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Abstract

The paper is concerned with the problem of binary classification of data
records, given an already classified training set of records. Among the
various approaches to the problem, the methodology of the logical anal-
ysis of data (LAD) is considered. Such approach is based on discrete
mathematics, with special emphasis on Boolean functions. With respect
to the standard LAD procedure, enhancements based on probability con-
siderations are presented. In particular, the problem of the selection of
the optimal support set is formulated as a weighted set covering problem.
Testable statistical hypothesis are used. Accuracy of the modified LAD
procedure is compared to that of the standard LAD procedure on datasets
of the UCI repository. Encouraging results are obtained and discussed.

Keywords: Classification; Data mining; Logical analysis of data; Mas-
sive data sets; Set covering.

1 Introduction

Given a set of data which are already grouped into classes, the problem of pre-
dicting whose class each new data belongs to is often referred to as classification
problem. The first set of data is generally called training set, while the second
one test set (see e.g. [16]). Classification problems are of fundamental signif-
icance in the fields of data analysis, data mining, etc., and are moreover able
to represent several other relevant practical problems. As customary for struc-
tured information, data are organized into conceptual units called records, or
observations, or even points when they are considered within some representa-
tion space. Each record has the formal structure of a set of fields, or attributes.



Giving a wvalue to each field, a record instance, or, simply, a record, is obtained
[22].

Various approaches to the classification problem have been proposed, based
on different models and techniques (see for references [18, 15, 16]). One very
effective methodology is constituted by the logical analysis of data (LAD), de-
veloped since the late 80’s by Hammer et al. [8, 4, 5, 14, 1]. The mathematical
foundation of LAD is in discrete mathematics, with a special emphasis on the
theory of Boolean functions. More precisely, LAD methodology uses only bi-
nary variables, hence all data should be encoded into binary form by means
of a process called binarization. This is obtained by using the training set for
computing a set of values for each field. Such values are called cut-points in the
case of numerical fields. Some of such values (constituting a support set) are
then selected for performing the above binarization and for generating logical
rules, or patterns. This is called support set selection problem, and is clearly
decisive for the rest of the procedure. Patterns are then generated and used
to build a theory for the classification of the test set. An advantage of such
approach is that theories constitute also a (generally understandable) compact
description of the data. As a general requirement, instances from the training
set should have the same attributes and the same nature than those of the test
set. No further assumptions are made on the data-set.

We propose here an original enhancement to the LAD methodology, namely
a criterion for evaluating the quality of each cut-point for numerical fields and
of each binary attribute for categorical fields. Such quality value is computed on
the basis of information directly extractable from the training set, and is taken
into account for improving the selection of the support set. Without a priori
assumptions on the meaning of the data-set, except that it represents some real-
world phenomenon (either physical or sociological or economical, etc.), we carry
out a general statistical evaluation, and specialize it to the cases of numerical
fields having normal (Gaussian) distribution or binomial (Bernoulli) distribution
[12]. The support set selection is therefore modeled as a weighted set covering
problem [19, 23]. In a related work [6], Boros et al. consider the problem of
finding essential attributes in binary data, which again reduces to finding a small
support set with a good separation power. They give alternative formulations
of such problem and propose three types of heuristic algorithm for solving them.
An analysis of the smallest support set selection problem within the framework
of the probably approximately correct learning theory, together with algorithms
for its solution, is also developed in [2].

Notation and the basic LAD procedure, with special attention to the support
set selection aspects, is explained in Section 2. We refer here mainly to the
“standard” procedure, as described in [5], although several variants of such
procedure have been investigated in the literature [14, 1]. Motivations and
criteria for evaluating the quality of cut-points are discussed in Section 3. In
particular, we derive procedures for dealing with cut-points on continuous fields
having normal distribution, on discrete fields having binomial distribution, or on
general numerical fields having unknown distribution. This latter approach is
used also for qualitative, or categorical, fields. The support set selection problem



is then modeled as weighted set covering problem in Section 4. The remaining
part of the LAD procedure is afterwards applied. Results are compared to those
of the standard LAD procedure on datasets of the UCI repository [3], as shown
in Section 5. Advantages of the proposed procedure are discussed in Section 6.

2 The LAD Methodology

A set of records S is given, already partitioned into the set of positive records
S and the set of negative records S~. S is called training set and constitutes
our source of information for performing the classification of other unseen (or
new) records. The structure of records, called record schema R, consists in a
set of fields f;, i = 1...m. A record instance r consists in a set of values v;,
one for each field of the schema. A positive record instance is denoted by r*, a
negative one by r~.

R={f1,..., [m} r={vi,...,om}

Example 2.1. For records representing persons, fields are for instance age or
marital status, and corresponding examples of values can be 18 or single.

For each field f;, « = 1...m, its domain D; is the set of every possible value
for that field. Fields are essentially of two types: quantitative, or numerical,
and qualitative, or categorical. A quantitative field is a field whose values are
numbers, either continuous or discrete, or at least values having a direct and
unambiguous correspondence with numbers, hence mathematical operators can
be defined on its domain. A qualitative field simply requires its domain to be a
discrete set with finite number of elements.

In order to use the LAD methodology, all fields should be encoded into binary
form. Such process is called binarization. By doing so, each (non-binary) field
i corresponds to a set of binary attributes a], with j = 1...n,. Hence, the term
“attribute” is not used here as a synonym of “field”. A binarized record scheme
Ry, is therefore a set of binary attributes a, and a binarized record instance ry
is a set of binary values b € {0,1}.

_ 1 ni 1 n _ 1 T 1 n
Ry ={ay,...,al" ... ap,...,apm" rp={b1,..., b1 . by, b}

For each qualitative fields f;, all its values are simply encoded by means of a
suitable number of binary attributes a]. For each numerical field f;, on the
contrary, a set of cut-points ozz € IR is introduced. In particular, for each
couple of values v} and v (supposing w.l.o.g. v < v}) respectively belonging
to a positive and a negative record v; € r* € ST and v/ € r~ € S7, and such
that not other record r € S has a value v}’ between them v} < v < v, we
introduce a cut-point a{ between them.

od = (o) + )2



Note that af is not required to belong to D;, but only required to be comparable,
by means of > and <, to all values v; € D;.

Example 2.2. Consider the following training set of records representing per-
sons having fields weight (in Kg.) and height (in cm.), and a positive classifi-
cations meaning “to be a professional basketball player”.

weight height | pro.bask.pl.?
90 195 yes
St 100 205 yes
75 180 yes
g 105 190 no
70 175 no

Table 1: Training set for Example 2.2.

70 75 90 100 105
weight ! él—‘—é ! I 4@ | {i'_ré |
72.5 102.5
175 180 190 195 205

height I

- + i - +
177.5 185 192.5

Figure 1: Cut points obtainable from the training set of Table 1.

For each attribute, values belonging to positive (respectively negative) records
are represented with a framed + (resp. —). Cut-points obtainable for the above
training set are a},eight:72.5, ozﬁeight=102.57 ozllleight=177.57 aﬁeight:185,
aﬁeight:192.5. Corresponding binary attributes obtainable are a},eight, mean-

ing: weight > 72.5 Kg., a2

weight>
meaning: height > 177.5 cm., a}%eight, meaning: height > 185 cm., etc.

meaning: weight > 102.5 Kg., a111eighta

Cut-points a{ are used for converting each field f; into its corresponding binary
attributes @, called level variables. The values b! of such binary attributes are

{1 if v; > o

z

0 if v; <al

(2

o=

K2

A set of binary attributes {af } used for encoding the dataset S is a support
set U. A support set is exactly separating if no pair of positive and negative
records have the same binary encoding. Throughout the rest of the paper we
are interested in support sets being exactly separating. Clearly, a single data-
set admits several possible exactly separating support sets. Since the number
of cut-points obtainable in practical problems is often very large, and since



many of them may be not needed to explain the phenomenon, we are interested
in selecting a small (or even the smallest) exactly separating support set, see
also [5, 6]. By using a binary variable z] for each al, such that 2] = 1 if
ag is retained in the support set, xf = 0 otherwise, the following set covering
problem should be solved. For every pair of positive and negative record r*,r~
we define I(r;",r; ) to be the set of couples of indices (i,j) where the binary
representations of 7+ and r~ differ, except, under special conditions [5], for the
indices that involve monotone values.

m.o ng
minzz :E{
i=1 j=1
s.t. Z ) >1  VI(rf,ry), rTest rmes
(,9)EI(r,ry)
z) € {0,1}

Note that such selection of binary variables does not have the aim of improving
the classification power, and actually “the smaller the chosen support set, the
less information we keep, and, therefore, the less classification power we may
have” [5]. Instead, it is necessary for reducing the computational complexity
of the remaining part of the procedure, which may otherwise become imprac-
ticable. Indeed, a non-optimal solution to such problem would not necessarily
worsen the classification power [5, 6]. Since different support sets correspond to
different alternative binarizations, hence to actually different binarized record,
the support set selection constitutes a key point.

Example 2.3. Continuing example 2.2, by solving to optimality the mentioned
set covering problem we have the alternative support sets Uy = {aﬁeight, allleight}
and Uy = {a},eight aﬁeight}. An approximated solution would moreover be Us =
{a},eight, aﬁeight, a,lleight, }. The corresponding alternative binarizations are:

Ui U, Us
bgeight bl11eight bvlzeight bgeight bvlzeight baeight bl&eight
0 1 1 0 1 0 1
St 0 1 1 0 1 0 1
0 1 1 0 1 0 1
g 1 1 1 1 1 1 1
0 0 0 0 0 0 0

Table 2: Alternative binarizations obtainable from different support sets.

The selected support set U is then used to create patterns. A pattern P is a
conjunction (A) of literals, which are binary attributes a] € U or negated bi-

nary attributes —a]. A pattern P covers a record r if the set of values r, = {bg }



for the binary attributes {af } makes P = 1. A positive pattern PT is a pat-
tern covering at least one positive record r* but no negative ones. A negative
pattern P~ is defined symmetrically. Patterns admit an interpretation as rules
governing the studied phenomenon. Positive (respectively negative) patterns
can be generated by means of top-down (i.e. by removing literals from pattern
describing single positive (resp. negative) record until the pattern remains posi-
tive (resp. negative)), bottom-up (i.e. adding one by one literals until obtaining
a positive (resp. negative) pattern), or hybrid procedures (i.e. bottom-up until
a certain degree, then top-down using the positive (resp. negative) records not
yet covered).

A set of patterns should be selected among the generated ones in order to
form a theory. A positive theory T is a disjunction (V) of patterns covering all
positive records r and (by construction) no negative record r~. A negative
theory T~ is defined symmetrically. Since the number of patterns that can
be generated may be too large, pattern selection can be performed by solving
another set covering problem (see [5, 14]), whose solution produces the set of the
indices HT of selected positive patterns and that of the indices H~ of selected
negative patterns. The obtained positive and negative theories are therefore

T+ = \/Ph T = \/Ph

heH+ heH—

Weights u; > 0 and u; < 0 are now assigned to all patterns in H* and H ™, by
using several criteria [5]. Finally, each new record r is classified according to the
positive or negative value of the following weighted sum, called discriminant,
where P(r) = 1 if pattern P covers r, 0 otherwise (see also [5]).

A(r) = Z ut Py (r) + Z wy, Pr(r)

heHt+ heH—

Example 2.4. By continuing example 2.3, a positive pattern obtained using
the support set U; is ﬂaﬁeight /\allleight. Another pattern obtained using support
set Us, is a‘,l,eight /\ﬂaﬁeight /\allleight. Note that the latter one appears to be even
more appropriate, since it means “one is a professional basketball player if has
a medium weight (weight > 72.5 Kg. and weight < 102.5 Kg.) and height

above a certain value (height > 177.5 cm.)”.

3 [Evaluation of Binary Attributes

We noticed that, in the selection of the support set, we may loose some useful
attribute. We therefore would like to evaluate the usefulness, or the quality of
each attribute, before proceeding to such selection. Let us start with attributes
on numerical fields, hence with the corresponding cut-points. We try to evaluate
how good cut-point o behaves on field f;. In the following Figure 2, we give
three examples of fields (a,b,c). In each case, we draw “qualitative” distributions



densities! of a consistent number of positive and negative records’ values in
the area above the line, and report a smaller sample of positive and negative
records having the above distributions on the line. Very intuitively, cut-points
obtainable in case a) are the worst ones, while the cut-point of case c) is the best
one. Moreover, the various cut-points obtained in case b) do not appear to have
all the same utility. We now try to formalize this. Given a single cut-point o
and a record r, denote as + (respectively —) the fact that r is actually positive
(resp. negative), and denote by class + (c]) (resp. class — (a])) the fact that r
is classified as positive (resp. negative) by a{, i.e. stays on the positive (resp.
negative) side of o.

distribution of + distribution of -

distribution of +

distribution of -

distribution of +

Figure 2: Examples of cut points in different conditions.

Different parameters could be considered for evaluating the quality of each cut-
point o). We evaluate o on the basis of how it behaves on the training set
S, hence how it divides ST from S~, even if the real classification step will be
conducted by using patterns, as described in previous section.

When classifying a generic set of records N, let A be the set of the records
which are class+ (] ), and A_ be the set of records which are class— (o] ). Denote
instead by Nt and N~ the (unknown) real positive and negative sets. Errors
occur when a negative record is classified as positive, and vice versa. The first
kind of errors, called false positive errors, are N_ N A;. The second kind of
errors, called false negative errors, are N; N A_. The representation given in
the following Table 3, called confusion matriz (see e.g. [16]), helps visualizing

1By distribution density we mean the function whose integral over any interval is propor-
tional to the number of points in that interval.



the accuracy of our classification.

Actual
+ —
+ | NytNnAy | No.NAy
— | NyNA_ | N_.NnA_

Classified by o

Table 3: Confusion matrix.

The described support set selection problem is a non-trivial decision problem.
In order to solve it, it would be convenient to formulate it as a binary linear pro-
gramming problem. Hence, we would like to obtain for each binary attribute
a quality evaluation such that the overall quality value of a set of binary at-
tributes results the sum of the individual quality values. A parameter often
used for similar evaluations is the odds.

The odds (defined as the number of events divided by the number of non-events)
of giving a record a correct positive classification by using only cut point o is

P?‘(—f— M class + (Oéz))
P?‘(— M class + (OéZ))

while the odds of giving a correct negative classification using only a{ is

P’I“(— M class — (Oéz))
P”I’(+ M class — (OLJ))

7

Clearly, o™ (o) € [0, +00) and 0™ (a) € [0, +00). The higher the value, the bet-

3
ter positive (resp. negative) classification a7 provides. In order to have a com-
plete evaluation of o, we consider the odds product o™ (a}) x 0~ (a?) € [0, 4+00).
Moreover, rather than the numerical value of such evaluation, it is important
that the values computed for the different cut-points are fairly comparable. We

therefore sum 1 to such odds product, obtaining so a value in [1,400).

1 + P”I’(+ M class + (Oéi)) ) P”I’(* M class — (Oéi))

P’I“(— M class + (Oéz)) P’I“(-i— M class — (Oéz))

Denote now by A the set of couples of indices (4, j) of a generic set of cut-points:
{a :(i,7) € A}. The overall usefulness of using such set of cut-points can now
be related to the product of the individual terms, hence we have

?

P’I“(— M class + (OéZ)) P’I“(-i— M class — (Oéj))

3

H 1 + P”I’(+ M class + (Oéz)) P”I’(* M class — (Oéj))
(i,4)€A

As noted above, more than the numerical value, we are interested in fairly
comparable values of such evaluation. Therefore, we apply a scale conversion



and take the logarithm of the above value. This allows to convert it in a sum.

In H —l—ﬂclass—f—( )) P?‘( M class — (OéZ)) _
P — M class + ( )) PT(+ M class — ( i))

(i,5)€A :
Z In (+ M class + (Oél)) ) PT’(* M class — (Oéz))
(i.5)EA (—ﬂclass—f—(ag)) P?‘(—l—ﬂclass— (OéZ))

The quality qf value of a single cut-point az can now be evaluated as

3

P?"(*ﬂclassﬁ‘(ag)) P?"(+ﬂclass* (Oéj))

2

qf:ln 1+

P?‘(+ M class + (OéZ)) ] P?‘(— M class — (Oz]))‘|

Clearly, qf € [0, +00). By definition of probability, it can be computed as

INy DAy [IN_NA_|

_ i [Ny NAy| IN-NA|
= WA WA | TR M N A A NG R A
INF| [N~
(Were | - | denotes the cardinality of a set.) However, the above quality evalu-

ation ¢] for o could only be computed after knowing the correct classification
{NT,N~} of the dataset N. We would obviously prefer a quality evaluation
that is computable a priori, that is by knowing the correct classification only
for the training set S. We can do this in two different manners, one for fields
having a known distribution, the other for fields having unknown distribution,
as follows.

In the case of fields for which the hypothesis of a known distribution is satis-
factory, their positive and negative density functions can be computed using the
training set S. Therefore, the above quantities [Ny N A4 |, etc. can be evaluated
by using such density functions. There are also tests for verifying whether a
set of data has a certain distribution (e.g. the x? test) [12]. In particular, for
any continuous-valued field f;, we make the hypothesis of a normal (Gaussian)
distribution. Such distribution is in fact the most common in nature and some-
how describes the majority of continuous real-world values [12]. Denote now by
m (respectively by m;_) the mean value that positive (resp. negative) records
have for f;, by o;+ (resp. by o;—) the (population) standard deviation (defined

as W (resp. %ﬁ?mﬁ ) ) of positive (resp. negative)

records for f;, and suppose w.l.o.g. that cut-point ozz represents a transition
from — to +. By computing the above parameters from the training set .S, our
evaluation of quality ¢/ becomes

(t*mi+)2

a) (t=m;_)?

+

2(0;4)2 dt S 1 — Py
‘{\/271’(0’14» _Lm@ 20i)” dt
— .
S ——
J

=In |1+

— 2 i
(t—mj;_) o’ (177n7’+)2

e 2020 ¢ 1 T 2(opa)?
V2r(oi) | oo A



In case of a discrete-valued field f;, on the contrary, we make the hypothesis
of binomial (Bernoulli) distribution. This should in fact describe many discrete
real-world quantities [12]. Moreover, such distribution is strongly related to the
Poisson distribution, and both may be approximated by normal distribution
when the number of possible values increases. Denote now by m; and M,
(respectively by m;_ and M;_) the minimum and the mazimum value of positive
(resp. negative) values of D; (such values for the positive records may also
coincide with those for the negative ones). Denote also by n;y = M;y — m;4
(resp. by n,— = M;_ — m;_) the number of possible positive (resp. negative)
values for f;, and by p; (resp. p_) the characteristic positive (resp. negative)
probability of success (also called Bernoulli probability parameter, estimated as
|ST|/nit (resp. |S™|/ni—) ). Suppose, again, that cut-point o represents a
transition from — to 4. By computing the above parameters from the training
set S, our evaluation of quality ¢] becomes in this case

3 (M) ) pe)me TR
o) v )Pt Pet > (M) i) (1= pi )t
J _ T Mt t=0
q; = In|1+ iy T -
i\ (. Vt(1— p, Yni-—t i i
i ,Z (V) i) (= pic) > (") i) (1= pig )
=ag —mit =0

On the other hand, in the case of fields having unknown distribution (for instance
fields where one the above mentioned hypothesis are showed inapplicable by one
of the available tests), the expression for ¢/ can be obtained by considering the
J
)

above cardinalities of the sets. Given a cut point «;, in fact, A} and A_ are
clearly known (they respectively are the set of the records which are class + (ozg )
and class — (a)), and the training set S, whose classification is known, is to be
used instead of the generic set N. '

Finally, the quality of each attribute a] over a numerical field f; is that of
its corresponding cut-point a{, that is the defined qf . The approach used for
fields having unknown distribution (considering the training set S instead of N)
is also applicable for evaluating attributes a] over qualitative, or categorical,
fields f;.

4 Reformulation of the Support Set Selection
Problem

Once the quality values for each attribute are computed, the exactly separating
support set selection problem can be modeled as follows. We define the useless-
ness of an attribute as the reciprocal 1/¢! of the quality ¢/. We clearly would
like to minimize the weighted sum of the uselessness of the selected attributes
while selecting at least an attribute for each of the above defined sets I (7“;r Ty )
Moreover, in order to reduce possible overfitting problems, we further penalize
each attribute a] of a field f; such that: i) a] contains a number v of positive
(resp. negative) records of the training set S smaller then or equal to a certain

10



value 7, and #i) the adjacent attributes ag_l and af“ over the same field f;
respectively contain a number p; and ps of negative (resp. positive) records
greater than or equal to a certain value ji. Such penalization is obtained by
summing to the above uselessness of a] a penalty value t! (v, ji1, j12).

We introduce, as usual, a binary variable acf for each a{ , such that

i ] 1 if a{ is retained in the support set
’ 0 if @] is excluded from the support set

Therefore, the following weighted set covering problem should be solved, where
the weights w] = L + ! (v, u1, u2) are non-negative numbers.
a;

s.t. Z ) >1  VI(rf,ry), rTest rmes
(i,j)e[(r;r,r;)
z] € {0,1}

Such formulation takes now into account the individual qualities of the at-
tributes. One may observe that this would discard attributes that have a poor
isolated effect but may have important effect when combined with other at-
tributes during the pattern generation step. However, such selection is neces-
sary for the computational viability of the entire procedure, and the proposed
approach aims at discarding the attributes that appear more suitable to be
discarded.

Moreover, such weighted set covering formulation has strong computational
advantages on a non-weighted one. Available solution algorithms are in fact
considerably faster when the model variables receive different weight coefficients
in the objective function. Depending on the size of the model and on available
computational time, such weighted set covering problem may be either solved
to optimality or by searching for an approximate solution. In the former case,
it is guaranteed that the pattern generation step is performed by using a set of
attributes U which is a minimal set for which no positive and negative records
have the same binary encoding. In the latter case, if the approximate solution
is feasible but non-optimal, it is not guaranteed that U is minimal, i.e. it
may exist also a proper subset U’ C U such that no positive and negative
records have the same binary encoding. This could have the effect of increasing
the computational burden of the pattern generation step, but not of worsening
the classification accuracy. If, on the contrary, the approximate solution is
(slightly) infeasible, U is such that (few) positive and negative records have the
same binary encoding. This could have the effect of accelerating the pattern
generation step, but of decreasing the classification accuracy.

11



5 Implementation and Computational Results

The entire LAD methodology has been implemented in Java. Tests are car-
ried out on a Pentium IIT 733MHz PC. The data-sets used for the experimen-
tations are “Ionosphere”, “Bupa Liver Disorders”,“Breast Cancer Wisconsin”,
and “Pima Indians Diabetes”, from the UCI Repository of machine learning
problems [3].

The first set, Ionosphere, is composed by 351 instances, each having 34
fields (plus the class). In particular, there are 32 real-valued fields and 2 binary
ones. All 32 real-valued fields could be considered having normal distribution,
one binary fields could be considered having binomial distribution, the other is
always 0. They are “data collected by a radar system in Goose Bay, Labrador.
The targets were free electrons in the ionosphere. Good radar returns are those
showing evidence of some type of structure in the ionosphere. Bad returns are
those that do not; their signals pass through the ionosphere.”, from [3].

The second set, Bupa Liver Disorders, is composed by 345 instances, each
having 6 fields (plus the class), all numerical and discrete. However, 4 of them
have a number of possible values high enough, hence 4 field could be considered
having normal distribution, while 2 could be considered having binomial distri-
bution. “The first five fields are blood tests which are thought to be sensitive
to liver disorders that might arise from excessive alcohol consumption. The last
is the number of half-pint equivalents of alcoholic beverages drunk per day.”,
from [3], the class is presence or absence of liver disorders.

The third set, Breast Cancer Wisconsin, is composed by 699 instances. By
eliminating those containing missing values, we obtained 683 instances, each
having 9 fields (plus an identifier and the class), all numerical and discrete. All
could be considered having binomial distribution. They represent data from
the breast cancer databases of the University of Wisconsin Hospitals, Madison,
Wisconsin. In particular, fields are the characteristics of the breast cancer, such
like “Clump Thickness, Uniformity of Cell Size, etc., and the classification is
either benign or malignant” [3].

The fourth set, Pima Indians Diabetes, is composed by 768 instances, each
having 8 fields (plus the class). In particular, there are 2 real-valued fields and
6 integer ones. However, since 3 integer fields have a number of possible val-
ues high enough, 5 field could be considered having normal distribution, while
3 could be considered having binomial distribution. Fields are medical infor-
mations about “females patients of Pima Indian heritage living near Phoenix,
Arizona, the class is whether the patient shows signs of diabetes” [3].

The quality values ¢/ are numerically approximated by using C functions
[20]. Penalties (v, i1, p2) have been set to 1/10 of the average uselessness
values 1/qf of field f; when v <1 and p1, e > 5, to 0 otherwise.

Tests are conducted as follows. A certain number of record instances, rep-
resenting respectively about 15%, 20%, 25%, 30% of the total, are randomly
extracted from the data-set, and used as training set. The rest of the data-set
constitutes the test-set. Such extraction is performed 10 times, and the results

12



reported in the following tables are averaged on the 10 trials. The weighted
set covering problems are solved both by means of ILOG Cplex [13] state-of-
the-art implementation of the branch-and-cut procedure [19], and by means of a
Lagrangean-based subgradient heuristic for set covering problems (see e.g. [10]).
We therefore report percentages of correct classification on test set (Accur.) for:

e the standard LAD procedure solving the non-weighted set covering prob-
lems to optimality using branch-and-cut (LAD_I);

e the modified LAD procedure solving the weighted set covering problems
to optimality using branch-and-cut (LAD_II);

e the modified LAD procedure solving the weighted set covering problems

by finding a feasible sub-optimal solution using Lagrangean subgradient
heuristic (LAD_III).

We also report computational times in seconds required by the whole procedure,
specifying in parenthesis the percentage of time spent for solving the support
set selection problem. A time limit of 3600 seconds (1h) was set for the whole

procedure, when exceeded we report -'.

Training

LAD.I LAD.II LAD_III
Set Accur. Time Accur. Time Accur. Time
53/351 | 80.8% | 480.8 (97%) | 82.1% | 18.2 (89%) | 82.0% | 180.2 (53%)
70/351 | 81.5% | 562.3 (98%) | 84.3% | 20.0 (90%) | 84.8% | 222.0 (42%)
88/351 | 83.1% | 357.7 (97%) | 87.0% | 129.0 (87%) | 86.8% | 3461.0 (20%)
115/351 - - 90.6% | 2163.0 (11%) : -
Table 4: Results on Ionosphere (average on 10 trials).
Training LAD_I LAD_II LAD_III
Set Accur. Time Accur. Time Accur. Time
52/345 | 58.6% 35.0 (90%) 62.3% 40.8 (95%) 62.5% 80.5 (79%)
69/345 | 59.5% 50.2 (94%) 63.9% 66.0 (93%) 64.0% 58.2 (94%)
86/345 | 60.2% | 326.0 (90%) | 65.3% | 145.2 (90%) | 65.1% | 190.8 (16%)
110/345 | 61.2% | 1886.4 (96%) | 65.0% | 430.0 (78%) - B
Table 5: Results on Bupa Liver Disorders (average on 10 trials).
Training LAD_I LADI LAD_III
Set Accur. Time Accur. Time Accur. Time
102/683 | 91.1% 7.5 (97%) 92.3% 9.9 (96%) 92.0% 14.2 (97%)
137/683 | 93.4% 10.0 (97%) 94.0% 15.8 (97%) 94.2% 15.8 (98%)
170/683 | 93.5% 37.9 (98%) 94.4% 20.0 (97%) 94.4% 480.0 ( 5%)
205/683 | 94.1% | 409.0 (59%) | 95.1% | 107.5 (52%) | 95.1% | 1865.0 ( 3%)

Table 6: Results on Breast C

ancer Wisconsin (average on 10 trials).

Training LAD_I LAD_II LAD_III

Set Accur. Time Accur. Time Accur. Time
115/768 | 63.3% | 3550.0 (98%) | 65.0% 230.1 (90%) 65.0% | 2840.0 (10%)
154/768 - - 68.2% 372.5 (92%) 68.5% | 3605.0 ( 8%)
192/768 - - 70.1% | 1108.0 (28%) - -

Table 7: Results on Pima Indians Diabetes (average on 10 trials).
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Test results are reported in Tables 4-7 and also plotted for comparison in Figure
3, limiting the representation to LAD_I and LAD_II in order to compare under
the same conditions (problems solved to optimality).

As a general result, the effort invested in evaluating the quality of the vari-
ous binary attributes returns a superior classification accuracy with respect to
the standard procedure. Results are anyway of good quality, since, using much
larger training set (very often 50% of the data-set or more), the best results
presented in the literature on Ionosphere are between 90-95% (e.g. Smooth
Support Vector Machine [17], C4.5 [21]), between 65-75% on Bupa Liver Dis-
orders (e.g. Backpropagation Neural Networks [9]), around 90-95% on Breast
Cancer Wisconsin (e.g. LMDT [7]), around 70-75% on Pima Indians Diabetes
(e.g. ITT [24]). For detailed comparisons see also [11]. Note also that an impor-
tant additional advantage of a logic-based procedure such as LAD is to provide
patterns as understandable rules governing the analyzed phenomenon, whereas
other methodologies cannot provide similar interpretations.

lonosphere Bupa Liver Disorders
+  100% = 100%
2 95% g os%
= 90% £ 90%
o 8% S 8%
= ?23? H 5%0 —o— Standard LAD
= o o ( .
S 70% S 70% —=— Modified LAD
2 65% p 6%
3 60% Z 60%
S 5% g %%
U]:j 50% (f:) 50% - T T T T
~ ~ ~ ~ L) o o )
PO S O A O
& AN © N o' © © N
Training set used Training set used
Breast Cancer Wisconsin Pima Indians Diabetes
< 100% £ 100%
2 95% 2 95%
= 90% £ 90%
3 85% S 85%
= 80% = 80% —o— Standard LAD
=] 75% =] 75% i
S 70% S 710% —a— Modified LAD
n 65% n 65%
3 60% S 60%
S 55% S 55%
F 50%d 2 0%
P B B D S & &
© © © © A A &
vy S & K
I NN <
Training set used Training set used

Figure 3: Classification accuracy for standard and modified LAD procedures
using 10 cross validation.
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From the computational point of view, on the other hand, it can be clearly
observed, from Tables 4-7, that weighted set covering problems are solved in
times which are much shorter than those needed for the corresponding non-
weighted ones. Moreover, when the support set selection problem is not solved
to optimality, hence the selected support set retains more binary attributes than
it would be strictly needed for an exact separation, the accuracy sometimes
slightly increases. However, time needed for the second part of the procedure
increases substantially. Therefore, this latter approach appears useful only for
very small dataset.

Finally, it can be noticed that the proposed approach is quite effective also
when using very reduced training sets. In such case, indeed, a careful selection of
the binary attributes to be included in the support set becomes more important.
Such characteristic can be of interests in several practical problems were the
availability of already classified records is scarce or costly.

6 Conclusions

Among the various approaches to the classification problem, the methodology
of the logical analysis of data (LAD) is considered. Such procedure exhibits
functional advantages on other techniques, given by the production of under-
standable and checkable Boolean theories on the analyzed data. Nevertheless,
an aspect which is not completely satisfactory consists in the solution of the
support set selection problem. Such operation does not increase accuracy but is
necessary for computational viability. We propose here a technique for evaluat-
ing the quality of each attribute, among which the support set must be selected.
Thus, a weighted set covering problem for the selection of the optimal support
set is solved. Testable statistical hypothesis on the distributions of numerical
fields can be used. Accuracy of the modified LAD procedure is compared to
that of the standard LAD procedure on datasets of the UCI repository. The
presented techniques are able to increase the classification accuracy. In particu-
lar, fairly good results can be achieved by using very reduced training sets. Such
advantage can be of interests in several practical problems were the availability
of already classified records is scarce. The proposed weighted set covering model
has also strong computational advantages on a non-weighted one. This allows
a sensible speed-up of the whole classification procedure. As a consequence,
larger data sets can be considered.
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