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Abstract

An approach to propositional satisfiability using an adaptive procedure is described.
Its main feature is a new branching rule, which is able to identify, at an early stage,
hard sub-formulae. Such branching rule is based on a simple and easy computable
criterion, whose merit function is updated by a learning mechanism, and guides the
exploration of a clause based branching tree. Completeness is guaranteed. Moreover,
a new search technique named core search is used to speed-up the above procedure
while preserving completeness. This is inspired by the well known approaches of
row and column generation used in mathematical programming. Encouraging com-
putational results and comparisons are presented.
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1 Introduction

The problem of testing satisfiability of propositional formulae plays a main
role in Mathematical Logic and Computing Theory. Satisfiability is funda-
mental in the fields of Artificial Intelligence, Expert Systems, and Deductive
Databases, because propositional logic is able to formalize deductive reasoning.
Satisfiability problems indeed are used for encoding and solving a wide vari-
ety of problems arising from different fields, e.g. VLSI logic circuit design and
testing, computer aided design. Moreover, satisfiability for propositional logic
formulae is a relevant member of the large family of NP-complete problems,
which are nowadays identified as central to a number of areas in computing
theory and engineering.
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Logic formulae in CNF (conjunctive normal form) are logic conjunction (∧)
of m clauses, which are logic disjunction (∨) of literals, which can be either
positive (αk) or negative (¬αk) propositions. A formula F has the following
general structure:

(αi1 ∨ ...∨ αj1 ∨¬αk1 ∨ ...∨¬αn1) ∧ . . .∧ (αim ∨ ...∨ αjm ∨¬αkm ∨ ...∨¬αnm)

Given a truth value (a value in the set {True, False}) for every proposition,
a truth value for the whole formula is obtained. A formula is satisfiable if
and only if there exists a truth assignment that makes the formula True,
otherwise is unsatisfiable. Determining whether a formula is satisfiable or not
is the satisfiability problem, SAT for short.

Many algorithms for solving the SAT problem have been proposed, based
on different techniques (among others, [2,4,5,8–11,13,15,16,19,21,22,24,25,28–
30,32], see also [3,7,14,17,18,23,31] for extensive references). A solution method
is said to be complete if it is guaranteed (given enough time) to find a solution
if it exists, or report lack of solution otherwise. Incomplete methods, on the
contrary, cannot guarantee finding the solution, although they usually scale
better then complete ones on many large problems. Most of complete methods
are based on enumeration techniques. This paper is precisely concerned with
such enumeration algorithms, also known as Davis-Putnam-Loveland variants
[9,12,26,33]. They have the following general structure:

DPL scheme

1. Choose a variable α according to a branching rule [20]. Generally, priority
is given to variables appearing in unit clauses (i.e. clauses containing only
one literal).

2. Fix α to a truth value and cancel from the formula all satisfied clauses
and all falsified literals, because they would not be able to satisfy the
clauses where they appear.

3. If an empty clause is obtained (i.e. every literal is deleted from a clause
which is still not satisfied) that clause would be impossible to satisfy.
Therefore, backtrack and change former choices. Usually, a depth-first
exploration of the search tree is performed.

The above is repeated until one of the two following conditions is
reached:
- a satisfying solution is found: the formula is satisfiable.
- an empty clause is obtained and every truth assignment has been tried,

i.e. the branching tree is completely explored: the formula is unsatisfi-
able.

Many different improvements to this procedure have been proposed, although,
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of course, each of them performs well on some kind of formulae, while less well
on another. One of the crucial choices seems to be the adopted branching rule.
In fact, although it does not affect complexity of the worst case, it shows its
importance in the average case, which is the one to deal with in real world.

A new technique to detect hard subsets of clauses is here proposed. Evaluation
of clause hardness is based on the history of the search, and keeps improving
throughout the computation, as illustrated in Section 2. Our branching rule
consists in trying to satisfy at first such hard sets of clauses, while visiting a
clause-based branching tree [6,20], as showed in Section 3. Moreover, a search
technique that can speed-up enumeration is developed, as explained in Section
4. This new search technique is essentially based on the idea of considering
only a hard subset of clauses (a core, as introduced in [27]), and solve it
without propagating assignments to clauses out of this subset. Subsequently,
such partial solution is extended to a larger subset of clauses, until solving
the whole formula, or stopping at an unsatisfiable subformula. The proposed
procedure is tested on problems from the DIMACS collection. Results and
comparisons are in Section 5.

2 Individuation of Hard Clauses

Although a truth assignment S satisfies a formula F only when all Cj are
satisfied, there are subsets P ⊂ F of clauses which are more difficult to satisfy,
i.e. which have a small number of satisfying truth assignments, and subsets
which are rather easy to satisfy, i.e. which have a large number of satisfying
truth assignments. In fact, every clause Cj actually forbids some of the 2n

possible truth assignments. Hardness of F is typically not due to a single
clause in itself, but to a combination of several, or, in other words, to the
combinations of any generic clause with the rest of the clauses in F . Therefore,
hardness of a clause Cj will hereafter mean in the case when Cj belongs to the
particular instance F being solved. The following is an example of a P ⊂ F
constituted by short clauses containing always the same variables:

. . . Cp = (α1 ∨ α2), Cq = (¬α1 ∨ ¬α2), Cr = (α1 ∨ ¬α2), . . .

P restricts the set of satisfying assignment for F to those which have α1 =
True and α2 = False. Hence, P has the falsifying assignments S1 = {α1 =
False, α2 = False, . . .}, S2 = {α1 = True, α2 = True, . . .}, S3 = {α1 =
False, α2 = True, . . .}. Each Si identifies 2n−2 (2 elements are fixed) different
points of the solution space. Thus, 3(2n−2) points are forbidden. This number
is as much as three forth of the number 2n of points in the solution space. On
the contrary, an example of P ⊂ F formed by long clauses containing different
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variables is:

. . . Cp = (α1∨¬α2∨α3), Cq = (α4∨¬α5∨α6), Cr = (α7∨¬α8∨α9), . . .

In this latter case, P has the falsifying assignments S1 = {α1 = False, α2 =
True, α3 = False, . . . . . . . . . }, S2 = {. . . , α4 = False, α5 = True, α6 =
False, . . . . . .}, S3 = {. . . . . . , α7 = False, α8 = True, α9 = False, . . .}. Each
Si identifies 2n−3 (3 elements are fixed) points of the solution space, but this
time the Si are not pairwise disjoint. 2n−6 of them falsifies 2 clauses at the
same time (6 elements are fixed), and 2n−9 falsifies 3 clauses at the same
time (9 elements are fixed). Thus, 3(2n−3)− 3(2n−6) + (2n−9) assignments are
forbidden. This number, for values of n usually considered, is much less than
before.

Starting assignment by satisfying the more difficult clauses, i.e. those which
admit very few satisfying truth assignments, or, in other words, represent the
more constraining relations, is known to be very helpful in reducing backtracks
[20]. The point is how to find the hardest clauses. An a priori parameter is
the length, which is quite inexpensive to calculate. In fact, unit clauses are
universally recognized to be hard, and the procedure of unit resolution (almost
universally performed) satisfies them at first. Other a priori parameters are
not easy to formalize, and appear quite expensive to compute. Remember also
that hardness is due both to the clause itself and to the rest of the instance.

In the course of our enumeration, a clause Cj is said to be visited during the
exploration of the search tree if a truth assignment aimed at satisfying Cj

is made. A failure occurs on a clause Cj either in the case when an empty
clause is generated due to a truth assignment aimed at satisfying Cj, or in the
case when Cj itself becomes empty due to some other truth assignment. The
technique used here to evaluate the difficulty of a clause Cj is to count how
many times Cj is visited, and how many times the enumeration fails on Cj .
Visiting Cj many times shows that Cj is difficult, and failing on it shows even
more clearly that Cj is difficult.

Clause hardness adaptive evaluation

Let vj be the number of visits of clause Cj , fj the number of failures due to
Cj, p the penalty considered for failures, and lj the length of Cj. An hardness
evaluation of Cj in F is given by

ϕ(Cj) = (vj + pfj) / lj

Such evaluation improves as the tree search proceeds. Counting visits and fail-
ures has the important feature of requiring very little overhead. As mentioned,
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branching should be done in order to satisfy hard clauses first. Moreover, as
widely recognized, unit clauses should be satisfied as soon as they appear in the
formula, by performing all possible unit resolutions. Altogether, the following
clause selection criterion is used:

Adaptive clause selection

(1) Perform all unit resolutions.
(2) When no unit clauses are present, make a truth assignment satisfying the

clause:
Cmax = arg max

Cj ∈ F
Cj still unsatisfied

ϕ(Cj)

The variable assignment will be illustrated in the next section, after introduc-
tion of a not binary tree search paradigm. Due to the above adaptive features,
the proposed procedure can perform well on problems which are difficult for
algorithms using static branching rules.

3 Clause based Branching Tree

Since our aim is to satisfy Cmax, the choice for variable assignments is restricted
to variables in Cmax. A variable αa appearing positive must be fixed at True,
and a variable appearing negative must be fixed at False [6]. If such a truth
assignment causes a failure, i.e. generates an empty clause, and thus backtrack
is needed, the next assignment would not be just the opposite truth value
for the same variable αa, because this would not satisfy Cmax. Instead, the
procedure backtracks and selects another variable αb in Cmax. Moreover, since
the former truth assignment for αa was not successful, the opposite truth value
for αa can also be fixed. The resulting node structure is shown in Fig. 1. If
there are no more free variables in Cmax, or if all of them were tried without
success, the procedure backtracks to the truth assignments made to satisfy
the previous clause, and proceeds this way until no backtrack is possible.
Therefore, a clause based branching tree is visited.

The above is a complete scheme: if a satisfying truth assignment exists, it
will be reached, and, if the search tree is completely explored, the instance is
unsatisfiable. Completeness would be guaranteed even in the case of branching
only on all-positive clauses [20] (or, for instance, on all-negative). However,
being our aim to select a set of hard clauses, as explained below, this could
not be realized by selecting only all-positive clauses.
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Fig. 1. Branching node structure. An example of selected clause appears in the
rectangle, and the consistent branching possibilities appear in the ellipses

Our branching tree is not binary: every node has as many successors as the
number of unassigned variables appearing in Cmax. In practical case, however,
a small part of this successors need to be explored [17]. On the other hand,
useless truth assignments, namely those containing values not satisfying any
still unsatisfied cause, are avoided. At present, variable assignment order is
just their original order within Cmax, because used reordering schemes seem
not to improve computational times.

4 Adaptive Core Search

The above scheme can be modified in order to speed-up the entire procedure.
Roughly speaking, the idea is that, when a hard subset of clauses, called a core,
is detected, the search can work on it, just ignoring other clauses. After solving
such core, if that is unsatisfiable, the whole formula is unsatisfiable. Conversely,
if the core admits a satisfying solution, the extension of that solution to a larger
subset of clauses is attempted, until solving the whole formula. The algorithm
works as follows:

Adaptive core search

0. (Preprocessing) Perform d branching iterations using just shortest clause
rule. If the instance is already solved, Stop.

1. (Base) Select an initial collection of hardest clauses C1, by choosing the
highest values of ϕ. This is the first core. Remaining clauses form O1.

k. (Iteration) Perform b branching iteration on Ck, ignoring Ok, using adaptive
clause selection. One of the following 1, 2, 3:

k.1. Ck is unsatisfiable ⇒ F is unsatisfiable, then Stop.
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k.2. No answer after b iterations ⇒ select a new collection of hardest clauses
Ck+1 within Ck, by choosing highest values of ϕ. Put k := k + 1, goto k.

k.3. Ck is satisfied by solution Sk ⇒ try Sk on Ok.
One of the following a, b, c:

k.3.a All clauses are satisfied ⇒ F is satisfied, then Stop.
k.3.b There is a set Tk of falsified clauses ⇒ add them to the core: put Ck+1 =

Ck ∪ Tk, k := k + 1, goto k.
k.3.c No clauses are falsified, but there is a set Vk of still not satisfied clauses

⇒ select a collection C′
k of hardest clauses in Vk by choosing the highest

values of ϕ, put Ck+1 = Ck ∪ C′
k, k := k + 1, goto k.

The preprocessing step has the aim to give initial values of visits and failures,
in order to compute ϕ. The selection of hardest clauses in steps 1. k.2 and k.3.c
is done by choosing a fixed percentage c of the number of clauses contained in
the set where the hardest clauses are being selected. When a satisfying solution
Sk for the core is found, this has to be extended to the rest of the clauses Ok.
If some clauses of Ok are falsified by Sk, this means that they are difficult
(together with the clauses of the core), and therefore they should be added to
the core. In this case, since Sk falsifies some clauses now in the core, it is faster
to completely rebuilt Sk. The iteration step is repeatedly applied to instances
until their solution. In order to ensure termination to the above procedure,
solution rebuilding is allowed only a finite number of times. After that, the
solution is not entirely rebuilt, but modified by performing backtrack.

Core search framework has the important feature of considering only a sub-
problem (current core Ck) at the nodes of the search tree. Hence, all operations
performed, such like unit propagation consequent to any variable fixing, are
performed only on a subset of clauses, with consequent speed up of node pro-
cessing.

Moreover, finding a core is of great relevance in many practical applications.
Typically, when a SAT instance encodes our application, this SAT instance
should have a certain solution property (either to be satisfiable or to be un-
satisfiable). When the instance does not have such property, the application
should be modified in order to make the SAT instance as desired. Being the
core a small unsatisfiable subformula, that helps in locating the part to modify
if a satisfiable instance is desired, and the part to keep unchanged otherwise.

5 Computational Results

The algorithm was coded in C++. The following results are obtained on a
Pentium II 450 MHz processor running MS Windows NT operating system.
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In the tables, columns n and m shows respectively the number of variables and
the number of clauses. Column lit is the number of all literals appearing in the
formula, sol reports if satisfiable or unsatisfiable. Column labeled ACS reports
times for solving the instance by Adaptive Core Search. Other table specific
columns are described in following subsections. Times are in CPU seconds.
Time limit was set at 600 sec. If exceeded, > 600 is reported. If not available,
n.a. is reported. Parameter p appearing in hardness evaluation function ϕ was
set at 10. Percentage c of hardest clauses selected in core search was set at 30%.
During our experiments, in fact, such choices gave better and more uniform
results. Parameter d and b range between 100 and 10000. Test problems are
chosen from the DIMACS 1 collection, since they are widely-known, and the
test instances, together with computational results, are easily available 2 .

Running times of Adaptive Core Search are compared with those of other
complete algorithms. In particular, the following tests are considered:

• ACS compared with two simpler versions of it (ABR and SCBR).
• ACS compared with two well known state-of-the-art SAT-solvers (SATO

[32] and GRASP [28]).
• ACS compared with the four best complete algorithms of the second DI-

MACS challenge on Satisfiability [23].

In the first two comparisons, the algorithms run on our machine. In the third
one, times reported in the original papers are “normalized” as if they were
obtained on our same machine.

5.1 Comparison with two simpler versions of ACS

Adaptive Core Search is here compared with two simpler branching algo-
rithm: Adaptive Branching Rule and Shortest Clause Branching Rule. Adap-
tive Branching Rule is a branching algorithm which does not use core search,
but does use the adaptive branching rule based on ϕ. Its results are in column
labeled ABR. Shortest Clause Branching Rule is a branching algorithm which
does not use core search, and just uses shortest-clause-first branching rule. Its
results are in column labeled SCBR. Such comparison is interesting because
the three algorithms use the same data structure and share most of the code.
Therefore, they perform a similar node processing. Number of backtracks, i.e.
the total number of variable fixings undone during the whole search, is also

1 NFS Science and Technology Center in Discrete Mathematics and Theoretical
Computer Science - A consortium of Rutgers University, Princeton University,
AT&T Bell Labs, Bellcore.
2 Available from
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/benchmarks/cnf/
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reported.

The comparison is on the DIMACS series ii32, since they are quite representa-
tive of real problems. Such instances encode inductive inference problems, and
are contributed from M.G.C. Resende [24]. They essentially contain two kind
of clauses: a set of binary clauses and a set of long clauses. Their size is quite
big. Results are in table 1. ACS clearly is the fastest, and solves all problems
in remarkably short times. ABR is generally faster than SCBR, although not
always. The very simple SCBR is sometimes quite fast, but its results are very
changeable, and in most of the cases exceeds the time limit. Moreover, ACS
is only slightly slower in node processing, proving that our clause hardness
evaluation requires a small computational overhead.

Problem features Time Backtracks

Name n m lit sol ACS ABR SCBR ACS ABR SCBR

ii32a1 459 9 212 33 003 SAT 0.02 475.57 > 600 368 10 867 470 n.a.

ii32b1 228 1 374 6 180 SAT 0.00 20.65 356.74 244 227 150 6 584 353

ii32b2 261 2 558 12 069 SAT 0.03 36.56 > 600 967 401 242 n.a.

ii32b3 348 5 734 29 340 SAT 0.03 108.57 > 600 783 863 541 n.a.

ii32b4 381 6 918 35 229 SAT 1.53 311.62 > 600 12 895 2 361 343 n.a.

ii32c1 225 1 280 6 081 SAT 0.00 2.67 1.75 63 29 850 31 734

ii32c2 249 2 182 11 673 SAT 0.00 27.29 0.02 174 286 545 340

ii32c3 279 3 272 17 463 SAT 2.84 57.03 > 600 24 780 570 673 n.a.

ii32c4 759 20 862 114 903 SAT 5.07 > 600 > 600 16 311 n.a. n.a.

ii32d1 332 2 730 9 164 SAT 0.01 409.21 > 600 350 3 285 423 n.a.

ii32d2 404 5 153 17 940 SAT 0.76 > 600 > 600 7 306 n.a. n.a.

ii32d3 824 19 478 70 200 SAT 7.49 > 600 > 600 15 554 n.a. n.a.

ii32e1 222 1 186 5 982 SAT 0.00 1.24 0.01 92 11 762 189

ii32e2 267 2 746 12 267 SAT 0.01 82.13 > 600 308 903 430 n.a.

ii32e3 330 5 020 23 946 SAT 0.08 131.38 > 600 1 259 1 051 899 n.a.

ii32e4 387 7 106 35 427 SAT 0.02 312.28 > 600 470 2 273 967 n.a.

ii32e5 522 11 636 49 482 SAT 1.03 382.36 > 600 3 955 1 995 834 n.a.

Table 1: Results of ACS, ABR and SCBR on the ii32 series: inductive inference
problems. From M.G.C. Resende.

5.2 Comparison with SATO and GRASP

A comparison is here given with the latest versions of two of the most repre-
sentative state-of-the-art sat solver: SATO (SAtisfiability Testing Optimized)
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version 3.2 3 , developed by H. Zhang [32], and GRASP (Generic seaRch
Algorithm for the Satisfiability Problem) version 2000.00 4 , developed by
J.P. Marques-Silva and K.A. Sakallah [28]. Both are very sophisticated DPL-
variants, including several speed-up mechanisms. Sublinear time unit propa-
gation, intelligent backjumping, mixed branching rule, restricted learning of
new clauses for SATO [32], and conflict analysis procedure, non-chronological
backtrack, recording of the causes of conflicts for GRASP [28].

For this comparisons, the focus is on computational times. Number of back-
tracks per second is also reported. Computational tree size does not appear
meaningful because the different solvers do not perform similar node process-
ing.

The comparison is on the DIMACS series par16, since they are representative
of real problems, and have a useful peculiarity. Instances arise from the prob-
lem of learning the parity function, for a parity problem on 16 bits, and are
contributed from J. Crawford. They contain clauses of different length: unit,
binary and ternary. Their size is sometimes remarkably large. The peculiar-
ity is that par16-x-c is an instance representing a problem equivalent to the
corresponding par16-x, except that the first instance have been expressed in a
somehow compressed form. This allows to test algorithms’ effectiveness, giving
less weight to the finishing touches of implementation.

Problem features Time Backtracks/second

Name n m lit sol ACS SATO GRASP ACS SATO GRASP

par16-1 1015 3310 8788 S 10.10 24.16 340.02 29 621 375 20

par16-1-c 317 1264 3670 S 11.36 2.62 184.93 30 642 1 853 34

par16-2 1015 3374 9044 S 52.36 49.22 195.38 19 780 250 37

par16-2-c 349 1392 4054 S 100.73 128.15 3 251.10 15 622 318 8

par16-3 1015 3344 8924 S 103.92 40.81 45.46 13 875 255 70

par16-3-c 334 1332 3874 S 8.19 78.91 8.04 25 921 335 173

par16-4 1015 3324 8844 S 70.82 1.51 70.02 15 950 1 325 55

par16-4-c 324 1292 3754 S 5.10 133.07 216.24 27 353 252 31

par16-5 1015 3358 8980 S 224.84 4.92 8 385.03 11 423 694 4

par16-5-c 341 1360 3958 S 72.29 196.33 6 014.45 16 880 158 5

Table 2: Results of ACS 1.0, SATO 3.2 and GRASP 2000.00 on the par16 series:
instances arisen from the problem of learning the parity function. From J. Crawford.

Results are in table 2. They are extremely encouraging. With regards to SATO,

3 Available from ftp.cs.uiowa.edu/pub/sato/
4 Available from http://sat.inesc.pt/~jpms/grasp/
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a sort of complementarity in computational time results can be observed: ACS
is fast on the compressed versions of the problems, where SATO is slow. The
converse happen on the expanded versions. Our hypothesis is that ACS is
faster when it can take advantage of the identification of the hard part of the
instances, but, due to an implementation and a data structure still not refined
as in SATO, has more difficulties on larger instances. On the contrary, due to
its very carefully implementation, which has been improved for several years,
SATO 3.2 can handle more efficiently larger instances, but on smaller and
harder instances, it cannot compensate the advantages of adaptive branching
and core search. With regards to GRASP, no clear dependency from problem
features can be observed. Nevertheless ACS results faster and more reliable.
By analyzing number of backtracks per second, it results that ACS has a node
processing which is orders of magnitude faster. In fact, ACS often sacrifice
total number of nodes for a much faster node processing.

5.3 Comparison with algorithms from the second DIMACS challenge on Sat-
isfiability

The series aim100 is constituted by 3-SAT instances artificially generated by
K. Iwama, E. Miyano and Y. Asahiro [1], and have the peculiarity that the
satisfiable ones admit only one satisfying truth assignment. Such instances are
not big in size, but can be very difficult. Some instances from this set were
used in the test set of the Second DIMACS Implementation Challenge [23]. Our
results are here compared with those of the four faster complete algorithms
of that challenge. C-sat, presented by O. Dubois, P. Andre, Y. Boufkhad and
J. Carlier [11], is a backtrack algorithm with a specialized branching rule and
a local preprocessing at the nodes of search tree. It is considered a very fast
algorithm. 2cl, presented by A. Van Gelder and Y. K. Tsuji [13], consists in
a combination of branching and limited resolution. TabuS, presented by B.
Jaumard, M. Stan and J. Desrosiers [21], is an exact algorithm which includes
a tabu search heuristic and reduction tests other than those of the Davis-
Putnam-Loveland scheme. BRR, presented by D. Pretolani [29], makes use
of directed hypergraph transformation of the problem, to which it applies a
B-reduction, and of a pruning procedure.

In order to compare times taking into account machine performance, this is
measured by using the DIMACS benchmark dfmax 5 , although it had to
be slightly modified to be compiled with our compiler. The measure of our
machine performance in CPU seconds is therefore:

5 Available from
ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/volume/Machine/
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r100.5.b= 0.01 r200.5.b= 0.42 r300.5.b= 3.57 r400.5.b= 22.21 r.500.b= 86.63

Time reported in the original papers are therefore “normalized”, as if all of the
above solvers run on our same machine. Results are in table 3. A noticeable
performance superiority of ACS can be observed, expecially on unsatisfiable
problems.

Problem features Time

Name n m lit sol ACS C-sat 2cl TabuS BRR

aim-100-1 6-no-1 100 160 480 UNSAT 0.20 n.a. n.a. n.a. n.a.

aim-100-1 6-no-2 100 160 480 UNSAT 0.93 n.a. n.a. n.a. n.a.

aim-100-1 6-no-3 100 160 480 UNSAT 1.35 n.a. n.a. n.a. n.a.

aim-100-1 6-no-4 100 160 480 UNSAT 0.96 n.a. n.a. n.a. n.a.

aim-100-1 6-yes1-1 100 160 479 SAT 0.09 n.a. n.a. n.a. n.a.

aim-100-1 6-yes1-2 100 160 479 SAT 0.03 n.a. n.a. n.a. n.a.

aim-100-1 6-yes1-3 100 160 480 SAT 0.26 n.a. n.a. n.a. n.a.

aim-100-1 6-yes1-4 100 160 480 SAT 0.01 n.a. n.a. n.a. n.a.

aim-100-2 0-no-1 100 200 600 UNSAT 0.01 52.19 19.77 409.50 5.78

aim-100-2 0-no-2 100 200 600 UNSAT 0.38 14.63 11.00 258.58 0.57

aim-100-2 0-no-3 100 200 598 UNSAT 0.12 56.63 6.53 201.15 2.95

aim-100-2 0-no-4 100 200 600 UNSAT 0.11 0.05 11.66 392.23 4.80

aim-100-2 0-yes1-1 100 200 599 SAT 0.03 0.03 0.32 16.75 0.29

aim-100-2 0-yes1-2 100 200 598 SAT 0.09 0.03 0.21 0.24 0.43

aim-100-2 0-yes1-3 100 200 599 SAT 0.22 0.03 0.38 2.10 0.06

aim-100-2 0-yes1-4 100 200 600 SAT 0.04 0.12 0.11 0.03 0.03

aim-100-3 4-yes1-1 100 340 1019 SAT 0.44 n.a. n.a. n.a. n.a.

aim-100-3 4-yes1-2 100 340 1017 SAT 0.53 n.a. n.a. n.a. n.a.

aim-100-3 4-yes1-3 100 340 1020 SAT 0.01 n.a. n.a. n.a. n.a.

aim-100-3 4-yes1-4 100 340 1019 SAT 0.12 n.a. n.a. n.a. n.a.

aim-100-6 0-yes1-1 100 600 1797 SAT 0.08 n.a. n.a. n.a. n.a.

aim-100-6 0-yes1-2 100 600 1799 SAT 0.07 n.a. n.a. n.a. n.a.

aim-100-6 0-yes1-3 100 600 1798 SAT 0.19 n.a. n.a. n.a. n.a.

aim-100-6 0-yes1-4 100 600 1796 SAT 0.04 n.a. n.a. n.a. n.a.

Table 3: Results of ACS, C-SAT, 2cl, DPL+tabu search, B-reduction, on the aim-
100 series: 3-SAT artificially generated problems. From K. Iwama, E. Miyano and Y.
Asahiro. Times are normalized according to dfmax results, as if they were obtained
on the same machine.
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6 Conclusions

A clause based tree search paradigm for satisfiability testing, which makes use of
a new adaptive branching rule, and the original technique of core search, used to
speed-up the procedure although maintaining the feature of complete method, are
presented. The obtained enumeration technique is altogether denominated Adaptive
Core Search, and is able to sensibly reduce computational times.

By using the above technique, a better performance improvement on instances which
are “not uniformly” hard, in the sense that they contain subsets of clauses having
different levels of “difficulty”, can be observed. This is mainly due to the ability
of our adaptive device in pinpointing hard sub-formulae during the branching tree
exploration. Techniques to perform a fast complete enumeration are widely pro-
posed in literature. Adaptive Core Search, on the contrary, can reduce the set that
enumeration works on, and scales particularly well when such set is small.

Comparison of ACS with two simpler versions of it, one not using core search,
and one not using neither core search nor the adaptive part of the branching rule,
clearly reveals the great importance of this two strategies, and the reduced overhead
required for their computation. Comparison with several published results shows
the effectiveness of the proposed procedure. Comparison of ACS with state-of-the-
art solvers is particularly encouraging. In fact, ACS, in its first implementation,
is frequently faster then SATO 3.2 and GRASP 2000.00, whose implementation
has evolved for several years. Running times can probably still improve on larger
instances by further polishing our implementation, and by using several techniques
available in the literature to perform a fast enumeration. Example of this could be
to reduce clause revisiting by saving and reusing global inferences revealed during
search, as many other modern solvers do [2,28,32].
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