Approximating
Minimal Unsatisfiable Subformulae
by means of Adaptive Core Search

Renato Bruni

Dipartimento di Informatica e Sistemistica, Universita di Roma “La Sapienza”,
Via Buonarroti 12, I-00185 Rome, Italy

Abstract

The paper is concerned with the relevant practical problem of selecting a small un-
satisfiable subset of clauses inside an unsatisfiable CNF formula. Moreover, it deals
with the algorithmic problem of improving an enumerative (DPLL-style) approach
to SAT, in order to overcome some structural defects of such approach. Within a
complete solution framework, we are able to evaluate the difficulty of each clause,
by analyzing the history of the search. Such clause hardness evaluation is used in
order to rapidly select an unsatisfiable subformula (of the given CNF) which is a
good approximation of a minimal unsatisfiable subformula (MUS). Unsatisfiability
is proved by solving only such subformula. Very small unsatisfiable subformulae
are detected inside famous Dimacs unsatisfiable problems and in real world prob-
lems. Comparison with the very efficient solver SATO 3.2 used as a state-of-the-art
DPLL procedure (disabling learning of new clauses) shows the effectiveness of such
enumeration guide.

Key words: Consistency Restoring, Enumeration, (Un)Satisfiability.

1 Introduction

A propositional formula F in conjunctive normal form (CNF) is a conjunction
of m clauses C}, each clause being a disjunction of literals, each literal being
either a positive (q;) or a negative (—qy;) propositional variable. The number
of different variables appearing in the formula is n. By denoting with [; the

Email address: bruni@dis.uniromal.it (Renato Bruni).

Preprint submitted to Elsevier Science 25 March 2002

cardinality of C}, and with [-] the possible presence of =, this is

F = /\ (\/ [—]eui)

j=l.m i=1.l;

A truth assignment for the variables provides a truth value {7True, False}
for the formula. The satisfiability problem (SAT) consists in finding a truth
assignment for the variables such that F evaluates to True, or proving that
such truth assignment does not exist. Such problem plays a protagonist role
both in mathematical logic, since the problem of logical implication can be
formalized as a SAT problem, and in computing theory, being SAT the proto-
type of NP-complete problems. Moreover, many problems arisen from different
applicative fields, e.g. VLSI logic circuit design and testing, programming lan-
guage project, computer aided design, are usually encoded as SAT problems.

We deal here with the practical problem of locating a small unsatisfiable sub-
set of clauses inside an unsatisfiable CNF formula, and with the algorithmic
problem of improving an enumerative approach to SAT. As for the first ques-
tion, when an instance F encodes a system or structure one must design, we
generally require F to have a well-defined solution property (either to be sat-
isfiable or to be unsatisfiable). When F is unsatisfiable, and we want it to be
satisfiable, we would like to modify the system in order to make JF satisfiable.
Conversely, when F is unsatisfiable and we want it to be so, if we need to
re-design the system (for instance to reduce its cost), we would like to keep F
unsatisfiable. An approach to the first problem leads to the solution of maxi-
mum satisfiability problems. The mazimum satisfiability problem (Max-SAT)
consists in finding a truth assignment for the variables maximizing the number
of clauses C; which evaluates to True [2]. By denoting with S such maximum
set of clauses which can be simultaneously satisfied, S C F, satisfiability can
be restored by removing from the system all elements corresponding to clauses
of F\S. However, such approach is not desirable in many practical cases. Very
often, in fact, we cannot just delete a part of our system, because we need the
functionalities contained in that part. Instead, we would like to locate and
understand the problem, and, basing on this information, re-design only the
small part of the system causing the problem. As for the second problem,
when we want F to be unsatisfiable (and we cannot just add a contradic-
tion), we typically would like to know which part of the system should not be
changed, and which one can be modified (or possibly removed). Both of the
above problems can be approached by looking for a subset of clauses & within
an unsatisfiable formula F such that U is still unsatisfiable. More than one
unsatisfiable subformula can be contained within the same JF. Unsatisfiable
subformulae are characterized with respect to the number of their clauses, and
relations between them and the solution of Max-SAT are investigated in Sect.
2. A procedure to select a small unsatisfiable subformula is in Sect. 4.

As for the algorithmic question, many procedures for solving the SAT prob-
lem have been proposed, based on different techniques (among others, [3,6,9—
12,14,16,17,20,22,29,26,31,34], see also [7,15,18,21,32] for extensive references).
A solution method is complete if it guarantees (given enough time) to find a
solution if it exists, or report lack of solution otherwise. Most of complete
methods are based on enumeration techniques, in particular splitting and
backtracking, such as the Davis-Putnam-Logemann-Loveland (DPLL) [10,24].
Their flow of control is often represented by a search tree, where the root
corresponds to the original formula F, and the arcs correspond to variable
assignments. A splitting and backtracking procedure visits the search tree as
follows. If the formula has an empty clause, exit and report unsatisfiable. If
the formula has no variables, exit and report satisfiable (the current variable
assignment is the solution). Otherwise, select, according to a branching rule,
a variable « that does not yet have a value. Generate two subformulae, by
fixing « respectively to True and False and removing from the formula all sat-
isfied clauses and all falsified literals. Solve subproblems recursively. A main
drawback of this approach is that the search can be very slow if we do not
have procedures to avoid visiting most of the branches of the search tree. In
the field of satisfiability, effective techniques to tackle such problem are for
instance learning of new clauses [3|, non-chronological backtracking [30], and
necessary assignments [33]. However, we did not use them in our implementa-
tion. Instead, we investigate additional techniques. In order to understand if
our techniques by themselves are able to speed up an enumerative approach,
we compare them to the very efficient solver SATO 3.2 [34] used just as a
state-of-the-art DPLL procedure (by disabling learning of new clauses with
the option -g0). A recognized technique to speed up the search consists in
starting assignment satisfying the more difficult clauses at the beginning of
the search. We propose a technique to evaluate clause hardness, which is based
on the history of the search, as shown in Sect. 3. When dealing with large scale
problems, both computation of the generic branching rule and propagation of
the variable fixings are demanding operations. Moreover, the task of proving
unsatisfiability is usually computationally harder than proving satisfiability,
since it implies exploring all the nodes of the search tree that we could not
prune. In order to overcome the above problems, it is customary in mathe-
matical programming to use techniques of delayed row generation (see [4] for
details). We therefore particularize this to SAT. A set of hard clauses, called
core, is selected and dynamically updated, in order to be kept small and yet
hard to solve. Clauses are chosen by using the above hardness evaluation cri-
terion. The procedure stops as soon as this set becomes unsatisfiable. Details
are in Sect. 4.

The procedure is applied to widely-known unsatisfiable problems from the
Dimacs test set and to real world problems arising from data collecting, where
we want the resulting logic formula to be satisfiable.

2 Unsatisfiable Subformulae

Throughout the rest of this section, we assume F unsatisfiable (otherwise no
unsatisfiable subformula could be found in F). An unsatisfiable subformula of
F is a set U of clauses such that:

(1) U C F (in the sense of clause-subset, i.e. C; e Y = C; € F).
(2) U is unsatisfiable.

An unsatisfiable subformula can be a proper subformula of F or coincide with
F. Note that some unsatisfiable formulae do not admit proper unsatisfiable
subformulae, because they become satisfiable as soon as we remove any of their
clauses (e.g. the famous pigeon hole Dimacs problems). A minimal unsatisfiable
subformula (MUS) of F is a set M of clauses such that:

(1) M C F (in the sense of clause-subset).
(2) M is unsatisfiable.
(3) Every proper clause-subset of M is satisfiable.

In the general case, more than one MUS can be contained in the same F.
Some of them can overlap, in the sense that they can share some clauses, but
they cannot be fully contained one in another. Therefore, the structure of all
MUS of a formula is described by the following straightforward lemma.

Lemma 1 The collection of all MUS of an unsatisfiable CNF formula F is a
clutter T .

The concept of MUS has analogies with that one of IIS (irreducible infeasible
systems) in the case of systems of linear inequalities [1]. Relations between
the concepts of Max-SAT solution and MUS can be investigated. Considering
example in Fig. 1, we have the set of clauses corresponding to the solution of
the Max-SAT problem S = {C4, Cy, C3,Cy, Cg, Cs, Cy, C1p}, and its comple-
ment F\ S = {Cs,C;}. The clutter of all MUS is given by M; = {Cy, C5}
and My = {C7,Cs,Cy}. The first is the minimum unsatisfiable subformula.
An unsatisfiable subformula approximating M; is U = {C3, Cy, Cs}. The fol-
lowing general result holds:

Theorem 2 (Relation between Max-SAT and MUS) Let F be an un-
satisfiable CNF' formula. Given any set of clauses S C F corresponding to a
Max-SAT solution of F, the complement F\ S is a minimum transversal' of

the clutter T of all MUS of F.

LA transversal of a collection of sets A = {A1,...,A,} over a ground set A is a
set BC A:|BNA; >1forall A; € A. A minimum transversal is a transversal
having minimum cardinality.

Proof: S cannot entirely contain any MUS, though S can partially contain
any MUS. Therefore, every MUS has at least one clause in F \ S. This proves
F\'S to be a transversal of 7. F \ S has the minimum number (m — s) of
clauses, since § has the maximum number (s) of clauses. Any clause-subset
of F with a number of clauses u < m — s would be the complement of an
unsatisfiable set of clauses &’ (by the definition of Max-SAT solution). &’
would therefore contain at least one MUS which is not covered by F \ S’
Consequently, any clause-subset of F with a number of clauses u < m — s is
not a transversal of 7. This proves F \ S to be minimum. O

G . Max-SAT
o solution
MUS
approximation
Clutter of
all MUS

Fig. 1. Relations among the solution of Max-SAT, the clutter of all MUS, and an
approximation of the minimum MUS.

The first question depicted in Sect. 1 corresponds to the problem of selecting
a MUS, as follows. In the case we want to restore satisfiability by locating, one
after another, the problems of the system, this actually means locating each
time a MUS, or at least a small unsatisfiable subformula. Within a small num-
ber of clauses the original human designer can understand the problem, and
re-design only the small parts of the system involved in it. This would hardly
be done without such localization process. On the contrary, the complement
F \ S of the set of clauses S corresponding to a Max-SAT solution is not, in
general, an unsatisfiable subset (although it may be), and its location would
not help in understanding the problem. In the case we want to keep unsat-
isfiability, while modifying the system, this again means locating a MUS, or
at least a small unsatisfiable subformula. That is the part of the system that
should not be changed, while the rest need to be modified according to new
specifications. Under special conditions (defined depending on the difference
between number of clauses and number of variables), it can be recognized in
polynomial time whether a set of clauses is a MUS or not [13,23]. However, to
find a MUS within a generic formula is an NP-hard problem, since it implies
solving the SAT problem. Moreover, finding a MUS could require much more
time than just solving the SAT problem, just like finding an IIS requires much
more time than just solving the feasibility of a system of linear inequalities
[8]. We propose a procedure to rapidly select a good approximation of a small

MUS, that means an unsatisfiable set of clauses having almost as few clauses
as a MUS of small size.

3 Adaptive Branching

Although all clauses of a formula F should be satisfied, there are clause-
subsets of F which are more “hard-to-satisfy”, i.e. which have a small number
of satisfying truth assignments, and clause-subsets which are rather “easy-
to-satisty”, i.e. which have a large number of satisfying truth assignments.
Hardness of a single clause C; is typically not due to C} in itself, but to its
combination with the rest of the clauses in F. Therefore, hardness of a clause
C; will (sometimes implicitly in the following discussion) mean hardness of C;
in the case when C; belongs to the particular instance F we are solving.

Our enumeration procedure uses a clause-based search tree [28], as follows. At
every iteration, a clause Cy to be satisfied is selected. Variables from C are
therefore selected, and fixed in order to satisfy Cs. Let the first be «,. If we
need to backtrack, the next assignment would not be just the opposite truth
value for the same variable «,, because this would not satisfy C. Instead, we
select another variable o in Cy, and fix a; in order to satisfy Cs. Moreover,
since the previous truth assignment for «, was not successful, we can also fix
the opposite truth value for a,. If we have no more free variables in C, we
backtrack to the truth assignments made to satisfy previous clauses, visiting
the search tree in a depth-first manner.

Clauses to be satisfied are selected as follows. To begin with, as generally
performed in DPLL solution schemes, unit clauses are selected as soon as we
have them in the formula, and satisfied by performing unit propagations. After
this, starting assignment by satisfying the more difficult clauses is known to
be very helpful in reducing backtracks (see e.g. [19]). The difficult point is
how to find the hardest clauses. Hardness of a clause is here evaluated by
analyzing the history of the search. We say that a clause C; is visited during
the exploration of the search tree if we make a truth assignment aimed at
satistying C;. We fail on a clause C; either when a truth assignment aimed
at satisfying C; produces an empty clause, or when Cj itself becomes empty
due to some other truth assignment. Visiting C’; many times shows that C; is
difficult, and failing on it shows even more clearly that C} is difficult.

Clause hardness adaptive evaluation. Let v; be the number of visits of
clause Cj, f; the number of failures due to C;, p a constant penalty considered
for failures, and l; the length of C';. A hardness evaluation of C; in F is given
by

e(C5) = (v +pfj) /1

Computing such evaluation requires very little overhead, and its quality im-
proves as the search proceeds. Altogether, we visit our clause-based search
tree using the following clause selection criterion:

Adaptive clause selection

(1) Select all unit clauses Cypis.
(2) When no unit clauses are present, select clause Chax as follows:

Cmax = arg max ¢(C))
Oj e F

C} still unsatisfied

Within the set of variables appearing in C),.., the order of variable fixings is
the following. Let Js(ay) be the number of binary clauses containing literal
ar. We select at each step the truth assignment corresponding to the literal

amax‘
Omax = arg max (1 + Ja(ag))(1 4+ Jo(—oy))
Qp € C(maux

ay, still unassigned

This, introduced in [9], is an approximation of the two-sided Jeroslow-Wang
rule [20,19].

The above is a complete scheme: if a satisfying truth assignment exists, it
will be reached, or, if the search tree is completely explored, the instance is
unsatisfiable. We refer to the above branching and backtracking scheme as
adaptive branching.

4 Unsatisfiable Subformula Selection

The practical question introduced in Sect. 1 can be solved by locating the
subsets of clauses causing unsolvability, as described in Sect. 2. In order to
reach such purpose, within a complete solution framework, we develop an
heuristic procedure which can guarantee to find an unsatisfiable subformula,
and is aimed to find an approximation of a small MUS.

The algorithmic question introduced in Sect. 1 is about overcoming some
structural defects of a DPLL approach. In this approach, two computation-
ally demanding operations are computation of the generic branching rule, that

is to choose the variable fixings to perform, and propagation of such variable
fixings, that is to remove from the formula all satisfied clauses (unit subsump-
tion) and all falsified literals (unit resolution). Modern solvers try in different
ways to overcome this, for instance by postponing some operations during
unit propagation [35]. Moreover, the task of proving unsatisfiability is usually
computationally harder than proving satisfiability, since it implies exploring
all the nodes of the search tree that we could not prune. When dealing with
large-scale problems, it is customary in mathematical programming to use
techniques of delayed row generation (see [4] for details). Such approaches are
motivated by the speed-up we obtain when considering only a portion of the
entire problem at every single step. The key issue is that the solution obtained
by solving such subproblems is valid for the entire problem. We are therefore
particularizing this to SAT. By using the above hardness evaluation, we pro-
gressively select a subset of hard clauses, that we call a core. We solve the
core without propagating assignments to clauses out of the core. If the core
is unsatisfiable, this proves that the whole formula is unsatisfiable. If the core
is satisfiable, we extend current (partial) solution to a larger subset of clauses
(a bigger core), until solving the whole formula, or stopping at an unsatisfi-
able subformula. Core composition is dynamically updated, in order to keep
it small and yet hard to solve.

The procedure developed to tackle both of the above questions is called adap-
tive core search (ACS, see also [25]), and works as follows.

Adaptive core search

e Preprocessing Perform d branching iterations on F (or less than d if F
is solved before), using shortest clause rule. Initial core Cy is empty.

(If the instance is already solved, Stop.)

e Base Add to Cy a fixed percentage c of the clauses of F, giving priority to
hardest clauses. Obtain a new core Cy. Remaining clauses form O;.

e Iteration k Perform b branching iteration on current core Cy, (or less than
b if Cy is solved before), ignoring Oy, using adaptive branching. We have
one of the following cases a, b, c:

- a Cy Is unsatisfiable = F is unsatisfiable, C;, is the selected unsatisfiable
subformula. Stop.

- b No answer after b iterations = Contraction: Form a new core Ciyq
by selecting a fixed percentage ¢ of the clauses of Cy, giving priority to
hardest clauses. Put k := k + 1, goto k.

- ¢ C, is satisfied by solution S, = Expansion: Form a new core Cp,1 by
adding to C, a fixed percentage c of the clauses of Oy,. First give priority
to clauses falsified by Sy, and then give priority to hardest clauses. Put
k:=k+ 1, goto k.

Preprocessing serves to give initial values of visits and failures, in order to

compute . After this, we try to solve the subset of the hardest clauses as if
they were our entire instance. If they are an unsatisfiable instance, we stop. If
current core Ci, is not solved by b iterations of adaptive branching, this means
that Cj is too large, and must be reduced. In such case, the current truth
assignment also should be changed, and it is faster to completely rebuild it.

Finally, if we find a satisfying solution for Cx, we try to extend it to the rest
of the clauses. If some clauses are falsified, this means that they are difficult
(together with the clauses of the core), and therefore they should be added
to Cg. In this case, the current truth assignment falsifies some clauses now in
the core, and should be changed. Changing it by backtracking would imply
performing a large number of backtracks. Therefore, in such situation also, it
is faster to completely rebuild the truth assignment.

The iteration step is repeatedly applied to instances until their solution. In
order to ensure termination, solution rebuilding is allowed only a finite num-
ber of times r. After that, the contraction phase is no longer allowed, and the
solution is not entirely rebuilt after the expansion phase, but modified by per-
forming backtrack. In other words, the algorithm may evolve until it becomes
a branching procedure which can only perform expansion and backtrack. This
is called intensification phase. Therefore:

Theorem 3 (Correctness and completeness) ACS is a correct and com-
plete solution scheme for the satisfiability problem.

Proof: After a finite number of contractions without reaching the solution,
ACS switches to intensification. The algorithm evolves into a branching and
backtracking procedure working on current core C.. Branching and backtrack-
ing is performed until C. is solved. It is well known that branching and back-
tracking is a correct and complete solution scheme for satisfiability. In case
C. is satisfied by a solution S,, the procedure adds clauses from F \ C.. Since
clauses of F \ C. are a finite number, and clauses added during intensification
phase are never removed, termination is guaranteed. Finally, branching and
backtracking after clauses addition continues from the partial truth assign-
ment S.. Since this corresponds to solving each new core with branching and
backtracking, correctness is guaranteed. 0O

As for the practical question of selecting an unsatisfiable subformula, the fol-
lowing holds:

Theorem 4 (Unsatisfiable subformula selection) ACS can guarantee to
always find an unsatisfiable subformula U C F if it exists, i.e. when F is
unsatisfiable.

Proof: In the case of an unsatisfiable instance F, ACS is guaranteed to stop
detecting unsatisfiability (by Theor. 3). Such termination can only happen due

to the unsatisfiability of a current core C, (case a of the u-th iteration phase).
Since the solution is rebuilt at any contraction, there is no risk to stop due to
an erroneous detection of unsatisfiability of C, when C, is actually satisfiable.
The unsatisfiable subformula C, is therefore always selected in the case of an
unsatisfiable instance F. O

Moreover, ACS is aimed to find an approximation of a minimum unsatisfiable
subformula. This because, by progressively selecting hard clauses, and per-
forming several core ezpansions and contractions (expecially when b is small),
ACS is often able to locate the core on a small MUS, as shown by compu-
tational experience in Sect. 5 (although, of course, the size of the minimum
MUS is often unknown).

As for the algorithmic question, core search framework has the important
feature of considering smaller subproblems at the nodes of the search tree.
Therefore, all operations performed, in particular computation of the branch-
ing rule and unit propagation consequent to any variable fixing, are performed
only on the current Cy. This reduces time needed for them. Moreover, unsatis-
fiability can be proved by solving only the core subformula, hence exploring a
smaller search tree. Evidently, additional techniques to prune the search tree
(learning of new clauses to begin with) can be integrated in such framework.

Parameters (d, b, ¢) greatly affect the result. They can be set in order to min-
imize the size of unsatisfiable subformulae selected, or to maximize the speed
up of a DPLL-style procedure solving the SAT problem. The first result is
obtained by using values for d of the order of 2 x m, values for b of the or-
der of 5 ~ 100, and values for ¢ very small, e.g. 0.1 ~ 0.01, and in any case
proportional to the size of the expected unsatisfiable subformula. The latter
result is obtained by using values for d of the order of m, values for b in the
range of 500 to 5000, and values for ¢ in the range of 10 to 30.

5 Computational Results

We report results on well-known artificially generated instances from the Di-
macs 2 test set, and on real-life instances arising from data collecting problems.
Since parameters can be set in order to minimize the size of unsatisfiable sub-
formulae selected, or to maximize the speed up of a DPLL-style procedure,
we report two different kind of tables for the two purposes.

In the tables regarding unsatisfiable subformula selection, we report number

2 NFS Science and Technology Center in Discrete Mathematics and Theoretical
Computer Science - A consortium of Rutgers University, Princeton University,
AT&T Bell Labs, Bellcore.

10

of variables ‘n” and of clauses ‘m’ in the original instance and in the smallest
unsatisfiable subformula U selected. Column ‘rest’ reports if the formula ob-
tained by removing U is satisfiable (S) or not (U). Column ‘MUS’ reports if U
is minimal (Y) or not (N). This could be tested. Parameter p (failure penalty
in hardness evaluation) was set at 10. Parameter r (maximum number of solu-
tion rebuilding) was set at 500. Parameter d (number of branching iterations
in preprocessing), b (number of branching iterations in every branching phase),
¢ (percentage of core variations), have not single preferable values. We give
the values corresponding to the smallest unsatisfiable subformula U selected,
and the CPU time elapsed for this. The size of selected subformula is very
sensible to parameters’ values, expecially ¢ and b. In order to give an idea, the
cardinality (ranging form 60 to 850 clauses) of the unsatisfiable subformula
selected by varying ¢ (from 1 to 10) and b (from 10 to 20) is also given, in
the case of problem jnh2 (see Fig. 2). Small parameters variations cause large
variations in the cardinality of the selected subformula /. However, several
parameters values allow small cardinality for U.

In the tables regarding the speed-up of a DPLL procedure, we compare to
SATO 3.2 [34] used as a state-of-the-art DPLL procedure by disabling learning
of new clauses with the option -g0, and to a simplified version of our procedure
which does not use core search, but does use the adaptive branching strategy.
All of the three procedures do not use learning of new clauses. Columns labeled
‘n’ and ‘m’ are number of variables and clauses. Column ‘AdBr’ reports time
used by the adaptive branching procedure which does not use core search.
Column ‘ACS Sel.” reports the time elapsed till the selection of the last core
(i.e. the unsatisfiable subformula selected) in adaptive core search. Column
‘ACS Solv.” reports the time used to solve the last core with the branching
procedure of ACS. Column ‘ACS Tot.” reports the total time for solving the
instance by ACS. Such times are obtained by using the default parameters’
values d = m (the number of clauses), b = 5000, ¢ = 30. Column ‘SATO -g0’
reports solution time for solving the instance using SATO with the option
-g0. Times are in CPU seconds on a Pentium II 450 MHz. Time limit was 600
seconds.

5.1 Dimacs Problems

We report results on the unsatisfiable series of problems from the Dimacs test
set, since they are very widely-known and easily available 3. Such series are
aim, dubois, hole, jnh, pret. Each problem of the series dubois, hole, and pret
is a MUS, hence no smaller unsatisfiable subformula can be found in it. We

3 Available from
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/benchmarks/cnf/

11

therefore consider the series aim and jnh. Note that, on the contrary, problems
which are MUS are very rare in real world.

The series aim is constituted by 3-SAT instances artificially generated by K.
Iwama, E. Miyano and Y. Asahiro. They are nowadays easily solved by several
SAT solvers, being small in size. Nevertheless, they have a structure more
difficult than usual real problems. This results in the presence of unsatisfiable
subformulae larger than those selected in the case of real-life problems of Sect.
5.2. Results on them are in Tables 1 and 2.

Original formula Selected U Parameters
Problem n m n m ‘ rest ‘ MUS d ‘ b ‘ c ‘ time
aim-50-1_6-no-1 50 80 20 22 S Y 80 10 | 10 0.1

aim-50-1_6-no-2 50 80 28 32 80 10 | 15 0.1

aim-50-1_6-no-3 50 80 28 31 80 10 | 15 0.1

aim-50-1_6-no-4 50 80 18 20 80 10 | 10 0.0

aim-50-2_0-no-1 50 100 21 22 100 | 10 | 15 0.1

aim-50-2_0-no-2 50 100 28 31 100 | 10 | 20 0.3

aim-50-2_0-no-3 50 100 22 28 100 | 15 | 20 0.0

aim-50-2_0-no-4 50 100 18 21 100 | 15 | 20 0.3

aim-100-1.6-no-1 100 160 43 47 160 | 20 | 20 1.2

160 | 65 | 15 4.5

aim-100-1.6-no-2 100 160 46 54

aim-100-1.6-no-3 100 160 51 57 160 | 60 | 15 4.6

aim-100-1.6-no-4 100 160 43 48 160 | 48 | 20 2.5

aim-100-2_.0-no-1 100 200 18 19 200 | 12 8 0.5

aim-100-2_0-no-2 100 200 35 39 200 | 16 | 15 0.9

aim-100-2_0-no-3 100 200 25 27 200 | 30 | 10 1.8

aim-100-2_0-no-4 100 200 26 32 200 | 40 | 15 1.6

aim-200-1_6-no-1 200 320 52 55 320 | 30 | 15 2.6

aim-200-1.6-no-2 200 320 76 82 640 | 60 | 24 | 43.0
640 | 65 | 25 300

640 | 34 | 10 2.3

aim-200-1.6-no-3 200 320 77 86
aim-200-1_6-no-4 200 320 44 46

aim-200-2_0-no-1 200 400 49 54 400 | 40 | 12 3.7

aim-200-2_0-no-2 200 400 46 50 400 | 35 | 10 3.0
400 | 35 7 0.4

400 | 12 7 0.8

aim-200-2_0-no-3 200 400 35 37

n|ln|lnw|lnln|ln|ln|lw|lnlnln|ln|lnjlnlnln|lw|rw|ln|ln|n|n|®n
<KIKIKZ|<|Zz2|2|[<|Z2|)|K[K|IK|Z]|Z2|K|K|<K]|Z|<|<|<K|X

aim-200-2_.0-no-4 200 400 36 42

Table 1: Unsatisfiable subformula selection on the aim series: 3-SAT artificially
generated problems.

12

Problem n m || AdBr [| ACS Sel. | ACS Solv. | ACS Tot. || SATO (-g0)

aim-100-1_6-no-1 100 160 1.09 0.17 0.03 0.20 135.96
aim-100-1_6-no-2 100 160 0.67 0.54 0.39 0.93 0.14
aim-100-1_6-no-3 100 160 3.91 0.62 0.73 1.35 0.01
aim-100-1_6-no-4 100 160 0.52 0.61 0.35 0.96 103.30
aim-100-2_0-no-1 100 200 0.03 0.03 0.01 0.04 72.12
aim-100-2_0-no-2 100 200 0.38 0.05 0.04 0.09 105.96
aim-100-2_0-no-3 100 200 0.12 0.04 0.01 0.05 28.65
aim-100-2_0-no-4 100 200 0.11 0.04 0.01 0.05 85.01
aim-200-1_6-no-1 200 320 5.02 0.12 0.09 0.21 >600
aim-200-1_6-no-2 200 320 >600 14.04 32.31 46.35 >600
aim-200-1_6-no-3 200 320 >600 10.80 35.87 46.67 >600
aim-200-1_6-no-4 200 320 5.81 0.09 0.10 0.19 >600
aim-200-2_0-no-1 200 400 15.53 0.20 0.27 0.47 >600
aim-200-2_0-no-2 200 400 3.87 0.17 0.18 0.35 >600
aim-200-2_0-no-3 200 400 1.04 0.05 0.12 0.17 >600
aim-200-2_0-no-4 200 400 0.70 0.16 0.02 0.18 >600

Table 2: Comparison on the aim series: 3-SAT artificially generated problems.

Original formula Selected U Parameters
Problem n m n m ‘ rest ‘ MUS d ‘ b ‘ c ‘ time
jnh2 100 850 51 60 S N 850 17 3 3.2
jnh3 100 850 92 173 S N 8387 | 110 | 16 29.7
jnh4 100 850 86 140 S N 2550 77 15 8.2
jnh5 100 850 85 125 S N 1700 | 85 | 14 7.7
jnh6 100 850 88 159 S N 2550 | 80 | 17 | 22.9
jnh8 100 850 70 91 S N 646 37 6 0.6
jnh9 100 850 78 118 S N 1750 65 9 1.0
jnh10 100 850 95 161 S N 1700 | 160 | 12 0.1
jnhll 100 850 79 129 S N 1700 | 160 | 11 | 19.0
jnh13 100 850 77T 106 S N 2550 | 145 | 10 0.1
jnh14 100 850 87 124 S N 5100 | 149 | 11 0.5
jnhlbs 100 850 87 140 S N 850 140 | 12 1.4
jnhl6 100 850 100 321 S N 1700 | 160 | 30 55.8
jnh18 100 850 91 168 S N 850 | 146 | 17 | 40.6
jnh19 100 850 78 122 S N 2550 | 101 | 10 7.4
jnh20 100 850 81 120 S N 1700 | 120 | 9 0.7

Table 3: Unsatisfiable subformula selection on the jnh series: randomly generated
hard problems.

The series jnh is constituted by random instances generated by J.N. Hooker.
Each variable occurs in a given clause with probability p, and it occurs negative
or positive with equal probability. Probability p is chosen so that the expected

13

number of literals per clause is 5. Empty clauses and unit clauses are rejected.
Results on them are in Tables 3 and 4.

Problem n m || AdBr || ACS Sel. | ACS Solv. | ACS Tot. || SATO (-g0)

jnh2 100 850 0.13 0.02 0.01 0.03 0.01
jnh3 100 850 1.06 0.45 0.55 1.00 0.02
jnh4 100 850 0.41 0.10 0.07 0.17 0.02
jnhb 100 850 0.22 0.10 0.04 0.14 0.01
jnh6 100 850 0.66 0.43 0.09 0.52 0.02
jnh8 100 850 0.23 0.10 0.03 0.13 0.01
jnh9 100 850 0.16 0.10 0.03 0.13 0.03
jnh10 100 850 0.11 0.08 0.01 0.09 0.03
jnh11 100 850 0.38 0.33 0.03 0.36 0.02
jnh13 100 850 0.28 0.04 0.01 0.05 0.01
jnhl14 100 850 0.19 0.35 0.02 0.37 0.03
jnh15 100 850 0.31 0.41 0.03 0.44 0.01
jnh16 100 850 7.02 2.10 3.94 6.04 0.09
jnh18 100 850 0.65 0.45 0.15 0.60 0.02
jnh19 100 850 0.24 0.33 0.04 0.37 0.02
jnh20 100 850 0.26 0.35 0.02 0.37 0.01

Table 4: Comparison on the jnh series: randomly generated hard problems.

850

- 751

3500

[~ 652

553

455

356

257

158

b (branching iter.) 16 17 i / 8 c (perc.)

19 50 10 60

Fig. 2. Cardinality of the unsatisfiable subformula selected in jnh2 for different
values of b and c.

14

5.2 Data Collecting Problems

When dealing with a large number of collected information, which could con-
tain errors, the relevant problem of error detection arises. Error detection
is generally approached by formulating a set of rules that the data records
must respect in order to be declared correct. The more accurate and careful
the rules are, the more truthful individuation of correct and erroneous data
can be achieved. A first problem arising from this is the validation of such
set of rules. In fact, the rules could contain some contradiction among them-
selves. This could result in erroneous records to be declared correct, and vice
versa. The problem of checking the set of rules against inconsistencies can
be transformed into a sequence of SAT problems (see [5] for details). Every
unsatisfiable instance obtained reveals an inconsistency in the set of rules. In
such case, we couldn’t just remove some rules to restore consistency. On the
contrary, we need to locate the entire set of conflicting rules, in order to let
the human expert understand the problem and solve it by modifying some
rules. That problem would hardly be understood by the expert without such
localization of conflicting rules.

In Table 5 we report results on some instances encoding the set of rules called
data_1 (developed for a real census). They produced a main SAT instance and a
sequence of derived instances (data_1.x), some of which resulted unsatisfiable.
We show only some of the unsatisfiable ones. Such instances are large but
structurally easy. Since inconsistencies are unwanted, they generally contained
only one MUS of very small size.

Original formula Selected U Parameters
Problem n m n m ‘ rest ‘ MUS d ‘ b ‘ c ‘ time
data_1.0 1960 10420 2 3 S Y 1000 | 4 | 0.01 0.1
data_1.1 1958 10415 2 3 S Y 1000 | 4 | 0.01 0.1
data_1.2 1957 10418 2 4 S Y 1000 | 4 | 0.01 0.1
data_1.3 1953 10410 3 4 S Y 1000 | 4 | 0.01 0.0
data_1.4 1958 10412 2 3 S Y 1000 | 4 | 0.01 0.1
data_1.5 1948 10400 2 3 S Y 1000 | 4 | 0.01 0.1
data_1.6 1956 10416 2 4 S Y 1000 | 4 | 0.01 0.0
data_1.7 1952 10411 2 3 S Y 1000 | 4 | 0.01 0.0
data_1.8 1950 10420 3 5 S N 1000 | 4 | 0.01 0.0
data-1.9 1955 10413 2 4 S Y 1000 | 4 | 0.01 0.0

Table 5: Unsatisfiable subformula selection on instances encoding rules for data
collecting problems.

15

6 Conclusions

In several applicative fields, in addition to solving the SAT problem, one need
to locate a MUS, or at least a small unsatisfiable subformula of a given unsatis-
fiable formula. During the solution of SAT by means of a complete enumeration
technique altogether denominated adaptive core search, we are able to evalu-
ate clause hardness, by analyzing the history of the search. By progressively
selecting hard clauses, in the case of unsatisfiable instances, we are guaranteed
to find an unsatisfiable subformula. Moreover, in almost all of the analyzed
real problems arising from data collecting, and in several Dimacs problems,
our procedure is able to find a minimal unsatisfiable subformula.

Common drawbacks of DPLL procedures for solving the SAT problem are: 1)
computation of branching rule can be time-consuming; 2) propagation of vari-
able fixings is even more time-consuming; 3) unsatisfiability requires complete
exploration of the search tree. Modern solvers try in several ways to overcome
these problems. The procedure of adaptive core search is able to reduce time
needed for the above three operations by working only on a subset of hard
clauses called core. Comparisons with SATO 3.2 used just as a state-of-the-art
DPLL procedure shows the effectiveness of proposed procedure.

References

[1] E. Amaldi, M.E. Pfetsch, and L. Trotter, Jr. Some structural and algorithmic
properties of the maximum feasible subsystem problem. In Proc. of 10th Integer

Programming and Combinatorial Optimization conference. Lecture Notes in
Computer Science 1610 (Springer-Verlag, 1999) 45-59.

[2] R. Battiti and M. Protasi. Approximate Algorithms and Heuristics for
MAX-SAT. In D.Z. Du and P.M. Pardalos eds. Handbook of Combinatorial
Optimization 1 (Kluwer Academic Publishers, 1998) 77-148.

[3] R.J. Bayardo Jr. and R.C. Schrag. Using CSP lookback techniques to solve
exceptionally hard SAT instances. In Proc. of Principles and Practice of
Constraint Programming - CP96 (Springer-Verlag, 1996) 46-60.

[4] D. Bertsimas and J.N. Tsitsiklis. Introduction to Linear Optimization. (Athena
Scientific, Belmont, Massachusetts, 1997).

[5] R. Bruniand A. Sassano. Errors Detection and Correction in Large Scale Data
Collecting. In F. Hoffmann et al. eds. Advances in Intelligent Data Analysis,
Lecture Notes in Computer Science 2189 (Springer-Verlag, 2001) 84-94.

[6] R.E.Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Trans. on Computers C35(8) (1986) 677-691.

16

[7] V. Chandru and J.N. Hooker. Optimization Methods for Logical Inference.
(Wiley, New York, 1999).

[8] J.W. Chinneck and E.W. Dravnieks. Locating Minimal Infeasible Constraint
Sets in Linear Programs. ORSA Journal on Computing 3 (1991) 157-168.

[9] J. Crawford and L. Auton. Experimental results on the crossover point in
Satisfiability problems. In Proceedings AAAI-93 (1993) 22-28.

[10] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Comm. Assoc. for Comput. Mach. 5 (1962) 394-397.

[11] M. Davis and H. Putnam. A computing procedure for quantification theory.
Jour. Assoc. for Comput. Mach. 7 (1960) 201-215.

[12] O. Dubois, P. Andre, Y. Boufkhad, and J. Carlier. SAT versus UNSAT.
DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
26 (1996) 415-436.

[13] H. Fleischner and S. Szeider. Polynomial-time Recognition of Minimal
Unsatisfiable Formulas with Fixed Clause-Variable Difference. ECCC TR-00-
049 (2000).

[14] A. Van Gelder and Y.K. Tsuji. Satisfiability testing with more reasoning
and less guessing. DIMACS Series in Discrete Mathematics and Theoretical
Computer Science 26 (1996) 559-586.

[15] I.P. Gent, H. van Maaren, and T. Walsh editors. SAT 2000 (I0S Press,
Amsterdam, 2000).

[16] J. Groote and J. Warners. The propositional formula checker HeerHugo. In I.P.
Gent, H. van Maaren, and T. Walsh eds. SAT 2000 (I0S Press, Amsterdam,
2000).

[17] J. Gu. Optimization Algorithms for the Satisfiability (SAT) Problem. In Ding-
Zhu Du ed. Advances in Optimization and Approzimation (Kluwer Academic
Publishers, 1994) 72-154.

[18] J. Gu, P.W. Purdom, J. Franco, and B.W. Wah. Algorithms for the Satisfiability
(SAT) Problem: A Survey. DIMACS Series in Discrete Mathematics (American
Mathematical Society, 1999).

[19] J.N. Hooker and V. Vinay. Branching Rules for Satisfiability. Journal of
Automated Reasoning 15 (1995) 359-383.

[20] R.E. Jeroslow and J. Wang. Solving Propositional Satisfiability Problems.
Annals of Mathematics and AI'1 (1990) 167-187.

[21] D.S. Johnson and M.A. Trick, editors. Cliques, Coloring, and Satisfiability,
volume 26 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science. (American Mathematical Society, 1996).

17

[22] E. de Klerk, H. van Maaren, and J.P. Warners. Relaxations of the Satisfiability
Problem using Semidefinite Programming. In I.P. Gent, H. van Maaren, and T.
Walsh eds. SAT 2000 (I0S Press, Amsterdam, 2000).

[23] O. Kullmann. An application of matroid theory to the SAT Problem. ECCC
TRO00-018 (2000).

[24] D.W. Loveland. Automated Theorem Proving: a Logical Basis. (North Holland,
1978).

[25] C. Mannino and A. Sassano. Augmentation, Local Search and Learning. AI-IA
Notizie XIII (2000) 34-36.

[26] J.P. Marques-Silva and K.A. Sakallah. GRASP: A Search Algorithm for
Propositional Satisfiability. IEEE Transactions on Computers 48(5) (1999)
506-521.

[27] D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of SAT
Problems. In Proceedings of AAAI (1992) 459-465.

[28] B. Monien and E. Speckenmeyer. Solving satisfiability in less than 2" steps.
Discrete Applied Mathematics 10 (1985) 287-295.

[29] D. Pretolani. Efficiency and stability of hypergraph SAT algorithms. DIMACS
Series in Discrete Mathematics and Theoretical Computer Science 26 (1996)
479-498.

[30] R. Stallman and G.J. Sussman. Forward reasoning and dependency directed
backtracking. Artificial Intelligence 9(2) (1977) 135-196.

[31] G. Stalmarck and M. Saflund. Modeling and Verifying Systems and Software in
Propositional Logic. in proc. of Internat. Conf. on Safety of Computer Control
Systems (Pergamon Press, Oxford, 1990) 31-36.

[32] K. Truemper. Effective Logic Computation. (Wiley, New York, 1998).

[33] R. Zabih and D. McAllester. A rearrangement search strategy for determining
propositional satisfiability. In Proceedings of AAAI’88 (1988) 155—-160.

[34] H. Zhang. SATO: An Efficient Propositional Prover. in Proc. of International
Conference on Automated Deduction (CADE-97), Lecture notes in Artificial
Intelligence 1104 (Springer-Verlag, 1997) 308-312.

[35] H. Zhang and M.E. Stickel. Implementing the Davis-Putnam Method. In I.P.
Gent, H. van Maaren, and T. Walsh eds. SAT 2000 (I0S Press, Amsterdam,
2000).

18

