x and ζy from ζ̃ y corre-
sponds clearly to the nonsingularity of the matrix H.

Theorem 5.1. For any fixed w, N, r, the matrix H is negative definite.

Fig. 25. Reconstruction obtained from the data of Fig. 22 guessing σ2
nG0.2, σ2

dG2, and
assuming ∆CG5, σwG1, 1.3, 1.5.
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Proof. Let us consider the function Φ defined as

Φ (ω )Gexp[−(1�2)ω2σ2
w ], ω∈�.

Since Φ is a nonnegative, even, and integrable function, there exists a wide
sense stationary (real) process û, continuous in the mean-square sense, such
that ΦGΦû , where Φû denotes the power spectral density of û (Ref. 13,
Theorem I.5.1). The correlation function Rû of û is then given by

Rû (τ )G�
S

AS

e jωτΦû (ω ) dω

G(1�12πσw) exp[−(1�2)τ2�σ2
w ]

GNw (τ ).

Since Rû is twice differentiable in τG0, and therefore everywhere, there
exists a process u such that u(t)Gdû(t)�dt, in the mean square sense, with
correlation function (Ref. 13, Corollary V.2.2)

Ru (τ )G−d2Rû (τ )�dτ2

G−N (2)
w (τ ).

This suffices for H to be negative semidefinite. Next, we show that H is
actually negative definite. To that purpose, we observe that the power spec-
tral density of u is given by

Φu (ω )Gω2Φû (ω )Gω2 exp[−(1�2)ω2σ2
w ],

which clearly is nonzero in at least r[N�r]C1 values of ω [indeed,
Φu (ω ) ≠ 0, ∀ω ≠ 0]. Then, the conclusion follows by an argument similar to
the one developed in Ref. 14, Property 1, page 122. �

As a matter of fact, Theorem 5.1 allows us to establish a discrete ver-
sion of the result proved in Ref. 2, Theorem 10, namely, the identifiability
of an atomic measure from the knowledge of its mixture by a N (2)-like kernel
over a number of points equal to the number of its atoms.

6. Appendix B

From (18)–(19), we have

z(i, j )Az(i, jA1)

G ∑
h,k∈F

NΣd(iAh, jAk)[∂xfhkCδxfhk ]Cη(i, j ), i, j∈F, (36)



JOTA: VOL. 115, NO. 1, OCTOBER 2002 93

where

η(i, j )Gn(i, j )An(i, jA1).

Now, let us denote by N (2)
d2Cw the second-order derivative of the 1D Gaussian

kernel of zero mean and variance σ2
d2Cσ2

w . For i∈F, j∈C, from (36) it fol-
lows that

z̃ x
ijwAz̃ xA

ijw G ∑
h,k∈F

Nd1(iAh)N (2)
d2Cw( jAk)[∂xfhkCδxfhk ]Cη̃ x

ijw ,

where

η̃ x
ijwG ∑

k∈F

N (2)
w ( jAk)η(i, k).

Now, we exploit the fact that ∂xfhkCδxfhk does not vary significantly with
respect to h, for h in the range (iA3σd1, iC3σd1), where Nd1(iAh) is different
significantly from zero. Furthermore, ∂xfhk does not vary significantly with
respect to

k∈( jA31σ2
d2Cσ2

w , jC31σ2
d2Cσ2

w ),

while δxfhk is zero for k∈F \C and it is equal to δxfhj on the only value of
k∈C where N (2)

d2Cw( jAk) is significantly nonzero, that is, for kGj. There-
fore, for i∈F, j∈C, we approximate

z̃ x
ijwAz̃ xA

ijw � ∑
k∈F

N (2)
d2Cw( jAk)[∂xfhkCδxfhk ]Cη̃ x

ijw

� ∑
k∈F

N (2)
d2Cw( jAk)δxfikCη̃ x

ijw

�N (2)
d2Cw(0)δxfijCη̃ x

ijw , wG1, 2, . . . , W. (37)

Let us define the following vectors of size W:

q(ij,x)G�
z̃ x

ij,1Az̃ xA
ij,1

···
z̃ x

ij,WAz̃ xA
ij,W

� , (38)

uxG�
N (2)

d2C1(0)
···

N (2)
d2CW (0)

� , (39)

η̃ (ij,x)G�
η̃x

ij,1

···
η̃x

ij,W

� . (40)
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Then, (37) becomes

q(ij,x)GuxδxfijCη̃ (ij,x). (41)

We note that η̃ (ij,x) is a Gaussian vector, with zero mean and covariance
matrix

ΨGE [η̃ (ij,x)η̃ (ij,x)T]G{ψ st},

with

ψ stGE [η̃ x
ij,s η̃ x

ij,t ]

GE� ∑
k∈F

N (2)
s ( jAk)η(i, k) ∑

h∈F

N (2)
t ( jAh)η(i, h)�

G ∑
h,k∈F

N (2)
s ( jAk)N (2)

t ( jAh)E{[n(i, k)An(i, kA1)][n(i, h)An(i, hA1)]}

Gσ2
n ∑
k∈F

[2N (2)
s ( jAk)N (2)

t ( jAk)AN (2)
s ( jAk)N (2)

t ( jAkA1)

AN (2)
s ( jAk)N (2)

t ( jAkC1)]

G2σ2
n [N

(4)
sCt (0)AN (4)

sCt (1)], s, tG1, 2, . . . , W,

where N (4)
sCt is the fourth-order derivative of a 1D Gaussian kernel with zero

mean and variance σ2
sCσ2

t .
From (41), we get the Markov estimate of δxfij ,

δxfiĵGuxTΨ−1q(ij,x)�uxTΨ−1ux

GδxfijCuxTΨ−1η̃ (ij,x)�uxTΨ−1ux. (42)

Then, given z̃ x, z̃ xA, we see that δx
fij is Gaussian kernel with mean δxfiĵ and

variance

σ2,x
ij G(uxTΨ−1ux)−1 (43)

independent of i, j. In a similar way, given z̃ y, z̃ yA, one shows that δyfij is
Gaussian with mean

δyfiĵGuyTΨ−1q(ij,y)�uyTΨ−1uy

and variance

σ2,y
ij G(uyTΨ−1uy)−1,
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where q(ij,y) and uy are defined similarly to (38) and (39),

q(ij,y)G�
z̃ y

ij,1Az̃ yA
ij,1

···
z̃ y

ij,WAz̃ yA
ij,W

� ,

uyG�
N (2)

d1C1(0)
···

N (2)
d1CW(0)

� .
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