Solving Error Correction for Large Data Sets
by means of a SAT solver

Renato Bruni

Universita di Roma “La Sapienza”, Dip. di Informatica e Sistemistica,
Via Michelangelo Buonarroti 12 - 00185 Roma, Italy,
E-mail: bruni@dis.uniromal.it

Abstract. The paper is concerned with the problem of automatic de-
tection and correction of erroneous data into large datasets. The adopted
process should therefore be computationally efficient. As usual, errors are
here defined by using a rule-based approach: all and only the data records
respecting a set of rules are declared correct. Erroneous records should
afterwards be corrected, by using as much as possible the correct infor-
mation contained in them. By encoding such problem into propositional
logic, for each erroneous record we have a propositional logic formula, for
which we want a model having particular properties. Correction problems
can therefore be quickly solved by means of a customized SAT solver.
Techniques for an efficient encoding of difficult cases are presented.

1 Introduction

Despite (or, perhaps, due to) the easiness with which data are nowadays avail-
able, their correctness often is a very relevant problem. Erroneous data should in
fact be detected and possibly corrected by means of automated techniques. When
dealing with large amount of information, moreover, not only the correctness of
the correction procedure is needed, but also its computational efficiency.

As customary for structured information, data are organized into records.
The problem of error detection is generally approached by formulating a set of
rules that every record must respect in order to be declared correct. Records
not respecting all the rules are declared erroneous. Such rule-based approach
has several advantages (e.g. flexibility, intelligibility) on other methods. In the
field of database theory, rules are also called integrity constraints [18], whereas
in the field of statistics, rules are also called edits [8], and express the error
condition. The study of such rules is a central problem for the areas of data
mining and data analysis [4,13,14]. The problem of error correction is usually
tackled by changing some of the values of an erroneous record, in order to obtain
a corrected record which satisfies the above rules, according to the two following
criteria: a) the corrected record should be as similar as possible to the erroneous
record; b) the correction operation should respect the frequency distributions of
the data. This is deemed to produce a record which should be as close as possible
to the (unknown) original record (the record that would be present in absence
of errors). In the field of statistics, the correction process is also called data

imputation. Several different rules encoding and solution algorithm have been
proposed (e.g. [3,17]). A very well-known approach to the problem, which implies
the generation of all rules logically implied by the initial set of rules, is due to
Fellegi and Holt [8]. In practical case, however, such methods suffer from severe
computational limitations [17]. In the field of computer science, the correction
process is also called data cleaning. Errors may be detected as inconsistencies in
knowledge representation, and corrected with consistency restoring techniques
[1,15,19]. Another approach to error correction, in database theory, consists in
performing a cross validation among multiple sources of the same information
[18]. A previous work [5] describes the case when rules are encoded into linear
inequalities. The correction is therefore achieved by solving MILP problems by
means of a branch-and-cut procedure (ILOG Cplex). In another work [6] error
localization and error correction problems are modeled as set covering problems
and solved by means of the volume algorithm compared to branch-and-bound.

An automatic procedure for performing generic data correction by using only
propositional logic is here presented. The above described problems are therefore
solved by solving a variant of propositional satisfiability (SAT) problems. (see
e.g. [7,10,12,22] for extensive references). SAT solvers available today are the
result of decades of research work and are deemed to be among the fastest
NP-complete problem-specific solvers (see for instance computational results in
[20,21]). For this reason, the computational issue appears to be tackled in a
satisfactory manner.

A formalization of data and rules is given in Sect. 2. In the same section
is also sketched the basic procedure for propositional logic encoding of rules,
already outlined in [6]. There are, however, cases when the basic procedure suf-
fers from an unpleasant growth of the number of clauses and variables. We
therefore analyze, in Sect. 3, such cases, and present new techniques to over-
come the above problems. After this, the correction problem is formalized, and
a complexity analysis is given, in Sect. 4. An efficient new correction procedure,
implementable by introducing minor modifications into a generic DPLL SAT
solver, is then reported. Such modifications are actually introduced in the recent
SAT solver named SIMO (Satisfiability Internal Module Object oriented) [11].
Computational results on datasets of two different origins (population data and
television transmitters data) are reported in Sect. 5.

2 General Propositional Logic Encoding

In Database theory, a record schema is a finite set of fields f;, with ¢ = 1...L.
A record instance is a set of values v;, one for each of the above fields [18]. In
order to help exposition, we will focus on records representing persons, which
are somehow more intuitively understandable. Note, however, that the proposed
procedure is completely general, being not influenced by the meaning of treated
data. The record scheme will be denoted by P, whereas a corresponding record
instance will be denoted by p.

P=A{f1,..., fi} p=A{v,...,u}

Example 2.1. For persons, fields can be for instance age or marital status,
and corresponding examples of values can be 18 or single.

Each field f; has a domain D;, with ¢« = 1...1, which is the set of possible
values for that field. Since we are dealing with errors, the domains include all
values that can be found in data, even the erroneous ones. Fields are usually
distinguished in quantitative and qualitative ones. A quantitative field is a field
on whose values are applied (at least some) mathematical operators (e.g. >, +),
hence such operators should be defined on its domain. Examples of quantitative
fields are numbers (real or integer), or even the elements of an ordered set. A
qualitative field simply requires its domain to be a discrete set with finite number
of elements. The case of fields having a not-finite number of not-ordered values
is generally ignored. The proposed approach is able to deal with both qualitative
and quantitative values.

Example 2.2. For the qualitative field marital status, answer can vary on a
discrete set of values, or, due to errors, be missing or not meaningful (blank).

Dyarital status = {single,married, separate,divorced, widow,blank}

For the quantitative field age, due to errors, the domain is D,ge = ZZ U {blank}

A record instance p is declared correct if and only if it respects a set of rules
denoted by R = {r1,...,r¢}. Each rule can be seen as a mathematical function
rp, from the Cartesian product of all the domains to the Boolean set {0,1}.

'f‘hZDl X...XD1—>{O71}
Rules are such that p is a correct record if and only if r;,(p) = 1 forallh =1...¢.

Example 2.3. An error within a person record can be the following one:
marital status = married and age = 10 years old

The rule to detect this kind of errors could be: if marital status is married,
age must be not less than, say, 14.

Rules can be obtained from various sources (e.g. human expertise, machine learn-
ing, see also [4, 13, 14]). We consider the set of rules already given, and intuitively
expressed as logical connections (representable with A, V, =, etc.) among state-
ments. Each statement involves a single field f;, and consist in a set of values
from its domain D;.

Example 2.4. A statement can be (marital status = married). Another
statement can be (age > 14).

We now describe the basic procedure for encoding rules into clauses. A clause C,,
is a disjunction of possibly negated propositional variables x,. We assume the

reader familiar with propositional logic. By denoting with 7, the set of indices
of the positive variables of C),, and with v, that one of negative variables of C,,

the clause is:
\/ Ty V \/ Xy

VETy VEVy

Values appearing in the rules are called breakpoints, or cut points, for the do-
mains. All breakpoints concerning domain D; represent logical watershed be-
tween the values of domain D;. Their set will be denoted with B;, as follows:

By = {b},..., 0"}

The set B; determines a partition of domain D; into subsets S7. By furthermore
merging possibly equivalent subsets, we obtain the following collection of subsets:

Si={s},..., 5"}

All and only values belonging to the same subset are equivalent from the rules’
point of view. We congruently have D; = (S} U... U S¥). A subset for the out-
of-range values is always present, while other subsets form the feasible domain.

Example 2.5. Suppose that, by scanning a given set of rules R, the following
set of breakpoints B,g. is obtained for the field age of a person.

{bl =0, b2 =14, b3 =18, b1 =26, b7, =110, bS = blank}

age age age age age age

By using B,ge and R, the subsets are obtained. Sgge is the out-of-range one.
Sage = {0,...,13}, Sz, ={14,...,17}, S ={18,...,25}
Spee = {26,...,110}, S5, ={...,—1} U{111,...} U {blank}

age

So far, subsets can be encoded with propositional variables in several manners
(for instance, k; subsets can be encoded by [log, k;] variables). We choose to
encode the k; subsets of domain D; with n; = k; — 1 variables, with the aim of
obtaining a more comprehensible encoding, as follows. When value v; of field f;

belongs to subset S7, it means z;; = True and z;;, = False, for h =1,...,n,,
h # s. The same holds for all other subsets of f;, except for the out-of-range
subset, which is encoded by putting all variables x;;, at False, for h=1,...,n;.

Example 2.6. The field marital status has 6 subsets, hence 6-1 = 5 variables

Tmar.st.=single) Lmar.st.=marrieds; Lmar.st.—separate; Lmar.st.=divorced; Zmar.st.=widow

We define n’ = ny +. ..+ ng, obtaining so n’ propositional variables {x;s}. Now,
every statement, (i.e. every set of values of a domain appearing in a rule) can be
substituted by the corresponding propositional variable (or by the correspond-
ing logic connection of propositional variables). Since each rule is itself a logic
connection of statements, each rule can be expressed as a logic connection of
propositional variables, which is put in the form of clauses.

Example 2.7. Consider the rule (marital status = married) = (age > 14).
By substituting the introduced propositional variables, we have the logic formula
Tnar.st.=married = “Tagec{0,13} easily coverted into the following clause.

“Tmar.st.=married V TLagec{0,13}

In addition to information given by rules, there is other information that a human
operator would consider obvious, but which must be provided. With our choice
for variables, we need to express that each field f; must have only one value, and
therefore (712) (number of unordered pairs from n; possibilities) clauses, named
congruency clauses, are added.

3 Special Cases for Encoding and Complete Procedure

The above described basic procedure is suitable for a large variety of situations.
There are, however, cases where it suffers from an undesirable growth in the
number of clauses and/or variables. We now analyze the most relevant ones.

3.1 Denominative Fields

A first problem arise when a qualitative field f; has a feasible domain containing a
large number of values. This happens for instance in the case of name of a person.
One can theoretically state a rule for every correct name, and so detect errors
like Jhon instead of John. This would, however, require the use of a large number
of rules and, consequently, of clauses and variables. It is instead convenient, in
such cases, to consider a list L; of values which are feasible for f;
Ly ={v},...,v}

Such list could be for instance obtained from other correct data sets of similar
nature. So far, the (possibly erroneous) value v; is identified as a value v? € L;
and substituted with it. If v; is so erroneous that cannot be identified as any
feasible value, it is then identified as the blank value and substituted with it.
The identification process involves linkage problems that cannot be discussed
here. After such substitution, there is no need of rules for every correct name
anymore. Note that other rules for the field f; may still be written (for instance
absence of blank). Such rules would just determine, as usual, a partition in the
domain D;.

3.2 Corresponding Fields

A second problem arise when two fields f;, f; having a large number of feasible
values must be congruent. This happens for instance in the case of a location
and its geographical coordinates (latitude and longitude). Writing the rules
defining all the correct couples (Location, coordinates) would produce a large
number of clauses and variables. A tentative for recognizing such couple within a

list would ignore a global correction of the record. It is instead convenient (after
identifying denominative fields such as location by using a list) to produce the
correct couple of values

{vi, v}

which is obtainable on the basis of f;, and the correct couple of values
{vj, vj}

which is obtainable on the basis of f;. One of such couples must be chosen, and
there is no need of rules defining which are the correct couples anymore. In order
to allow such choice during the correction process, instead, further propositional
variables need to be introduced. By pursuing the aim of a more comprehensible
encoding (as in Sect. 2), the 2 choices are encoded here by 2 variables y; and y;.
Clauses expressing their mutual exclusion are also added: (y; V y;), (-y; V —y;).

Such y variables must be connected to the z variables, by expressing that
yi = (v = vj,v; = v}), and analogously for y;, which means:

yi = ;s for s such that v! € S? y; = x5 for s such that vf €S
Yi = wjs for s such that vj € S y; = x;, for s such that v} € S§

Such logical expressions are trivially converted into clauses. Note that also for
the corresponding fields f; and f; other rules may be written. The above can
be easily generalized to the case of any number ¢ of corresponding fields, by
introducing the ¢ variables {y1,...,y,} and the suitable clauses.

Example 3.1. Consider a record having location = Rome and coordinates =
40.5N74W. By using a Geographic Information System (GIS) we have the couples

location = Rome coordinates = 40.5N74W
!
location'®® = Rome location®®®* = NewYork
coordinates'®® = 41.5N12.5E coordinates®°T = 40.5N74W

We introduce two new variables y1,c and yeoor, respectively indicating whether
the location or the coordinates are chosen as correct. Suppose that the field
location has a subset for Rome and a subset for NewYork, and that the field
coordinates has a subset for 40-50N10-20E and a subset for 40-50N70-80W.
We therefore generate the following clauses:

(yloc V ycoor)v (_‘yloc \ _‘ycoor)v
(“Y10¢ V T1oc=Rome)s ("Y1oc V Tcoor—4a0_50N10_20E)
(ﬁycoor \ xloc:NewYork)a (jycoor \ xcoor:40_50N70_80w)

3.3 Contained Fields

A third problem arise in the case of a field f; representing an object, and an-
other field f; representing a set containing many such objects. This happens for

instance in the case of city and state. Writing the rules for all correct couples
(city, state) would again produce a large number of clauses and variables. It
is therefore convenient to proceed similarly to the former case, with the only
difference that the values obtained on the basis of the containing field f; will
have a blank for the contained field f;.

Example 3.2. For a record having city = Rome and state = France, we have:

city = Rome state = France
ol !
city** = Rome city®*®*® = blank
state® = Italy state®*@*® = France

3.4 Mathematical Rules

There are, however, cases for which the logic encoding is not convenient. A
typical example are rules containing mathematical operations between fields. In
such case, a propositional logic encoding is possible, e.g. [23], but, due to the
very large growth in the size of the problem, a mathematical encoding of the
problem seems preferable. This clearly prevent using a SAT solver, and requires
the use of a MILP procedure, as in [5].

3.5 Complete Encoding Procedure

We can now state the complete procedure for propositional encoding of rules.

1. Identification of domain D; for each field f;, considering that we are dealing
with errors

2. Generation of list L; and identification of v; for each denominative field f;

3. Identification of k; subsets {S?} in each domain D;, by using breakpoints B;
and rules R, and by merging (possible) equivalent subsets within D;

4. Definition of n; variables {z;s} to encode subsets {S$} of each domain D;

5. Expression of each rule r, by means of clauses defined over the introduced
variables {x;s}

6. Definition of variables {y;} and clauses for each special field f;

7. Generation of congruency clauses to supply information not present in rules

By writing rules according to a precise syntax, the above encoding was performed
by an automatic procedure. Altogether, the set of rules produces a set of m
clauses over n = n/ +n” propositional variables {z;s,y;}, hence a CNF formula
F. Each record p produces a truth assignment {x;s = t;5,y; = t;} for such
variables (¢;s and t; denoting a truth value in {True, False}). We say, briefly,
that p must satisfy F, i.e. make it True, to be correct. Erroneous record detection
simply consists in checking the truth assignment given by each record on F.

4 The Correction Procedure

Given an erroneous record p¢ = {v§{,...,vf}, the correction process consists in
changing some of its values, obtaining a corrected record p°¢ = {v{, ..., vf} which
satisfies the formula F and is as close as possible to the (unknown) original record
p°, that is the one we would have in absence of errors. Note that, generally, not
all values involved in failed rules need to be changed, and that there are several
alternative sets of values that, if changed, can make p¢ such as to satisfy F.

Example 4.1. Suppose that the following record p® is declared erroneous using
the two following rules: ¢) it is impossible that anybody not having a car lives
in city A and works in city B; ii) the minimum age for driving is 18.

{... age = 17, car = no, city of residence = A, city of work =B ...}

Values involved in failed rules are here those of fields {car, city of residence,
city of work}. Nevertheless, the record could be corrected either by changing
values of the set {city of residence}, or by changing those of the set {city
of work}, or by changing those of the set {age, car}.

Two principles should be followed during the correction process: to apply the
minimum changes to erroneous data, and to modify as little as possible the
original frequency distributions of values for each field (see e.g. [8]). The first
aspect is generally settled by assigning a cost for changing each value v{. Such
cost is based on the reliability of the field f;. It is assumed that, when error
is something unintentional, the erroneous fields are the minimum-cost set of
fields that, if changed, can satisfy F. The second statistical aspect is currently
settled by using, for each erroneous record p¢, a donor [3]. A donor record p® =
{vé,...,vl} is a correct record which, according to some (easily computable)
distance function o(p®,p?) € IR,, is the nearest one to the erroneous record p®,
hence it represents a record having similar characteristics. Such donor is used
for providing values for the fields to be changed, according to the so-called data
driven approach (see e.g. [3]).

We now turn back to propositional logic. In order to simplify notation, we
will hereafter denote by p. the truth assignment {x;s = t¢,,y, = t?} (where some
t5 may be undefined) corresponding to the erroneous record p¢ and similarly for

p?, p¢, etc. The record correction problem can be logically defined as follows.

Definition 4.2. Given a logic formula F (encoding of the set of rules R), a truth
assignment p, not satisfying F (encoding of the erroneous record p©), a truth
assignment p, satisfying F (encoding of the donor record p?), the record cor-
rection problem consists is finding a truth assignment for the {x;s,y;} variables
such that

min{6(pe, {xis, y;}) : {xis, y;} satisfies F}

where 6(pe, {Tis,y;}) € R4 is a linear (or other easily computable) distance
function measuring the cost of the changes introduced in p° for obtaining p°.

Theorem 4.3. The above defined record correction problem is NP-hard.

Proof: Given a propositional logic formula F and a model my, the problem of
deciding whether it exists another model ms such that the Hamming distance
between m1 and my is less than or equal to a given number & has been proved NP-
complete in [2]. Therefore, given a satisfiable F and a generic truth assignment
t1, the problem of deciding whether it exists a model within a given Hamming
distance from ¢; has the same complexity. If the adopted distance function is
instead a generic easily (i.e. polynomially) computable function, the problem
clearly remains NP-hard [9]. Since this latter problem constitutes the decision
version of the above defined record correction problem, the thesis follows.

Moreover, the minimization version of the error correction problem has strong
similarities with the combinatorial optimization problem®.

The solution of the defined record correction problem is searched by means
of a DPLL style procedure. Very basically, a DPLL SAT solver explores the
solution space by generating a search tree, repeating the following steps until a
satisfying solution is reached or the solution space is completely explored.

1. Choose a variable x4 to be fixed
2. Fix x4 to a truth value t; and propagate such fixing
3. If needed, backtrack and cut that branch

The modifications introduced for solving our problem are basically the following;:

a) Variables {z;s,y;} are initially progressively fixed to values {t{,¢5}. After
the first backtrack, truth values corresponding to subsets S7 in progressively
increasing distance from those of p® will be chosen, according to the minimum
change principle.

b) The distance 6(pe,p) of current (partial) solution p from p. is computed
at every node of the branching tree, on the basis of the truth assignments
{t5s, 5} and {tis,#;}. The donor’s truth assignment pq is used as current

optimal solution, hence backtrack is performed not only when an empty

clause is obtained, but also when the distance §(pe,p) of current (partial)

solution is such that
5(peal7) > U(pevpd)

! TLet A = {ai,...,as} be a finite ground set, D = {D1,...,D,} be a collection of
subsets of A, given a linear cost function w(D) € IR, the combinatorial optimization
problem is {minw(D) : D € D} [16]. It is quite immediate to see the correspon-
dence between the set p® and the ground set A. By denoting with {D1,..., D:} the
alternative sets of values of p° that, if changed, can satisfy F (Such collection of sets
is nonempty because by changing at most all fields we are able to satisfy F, and
finite because so it is the number of possible subsets of fields in p°. Compare also
to Example 4.1.) and by considering as w(D) the function §(pe,p.) measuring the
cost of the values changed in p® for satisfying F, an instance of record correction
problem becomes an instance of combinatorial optimization problem.

c¢) After reaching a (complete) solution p* such that §(pe, p*) < 6(pe, pq) (Which
means that p* is more similar than py to p.), the search does not stop, but
continues using now p* as current optimal solution, and updating p* when
possible.

d) The search stops either when a solution p* having a distance §(p., p*) being
small enough is reached, or when the search tree is completely explored
without finding a solution having acceptable distance.

Once the truth assignment corresponding to the optimal solution p*
{zis =t55,y; =t} }

is obtained, that corresponds to knowing, for each field f;, which subset S} the
corrected value v§{ must belong to. The actual value v{ will then be the initial
one v¢ if v§ € S¢, otherwise the donor’s one v¢ if v € S¢, or otherwise generated
by using a data driven or a probabilistic approach. Depending on the field, in
the latter cases, one may report that the information cannot be reconstructed,
although known belonging to subset S;.

5 Implementation and Results

The procedure is implemented by introducing minor modifications in in the
recent SAT solver named SIMO 2.0 (Satisfiability Internal Module Object ori-
ented) [11]. Such solver was chosen also because of its original purpose of pro-
viding an open-source library for SAT solvers. The proposed procedure has been
applied to the correction of datasets arising from two different origins: popula-
tion data and television transmitters data. The correction of such kind of data
actually represents a very relevant problem for people working in the respective
fields. As observable, each single record correction problem is quite small-sized
for a modern SAT solver. However, very large datasets should often be corrected,
and the whole process is therefore computationally demanding. Reported results
are obtained on a Pentium IV 1.7GHz PC with 1Gb RAM. In both cases, results
are very encouraging both from the computational and from the data quality
point of view.

5.1 Population Data

The process of error correction in the case of simulated population data sets using
258 real rules, kindly provided by experts of the Italian National Statistic Insti-
tute (Istat), is performed. About 400 congruency clauses were also needed. Four
different data sets (p-050, p-100, p-150, p-200) are obtained by randomly chang-
ing the values of 5 demographic variables (relation to head of the house,
sex, marital status, age, years married) into 182,864 correct simulated
person records. Such values are changed by introducing either blank values or
other valid values with a base probability n respectively multiplied by 0.5, 1, 1.5,

2, in order to obtain the above data sets. The resulting erroneous record con-
tent of such four data sets after the described perturbation respectively became
22.5%, 40.5%, 54.0%, 64.4%. Since the original (correct) records were in these
cases known, the accuracy of the correction process could be evaluated.

Results of the correction of each whole data set are reported in Table 1.
Number of variables and number of clauses of the formula F considered when
solving each single record correction problem differs from record to record. This
because, depending on the errors, one could know in advance that some (few)
fields are not interested by the correction process. We therefore generated vari-
ables only for those fields which could be interested by the correction process, and
consequently only the clauses containing them. Error content of the datasets is
generally enough for allowing the reconstruction, and the record correction pro-
cess was successful in more than the 99.9% of the cases. There are, however,
records for which no solution was found, because the best solution obtained has
a distance higher than the maximum acceptable distance.

Number of records 182,864
Number of fields 20
Number of rules 258
Error content before the correction process in p-050 22.5%
Error content before the correction process in p-100 40.5%
Error content before the correction process in p-150 54.5%
Error content before the correction process in p-200 64.4%
Error content after the correction process (all) < 0.01%
Total correction time for p_-050 50.4 min.
Total correction time for p-100 79.3 min.
Total correction time for p-150 112.6 min.
Total correction time for p-200 113.8 min.
Average time per record for p_-050 0.01 sec.
Average time per record for p-100 0.02 sec.
Average time per record for p_-150 0.04 sec.
Average time per record for p-200 0.04 sec.
Average number of variables for each record correction 315
Average number of clauses for each record correction | 633 (258+0+375)

Table 1: Results on the four datasets p-050, p-100, p-150, p-200 of simulated persons
data using real rules.

5.2 Television Transmitters Data

The correction process for data representing Television Transmitters data is
performed. The processed dataset has 22,504 records, each having 209 fields de-
scribing the geographical, orographical and radio-electrical characteristics of each
transmitter. Differently from the former cases, this dataset already contained er-
rors, and they have not been artificially introduced. A set of 75 explicit rules has
been written by experts of Frequency Planning for Broadcasting. The resulting
number of clauses is 224, 75 of which derive from the initial explicit rules, 99 from

the logical connections between the x variables and the y variables, and 50 are
congruency clauses. Results of the correction of the whole dataset are reported
in Table 2. Proposed techniques for dealing with corresponding fields have been
of crucial importance for such dataset. Error content of the data is higher than
in the former datasets, and in some cases the information is not enough for al-
lowing a reconstruction. In such cases, in fact, the best solution obtained has a
distance higher than the maximum acceptable distance, and therefore a certain
record percentage could not be corrected.

Number of records 22,504
Number of fields 209
Number of rules 75

Error content before the correction process 62.5%
Error content after the correction process 2.1%
Total correction time 4.0 min.
Average time per record 0.01 sec.
Average number of variables for each record correction 76
Average number of clauses for each record correction | 224 (75+99+50)

Table 2: Results on the television transmitters dataset using real rules.

6 Conclusions

Data correction problems are of great relevance in almost every field were an
automatic data processing is used. When cleaning large scale databases, more-
over, computational efficiency is essential. A propositional logic encoding is, in
many cases, the most direct and effective representation both for records and for
the set of rules. Erroneous records detection is carried out with an inexpensive
procedure, while erroneous records correction is solved by customizing a generic
DPLL style SAT solver (SIMO 2.0 for the reported results). The record correc-
tion problem is in fact NP-hard. Additional techniques for handling difficult cases
for encoding are presented. Computational results on datasets having different
origins (population data and television transmitters data) are very encouraging.

Acknowledgments. The author whish to thank Daniele Pratico for his contribu-
tion to present paper, and SIMO developers for providing their solver.

References

1. M. Ayel and J.P. Laurent (eds.). Validation, Verification and Testing of Knowledge-
Based Systems. J. Wiley & Sons, Chichester, 1991.

2. 0. Bailleux and P. Marquis. DISTANCE-SAT: Complexity and Algorithms. In Pro-
ceedings AAAT/TAAT 1999, 642-647.

3. M. Bankier. Canadian Census Minimum change Donor imputation methodology. In
Proceedings of the Workshop on Data Editing, UN/ECE, Cardiff, 2000.

4. E. Boros, P.L. Hammer, T. Ibaraki, A. Kogan. Logical analysis of numerical data.
Mathematical Programming, 79, 163-190, 1997.

5. R. Bruni, A. Reale, R. Torelli. Optimization Techniques for Edit Validation and
Data Imputation. In Proceedings of Statistics Canada International Symposium:
Achieving Data Quality in a Statistical Agency, Ottawa, Canada, 2001.

6. R. Bruni and A. Sassano. Error Detection and Correction in Large Scale Data
Collecting. In Advances in Intelligent Data Analysis, LNCS 2189, Springer, 2001.

7. V. Chandru and J.N. Hooker. Optimization Methods for Logical Inference. Wiley,
New York, 1999.

8. P. Fellegi and D. Holt. A Systematic Approach to Automatic Edit and Imputation.
Journal of the American Statistical Association 71(353), 17-35, 1976.

9. M.R. Garey and D.S. Johnson. Computers and Intractability. Freeman, New York,
1979.

10. LP. Gent, H. van Maaren, T. Walsh (eds.) SAT 2000. I0S Press, Amsterdam,
2000.

11. E. Giunchiglia, M. Maratea, A. Tacchella. Look-Ahead vs. Look-Back techniques
in a modern SAT solver. In Proceedings of the Sizth International Conference on
Theory and Applications of Satisfiability Testing (SAT2003), Portofino, Italy, 2003.

12. J. Gu, P.W. Purdom, J. Franco, and B.W. Wah. Algorithms for the Satisfiability
(SAT) Problem: A Survey. DIMACS Series in Discrete Mathematics American
Mathematical Society, 1999.

13. D.J. Hand, H. Mannila, P. Smyth. Principles of Data Mining. MIT Press, London,
2001.

14. T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning.
Springer, New York, Berlin, Heidelberg, 2002.

15. T. Menzies. Knowledge Maintenance: The State of the Art. Knowledge Engineering
Review, 14(1), 1-46, 1999.

16. G.L. Nemhauser, L.A. Wolsey. Integer and Combinatorial Optimization. Wiley,
New York, 1988.

17. C. Poirier. A Functional Evaluation of Edit and Imputation Tools. UN/ECE Work
Session on Statistical Data Editing, Working Paper n.12, Rome, Italy, 2-4 June 1999.

18. R. Ramakrishnan, J. Gehrke. Database Management System. McGraw Hill, 2000.

19. N. Rescher, R. Brandom. The Logic of Inconsistency. B. Blackwell, Oxford, 1980.

20. L. Simon and P. Chatalic. SAT-Ex: the experimentation web site around the
satisfiability problem. http://www.lri.fr/~simon/satex.

21. L. Simon, D. Le Berre (and E.A. Hirsch for SAT2002). Sat competition web site
http://www.satlive.org/SATCompetition

22. K. Truemper. Effective Logic Computation. Wiley, New York, 1998.

23. J. Warners. A Linear-time Transformation of Linear Inequalities into Conjunctive
Normal Form. Information Processing Letters, 68, 63-69, 1998.

