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Abstract

The paper is concerned with the problem of automatic detection and correction of
inconsistent or out of range data in a general process of statistical data collecting.
The proposed approach is able to deal with hierarchical data containing both qual-
itative and quantitative values. As customary, erroneous data records are detected
by formulating a set of rules. Erroneous records should then be corrected, by mod-
ifying as less as possible the erroneous data, while causing minimum perturbation
to the original frequency distributions of the data. Such process is called imputa-
tion. By encoding the rules with linear inequalities, we convert imputation problems
into integer linear programming problems. The proposed procedure is tested on a
real-world case of census. Results are extremely encouraging both from the compu-
tational and from the data quality point of view.
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1 Introduction

When dealing with a large amount of collected information, a well-known
relevant problem arises: perform the requested elaboration without being mis-
led by erroneous data. Data correctness is a crucial aspect of data quality,
and, in practical cases, it has always been a very computationally demanding
problem. This paper is concerned with the problem of automatic detection
and correction of inconsistent or out of range data in a general process of
statistical data collecting. Examples of data collecting are cases of statisti-
cal investigations, marketing analysis, experimental measures, etc. Without
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loss of generality, our attention will be focused on the problem of a census of
population carried out by collecting questionnaires. Note, however, that the
proposed methodology is general, in the sense that it can process any type
of data, because it operates only at the formal level, and it is not influenced
by the meaning of processed data. A census is a particularly relevant process
and actually constitutes the most fundamental source of information about a
country, and the processing of census data is in general a difficult task for an
imputation procedure [18]. Errors, or, more precisely, inconsistencies between
answers or out of range answers, can be due to the original compilation of the
questionnaire, or introduced during any later phase of information conversion
or processing.

As customary for structured information, data are organized into units called
records. A record has the formal structure of a set of fields. Giving each field
a value, we obtain a record instance, or, simply, a record [17]. In the case of
a Census, each data unit (a family) is composed by more sub-units (persons).
Data having such characteristic are called hierarchical data. The problem of
error detection is generally approached by formulating a set of rules that the
records must respect in order to be declared correct. A record not respecting all
the rules is declared erroneous. In the field of database theory, rules are also
called integrity constraints [17]. Integrity constraints are verified by correct
records, and are generally checked before inserting a record into the database.
In the field of statistics, rules are often called edits [7]. Edits express the
error condition, being verified by erroneous records. In order to simplify our
exposition, we consider here rules that are verified by correct questionnaires.
Clearly, rules can easily be converted from one representation to the other.

Given an erroneous questionnaire, the problem of error correction is usually
tackled by changing some of its values, obtaining a corrected questionnaire
which satisfies the above rules and is as close as possible to the (unknown)
original questionnaire (the one we would have if we had no errors). Such pro-
cess is called data imputation. Many software systems deal with the problem
of questionnaires correction, by using a variety of different edits encoding
and solution algorithm (e.g. [1,5,10,14,15,20]). A very well-known approach
to the problem, which implies the generation of all the rules logically implied
by the initial set of rules, is due to Fellegi and Holt [7]. In practical case,
however, such methods suffer from severe computational limitations [15,20].
Computational efficiency could sometimes be obtained only by sacrificing the
data quality issue. Another serious drawback is that simultaneous processing
of quantitative and qualitative fields is seldom allowed. A large monographic
section on mathematical approaches to the problem is in [6]. Mathematical
programming approaches for the case of data having only continuous fields
have already been proposed, e.g. [16]. Recently, a declarative semantics for
the imputation problem has been proposed in [8], as an attempt to give an
unambiguous formalization of the meaning of imputation and of the behav-
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ior of the various imputation systems. Another logic-based approach to the
problem is in [9].

A new automatic procedure for data imputation, capable of handling also hier-
archical data, simultaneously operating on both qualitative and quantitative
fields, and based on the use of a discrete mathematical model, is here pre-
sented. In an earlier paper, an imputation procedure for the case when all the
rules are expressed by using propositional logic is already developed [4]. That
would not suffice when dealing with rules containing also mathematical opera-
tors. The effectiveness of a discrete mathematical approach is also showed, for
a similar problem, by the theory of Logical Analysis of Data ([2] among other
papers). By encoding the rules into linear inequalities, as explained in Section
2, integer programming models of the imputation problem can be given. Note
that, since a very precise syntax for writing the rules was developed, such
encoding could be automatically performed. A sequence of integer program-
ming problems, as described in Section 3, is therefore solved by means of a
state-of-the-art integer programming solver (ILOG Cplex 2 ). Moreover, due
to the peculiar problem’s structure, the efficient use of a separation routine
for set covering problems was possible [13]. The proposed procedure is tested
by executing the process of error detection and correction in the case of real
world census data, as shown in Section 4. The practical behavior of the pro-
posed procedure is evaluated both from the computational and from the data
quality point of view. The latter analysis is carried out by means of recognized
statistical indicators [11]. The overall software system developed for data im-
putation, called DIESIS (Data Imputation Editing System - Italian Software)
is also described in [3].

2 Encoding Rules into Linear Inequalities

In Database theory, a record schema R is a set of fields {f1, . . . , fh}. A record
instance r is a set of values {v1, . . . , vh}, one for each of the above fields. In
the case of a Census, each record contains the answers given in one ques-
tionnaire by an entire household. A household consists in a set of individuals
I = {1, . . . , l} living together in the same housing unit. We assume l pre-
defined in our model, since data are generally subdivided into several data
sets having the same number l of individuals per family. Such data sets are
then processed independently. Census data are therefore called hierarchical
data, i.e. data with records composed by more sub-units (the individuals). We
generally consider for every individual the same set of fields F = {f1, . . . , fm}.
Considering all such fields for all such individuals, we have the following kind

2 More informations available at www.cplex.com.
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of record structure, that we will also call questionnaire structure Q.

Q = {f 1
1 , . . . , f 1

m, . . . f l
1 , . . . , f l

m}

A questionnaire instance q, or, simply, a questionnaire, is therefore the follow-
ing.

q = {v 1
1 , . . . , v 1

m, . . . v l
1, . . . , v

l
m}

Example 2.1. In the case of a census, fields are for instance age or marital
status, corresponding examples of values are 18 or single.

Each field f i
j , with i = 1 . . . l, j = 1 . . .m, has a domain D i

j , which is the
set of every possible value for that field. Since we are dealing with errors,
the domains include all values that can be found on questionnaires, even the
erroneous ones. Fields are usually distinguished in quantitative and qualitative
ones. A quantitative field is a field on whose values are applied (at least some)
mathematical operators (e.g. >, +), hence such operators should be defined
on its domain. Examples of quantitative fields are numbers (real or integer
numbers, and we respectively speak of continuous or discrete fields), or even
the elements of an ordered set. A qualitative field simply requires its domain
to be a discrete set with finite number of elements. We are not interested here
in considering fields ranging over domains having a non-finite number of non-
ordered values. The proposed approach is able to deal with both qualitative
and quantitative values.

Example 2.2. For the qualitative field marital status, answer can vary on
a discrete set of possibilities in mutual exclusion, or, due to errors, be missing
or not meaningful (blank).

D i
marital status = {single, married, separate,divorced, widow, blank}

For the quantitative discrete field age, due to errors, the domain is

D i
age = Z ∪ {blank}

A questionnaire instance q is declared correct if and only if it respects a set
of rules R = {r1, . . . , rp}. Each rule can be seen as a mathematical function
rs from the Cartesian product of all the domains (the questionnaire space) to
the Boolean set {0,1}.

rs : D 1
1 × . . . × D 1

m × . . . × D l
1 × . . . × D l

m → {0, 1}
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Rules are such that q is a correct questionnaire if and only if rs(q) = 1 for
all s = 1, . . . , p. Rules should be expressed according to some syntax. In our
case, each rule is expressed as a disjunction (∨) of conditions, also called
propositions (pv). Conditions can also be negated (¬pv). Therefore, rules have
the structure of clauses (i.e. a disjunction of possibly negated propositions). By
introducing, for each rule rs, the set πs of the indices of the positive conditions
and the set νs of the indices of the negative conditions, rs can be written as
follows.

∨
v∈πs

pv ∨
∨

v∈νs

¬pv (1)

Since all rules must be respected, a conjunction (∧) of conditions is simply
expressed using a set of different rules, each made of a single condition. As
known, all other logic relations between conditions (implication ⇒, etc.) can
be expressed by using only the above operators (∨, ∧, ¬). Differently from the
case of propositional logic, conditions have an internal structure. We need to
distinguish between two different structures. A condition involving values of a
single field is here called a logical condition. A condition involving mathemat-
ical operations between values of fields is here called mathematical condition.

Example 2.3. A logical condition is, for instance, (age < 14) , or (marital
status = married). A mathematical condition is, for instance: (age - years
married ≥ 14).

We call logical rules the rules expressed only with logical conditions, math-
ematical rules the rules expressed only with mathematical conditions, and
logic-mathematical rules the rules expressed using both type of conditions.

A special case of logical rules are the ones delimitating the feasible domain◦
D i

j ⊆ D i
j of every field. Very often, in fact, some values of the domain are not

acceptable, regardless of values of all other fields. They are called out-of-range
values. By removing the out-of-range values from a domain D i

j we have the

feasible domain
◦
D i

j .

Example 2.4. A logical rule expressing that all people declaring to be married
should be at least 14 years old is:

¬(marital status = married) ∨ ¬(age < 14)

Rules delimitating the feasible domain for the field age are for instance:

(age ≥ 0), (age ≤ 110), ¬(age = blank)
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One can observe that, depending on the rules, some values (e.g. age 32 or 33)
appear to have essentially the same effect on the correctness of a questionnaire.
Formally, we say that two values v′ i

j and v′′ i
j are equivalent from the rules’ point

of view when, for every couple of questionnaires q′ = {v 1
1 , . . . , v′ i

j , . . . , v
l
m} and

q′′ = {v 1
1 , . . . , v′′ i

j , . . . , v
l
m} having all values identical except for field f i

j , q′

and q′′ are either both correct or both erroneous:

rs(q
′) = rs(q

′′) for all s = 1, . . . , p

A key point is that we can always partition each domain D i
j into nj subsets

D i
j = S i

j1 ∪ . . . ∪ S i
jnj

in such a way that all values belonging to the same S i
jk are equivalent from the

logical point of view (i.e. considering all and only the rules containing logical
conditions). Such partition is obtained as follows. The values of each domain
D i

j explicitly appearing in the logical conditions are called breakpoints, or cut-
points, for D i

j . They represent logical watersheds among the values of D i
j . Their

set will be denoted by B i
j . Domain D i

j can now be cut in correspondence of each
breakpoint in order to obtain subsets (which are intervals for continuous fields,
sequences of values for discrete fields, sets of values for qualitative fields). By
furthermore merging possibly equivalent subsets, which are detected by using
again the set of rules, we obtain the above mentioned partition.

A subset for the out-of-range values is always present. Moreover, the value
for some field can be the missing value. Such value is described as blank, and,
depending on the field, can belong or not to the feasible domain. If the blank
answer belongs to the feasible domain (such as the case of years married,
which should be blank for unmarried people), the subset blank is also present.
Otherwise, it belongs to the out-of-range subset.

Example 2.5. Consider domain D i
age, together with an hypothetic set of rules

R (including those of Example 2.4.) such that the set of obtained breakpoints
is

B i
age = {0, 14, 18, 26, 110, blank}

From R, values below 0 or above 110 are out-of-range, and the blank answer
does not belong to the feasible domain, hence belongs to the out-of-range

subset. Therefore, by using again R for deciding whether each breakpoint is
the upper value of a subset or the lower one of the next subset, we have the
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following subsets.

S i
age 1 = {0, . . . , 13}, S i

age 2 = {14, . . . , 17},
S i
age 3 = {18, . . . , 25}, S i

age 4 = {26, . . . , 110}
S i
age 5 = {. . . ,−1} ∪ {111, . . .} ∪ {blank}

Now, the variables of our mathematical model can be defined. They are a set
of l × m integer variables z i

j ∈ {0, . . . , U}, one for each domain D i
j , a set of

l(n1+ . . .+nm) binary variables x i
jk ∈ {0, 1}, one for each subset S i

jk, and a set
of l(n1 + . . . + nm) binary variables x̄ i

jk ∈ {0, 1}, which are the complements
of the x i

jk. We represent each value v i
j of the questionnaire with an integer

variable z i
j , by defining a mapping ϕ i

j (a different mapping for each field)
between values of the domain and integer numbers between 0 and an upper
value U . U is the same for all domains, and such that no elements of any
feasible domain maps to U .

ϕ i
j : D i

j → {0, . . . , U}
v i

j 
→ z i
j

Mapping for integer domains is straightforward. We approximate real domains
with rational domains and then map them on the set of integer positive num-
bers. Qualitative domains also are mapped on the set of integer numbers by
choosing an ordering. The integer variables are therefore:

z i
j = ϕ i

j (v
i
j )

Note that, in the case of the considered application, values were wanted to
be integer. However, variables z i

j are not structurally bounded to be integer.
All the out-of-range values map to the greater number used U . The blank

value, when belonging to the feasible domain, is encoded with the integer value
η i

j immediately consecutive to the greatest value of the encoding of the rest

of the feasible domain
◦
D i

j \ blank. Note that η i
j < U is always required.

The membership of a value v i
j to the subset S i

jk is encoded by using the binary
variables x i

jk.

x i
jk =




1 when v i
j ∈ S i

jk

0 when v i
j �∈ S i

jk

Finally, the complementary binary variables x̄ i
jk are bound the former ones by

the following so-called coupling constraints.

x̄ i
jk + x i

jk = 1
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The presence of the complementary variables is motivated by algorithmic is-
sues (see Section 4). Integer and binary variables are linked by using a set of
linear inequalities called bridge constraints. They impose that, when z i

j has a
value such that v i

j belongs to subset S i
jk, the corresponding x i

jk is 1 and all
others binary variables {x i

j1 . . . x i
jk−1, x

i
jk+1 . . . x i

jnj
} are 0.

By using the above variables all the above mentioned rules can be expressed.
Logic conditions pv are expressed by using the binary variables x i

jk or x̄ i
jk,

mathematical conditions pv are expressed by using the integer variables z i
j .

Rules involving more than one individual (called interpersonal rules) are ex-
pressed by using the opportune variables for the different individuals. By doing
so, each logical rule rs having the structure (1) of a clause can be written as
the following linear inequality

∑
i,j,k∈πs

x i
jk +

∑
i,j,k∈νs

x̄ i
jk ≥ 1

Moreover, with a commonly used slight abuse of notation, let x, x̄ and z be the
vectors respectively made of all the components x i

jk, x̄
i
jk and z i

j , i = 1, . . . , l,
j = 1, . . . , m, k = 1, . . . , nj . By introducing the incidence vectors aπ

s and aν
s

respectively of the set of the positive conditions πs and of set of the negative
conditions νs, each logical rule can be expressed with the following vectorial
notation.

aπ
s x + aν

s x̄ ≥ 1

The only difference when mathematical conditions are present is that they
do not correspond to binary variables but to operations between the integer
variables. We limit mathematical rules to those which are linear or linearizable.
In particular, we allow rules composed by a division or a multiplication of two
variables. For a digression on linearizable inequalities, see for instance [19].
Occasionally, further binary variables are introduced, for instance to encode
disjunctions of mathematical conditions. Note, moreover, that a very precise
syntax for rules was developed. Therefore, the encoding into linear inequalities
could be performed by means of an automatic procedure.

Example 2.6. Consider the following logical rule for all the individuals.

¬(marital status = married) ∨ ¬(age < 14)

By substituting the logical variables, we have the logic formula x̄ i
marital status {married}∨

x̄ i
age {0..13}, i = 1, . . . , l. This becomes the following linear inequalities:

x̄ i
marital status {married} + x̄ i

age {0..13} ≥ 1 i = 1, . . . , l
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Consider now the following logic-mathematical rule for all the individuals.

¬(marital status = married) ∨ (age− years married ≥ 14)

By substituting the logical and integer variables, we have x̄ i
marital status {married}∨

(z i
age − z i

years married ≥ 14), i = 1, . . . , l. This becomes the following linear in-
equalities:

Ux̄ i
marital status {married} + z i

age − z i
years married ≥ 14 i = 1, . . . , l

Finally, the following interpersonal mathematical rule between individual 1
and 2

age (of 1) − age (of 2) ≥ 14

becomes the linear inequality

z 1
age − z 2

age ≥ 14

Evidently, rules involving more than one record cannot be directly expressed
by means of the above variables. However, quite often, this problem can be
solved as follows. In the case when the inter-record rule involves fields which are
obtained from the whole data set, such as a mean value, this can be considered
constant and introduced as an additional field in each record for which the
rule should be valid. In the case when such constant assumption cannot be
done, on the contrary, an augmented record containing all the data that should
be imputed together should be generated, although this may clearly increase
computational times.

Altogether, from the set of rules, a set of linear inequalities is obtained (to
which the coupling constraints and the bridge constraints are added). From
the set of answers to a questionnaire, values for the introduced variables are
given. By construction, all and only the variable assignments corresponding
to correct questionnaires satisfy all the linear inequalities, hence the linear
system




Aπx + Aν x̄ ≥ 1

Bπx + Bν x̄ + Bz ≥ b

x + x̄ = 1

z i
j ∈ {0, . . . , U}, i = 1 . . . l, j = 1 . . .m

x i
jk, x̄

i
jk ∈ {0, 1}, i = 1 . . . l, j = 1 . . .m, k = 1 . . . nj

(2)

The coefficient matrices Aπ, Aν are given by encoding the logical rules, Bπ, Bν , B
and b are given by encoding mathematical and logic-mathematical rules, and
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also by any other additional constraints such as the bridge constraints. Briefly,
even if slightly improperly, a questionnaire q must satisfy (2) to be correct.

3 Modeling the Problems

After a phase of rules validation, were the system (2) is checked to be feasible
and to have more than one solution, detection of erroneous questionnaires qe

trivially becomes the problem of testing if the variable assignment correspond-
ing to a questionnaire instance q satisfies (2).

When detected an erroneous questionnaire qe, the imputation process consists
in changing some of its values, obtaining a corrected questionnaire qc which
satisfies the system (2) and is as close as possible to the (unknown) original
questionnaire qo (the one we would have if we had no errors). In order to reach
this purpose, two general principles should be followed during the imputation
process: to apply the minimum changes to erroneous data, and to modify as
less as possible the original frequency distribution of the data [7]. Generally,
a cost for changing each value of qe is given, based on the reliability of the
field, according to a previous statistical analysis of the data which cannot
be described here. It is assumed that, when error is something unintentional,
the erroneous fields are the minimum-cost set of fields that, if changed, can
restore consistency. Questionnaire qe corresponds to a variable assignment. In
particular, we have a set of l(n1 + . . . + nm) binary values e i

jk and a set of
l × m integer values g i

j . We have a cost c i
jk ∈ IR+ for changing each e i

jk, and
a cost c̃ i

j ∈ IR+ for changing each g i
j

{c 1
1 1, . . . , c

1
1 n1

, . . . , c 1
m 1, . . . , c

1
m nm

. . . c l
1 1, . . . , c

l
1 n1

, . . . , c l
m 1, . . . , c

l
m nm

}
{c̃ 1

1 , . . . , c̃ 1
m . . . c̃ l

1, . . . , c̃
l
m}

The questionnaire qc that we want to obtain corresponds to the values of
the variables (x i

jk, x̄ i
jk, and z i

j ) at the optimal solution of the integer linear
programming problems described below.

The problem of error localization is to find a set V of fields of minimum total
cost such that qc can be obtained from qe by changing (only and all) the values
of V . Imputation of actual values of V can then be performed in a deterministic
or probabilistic way. This causes the minimum changes to erroneous data, but
has little respect for the original frequency distributions.

A donor questionnaire qd is a correct questionnaire which should be as close
as possible to qo. Questionnaire qd corresponds to a variable assignment. In
particular, we have a set of binary values d i

jk and a set of integer values f i
j .
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Donors are selected according to an opportune distance function specified by
the user.

δ : (qe, qd) → IR+

The problem of imputation through a donor is to find a set W of fields of
minimum total cost such that qc can be obtained from qe by copying from the
donor qd (only and all) the values of W . This is generally recognized to cause
low alteration of the original frequency distributions, although changes caused
to erroneous data may be not minimum. We are interested in solving both of
the above problems, and in choosing for each questionnaire the solution having
the best quality.

Let us introduce l(n1 + . . . + nm) binary variables y i
jk ∈ {0, 1} representing

the changes we introduce in e i
jk.

y i
jk =




1 if we change e i
jk

0 if we keep e i
jk

Furthermore, only in the case of imputation through a donor, let us introduce
l × m binary variables w i

j ∈ {0, 1} representing the changes we introduce in
g i

j .

w i
j =




1 if we change g i
j

0 if we keep g i
j

The minimization of the total cost of the changes can be expressed with the
following objective function (where the terms c̃ i

jw
i
j appear only in the case of

imputation through a donor).

min
y i

jk
,w i

j∈{0,1}

l∑
i=1

m∑
j=1

nj∑
k=1

c i
jky

i
jk +

l∑
i=1

m∑
j=1

c̃ i
jw

i
j (3)

However, the constraints (2) are expressed by means of variables x i
jk, x̄ i

jk, and
z i

j . A key issue is that there is a relation between variables in (2) and variables
in (3). In the case of error localization, this depends on the values of e i

jk, as
follows:

y i
jk =




x i
jk (= 1 − x̄ i

jk) if e i
jk = 0

1 − x i
jk (= x̄ i

jk) if e i
jk = 1

In fact, when e i
jk = 0, to keep it unchanged means to put x i

jk = 0. Since we
do not change, y i

jk = 0. On the contrary, to change it means to put x i
jk = 1.

Since we change, y i
jk = 1. Altogether, y i

jk = x i
jk. When, instead, e i

jk = 1, to
keep it unchanged means to put x i

jk = 1. Since we do not change, y i
jk = 0. On
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the contrary, to change it means to put x i
jk = 0. Since we change, y i

jk = 1.
Altogether, y i

jk = 1 − x i
jk.

By using the above results, we can rewrite the objective function (3). There-
fore, the problem of error localization can be modeled as follows, where the
objective function and a consistent number of constraints have a set covering
structure (see for instance [12]).

min
x i

jk
,x̄ i

jk
∈{0,1}

l∑
i=1

m∑
j=1

nj∑
k=1

(1 − e i
jk)c

i
jkx

i
jk +

l∑
i=1

m∑
j=1

nj∑
k=1

e i
jkc

i
jkx̄

i
jk

Subject to




Aπx + Aν x̄ ≥ 1

Bπx + Bν x̄ + Bz ≥ b

x + x̄ = 1

z i
j ∈ {0, . . . , U}, i = 1 . . . l, j = 1 . . .m

x i
jk, x̄

i
jk ∈ {0, 1}, i = 1 . . . l, j = 1 . . .m, k = 1 . . . nj

(4)

Conversely, in the case of imputation through a donor, relation between x i
jk

and y i
jk depends on the values of e i

jk and d i
jk.

y i
jk =




x i
jk (= 1 − x̄ i

jk) if e i
jk = 0 and d i

jk = 1

1 − x i
jk (= x̄ i

jk) if e i
jk = 1 and d i

jk = 0

0 if e i
jk = d i

jk

In fact, when e i
jk = 0 and d i

jk = 1, not to copy the element means to put
x i

jk = 0. Since we do not change, y i
jk = 0. On the contrary, to copy the element

means to put x i
jk = 1. Since we change, y i

jk = 1. Altogether, y i
jk = x i

jk. When,
instead, e i

jk = 1 and d i
jk = 0, not to copy the element means to put x i

jk = 1.
Since we do not change, y i

jk = 0. On the contrary, to copy the element means
to put x i

jk = 0. Since we change, y i
jk = 1. Altogether, y i

jk = 1 − x i
jk. Finally,

when e i
jk = d i

jk, we cannot change e i
jk, hence y i

jk = 0.

Note, however, that even when we do not change x i
jk from e i

jk to d i
jk, we

still could need to change z i
j from g i

j to f i
j . For instance, this could help in

satisfying some mathematical constraints without changing too many values.
In order to guide the choice of values for z i

j , information obtained by the x i
jk

variables is used. We take for z i
j the value of the donor when a) changes on

the x i
jk are made, or b) when, even if for all k the x i

jk do not change, we need

12



to take f i
j instead of g i

j .

z i
j =




g i
j if ∀k ∈ {1, . . . , nj} y i

jk = 0 and w i
j = 0

f i
j if ∃k ∈ {1, . . . , nj} : y i

jk = 1 or if w i
j = 1

For each z i
j , nj quantities v i

jk are defined. They are 0 or 1 when the corre-
sponding y i

jk are 0 or 1.

v i
jk = (x i

jk(1 − e i
jk) d i

jk) + ((1 − x i
jk) e i

jk(1 − d i
jk))

we have that the condition ∃k ∈ {1, . . . , nj} : y i
jk = 1 becomes

∑
k v i

jk = 2, and
that the condition ∀k ∈ {1, . . . , nj} y i

jk = 0 becomes
∑

k v i
jk = 0. Therefore, z i

j

is f i
j when

∑
k v i

jk = 2, and we need to choose between f i
j and g i

j otherwise.

By using the above, we can rewrite the objective function (3). Therefore, the
problem of imputation through a donor can be modeled as follows. Again, the
objective function and a consistent number of constraints have a set covering
structure.

min
x i

jk , x̄ i
jk ∈ {0, 1},

w i
j ∈ {0, 1}

l∑
i=1

m∑
j=1

nj∑
k=1

(1 − e i
jk)d

i
jkc

i
jkx

i
jk +

l∑
i=1

m∑
j=1

nj∑
k=1

e i
jk(1 − d i

jk)c
i
jkx̄

i
jk+

+
l∑

i=1

m∑
j=1

c̃ i
jw

i
j

Subject to




Aπx + Aν x̄ ≥ 1

Bπx + Bν x̄ + Bz ≥ b

x + x̄ = 1

z i
j = f i

j (w i
j +

∑
k

v i
jk

2
) + g i

j (1 − w i
j −

∑
k

v i
jk

2
) i = 1 . . . l, j = 1 . . .m

w i
j ≤ 1 −

∑
k

v i
jk

2
i = 1 . . . l, j = 1 . . .m

z i
j ∈ {0, . . . , U}, i = 1 . . . l, j = 1 . . .m

x i
jk, x̄

i
jk ∈ {0, 1}, i = 1 . . . l, j = 1 . . .m, k = 1 . . . nj

w i
j ∈ {0, 1}, i = 1 . . . l, j = 1 . . .m

(5)

The presence of the group of covering constraints and of that of equalities con-
straints allows the use of an additional separation routine during the branch-
and-cut solution of the above described models.
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4 Solving the Problems

The practical behavior of the proposed procedure is evaluated both from the
computational and from the data quality points of view, as follows. Two large
data sets representing correct questionnaires were initially perturbed by intro-
ducing errors. After this, detection of erroneous questionnaires was performed,
as a trivial task. The proposed procedure is then used for the imputation of
such erroneous questionnaires.

Data used for experimentations arise from the Italian Census of Population
1991. They consist in 45,716 four-person households and 20,306 six-person
households (from a single region). Data perturbation consists in randomly
introducing non responses (blank answers or out-of-range answers) or other
valid responses (other values belonging to the feasible domain). In each data
set the demographic fields relation to head of the house, sex, marital
status, age, years married were perturbed at the four different increasing
error levels (50, 100, 150, 200) described in Table 1.

Level Perturbation relat. sex mar.st. age y.marr.

non resp. 0.26 0.25 0.65 0.20 0.85
050

other valid resp. 2.04 1.59 1.00 1.61 0.15

non resp. 0.52 0.50 1.30 0.40 1.70
100

other valid resp. 4.08 3.17 2.00 3.22 0.30

non resp. 0.78 0.75 1.95 0.60 2.55
150

other valid resp. 6.12 4.76 3.00 4.83 0.45

non resp. 1.04 1.00 2.60 0.80 3.40
200

other valid resp. 8.16 6.34 4.00 6.44 0.60

Table 1: Percentages of non responses or other valid responses artificially in-
troduced in the affected fields.

The following eight different data sets are therefore obtained:

(4 050, 4 100, 4 150, 4 200, 6 050, 6 100, 6 150, 6 200)

The set of rules used for experimentations are real rules, developed by experts
of the Italian Statistic Office. Note that the possibility of using a large set
of rules is required for improving the accuracy of an imputation procedure.
The considered set is in fact quite large compared to other census cases, and
consist in:
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32 logic individual rules (to be repeated for each individual i ∈ I);
35 logic interpersonal with 2 individuals rules (to be repeated for each couple

of individuals (i, i′) ∈ I);
2 logic interpersonal with 3 individuals rules (to be repeated for each triple

of individuals (i, i′, i′′) ∈ I);
1 logic-mathematic individual rule (to be repeated for each individual i ∈ I);

55 logic-mathematical interp. with 2 ind. rules (to be repeated for each couple
of individuals (i, i′) ∈ I);

2 logic-mathematical interp. with 3 ind. rules (to be repeated for each triple
of individuals (i, i′, i′′) ∈ I);

1 logic-mathematical interp. with 4 ind. rule (to be repeated for each quadru-
ple of individuals (i, i′, i′′, i′′′) ∈ I).

For each erroneous questionnaire qe, the error localization problem (4) is solved
at first, obtaining a value z�

loc of the cost function. After this, a number σ(qe)
of donor questionnaires is used. Such donors {qd

1 , . . . , q
d
σ} are selected among

the correct records of the data set, by choosing the nearest ones to qe, accord-
ing to our distance function δ. Consequently, for each erroneous questionnaire
qe, σ(qe) problems of imputation through a donor (5) are solved, obtaining
σ(qe) values {z�

imp 1, . . . , z
�
imp σ} for the cost function. By construction, such

values are all greater than or equal to z�
loc. The corrected questionnaire qc is

finally obtained by choosing the best result among such imputations through
a donor, as the one having the smallest value for the described cost function.
Moreover, the number σ(qe) is increased when the quality of the above imputa-
tions through a donor is not satisfactory. The quality is not satisfactory when
the values {z�

imp 1, . . . , z
�
imp σ} are all higher than z�

loc multiplied by a fixed
parameter s > 1. This means that the donors selected so far are not good,
and therefore other donors should be selected for qe. In this experimentation,
σ is initially set to 5 and possibly increased until a maximum of 15, s is set
to 1.4. Altogether, for each erroneous questionnaire qe, σ(qe)+ 1 optimization
problems are solved.

Problems are solved by using a commercial implementation of a state-of-the-
art branch-and-bound routine for integer programming (ILOG Cplex 7.1).
However, such solver allows the user to define specific separation subroutines
to be used within its framework, obtaining therefore a branch-and-cut pro-
cedure. Since most of the constraints have a structure similar to those of set
covering problems, a separation routine for the set covering polytope was used
in order to generate valid cuts. Such separation routine, described in [13], is
based on projection operations, which were possible thanks to the presence
of the equality constraints above called coupling constraints. Since such cut
generation is a relatively costing operation, it is preferable to perform it only
at the very first levels of the branching tree, where its effect is greater. Each
single imputation problem that is solved corresponds to an integer linear pro-
gramming problem in which only some variables are generated: all variables
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corresponding to fields involved in failed rules, together with all other variables
connected by the rules to the former ones. Therefore, such problems do not
have all the same number of variables and, consequently, of constraints. The
average number of variables per problem is 3000, while the average number of
constraints is 3500. Computational times in minutes for solving each data set
(on a Pentium III 800MHz PC) are reported in Table 2. As observable, each
single imputation problem is solved in extremely short times. Therefore, large
data sets are imputed in very reasonable times. Also, this would allow the use
of a more numerous set of rules. Consequently, accuracy improvements of a
general process of data imputation are made possible.

Data set Number of households # of problems solved Total time

4 050 45,716 320,656 53.0

4 100 45,716 346,223 96.4

4 150 45,716 385,680 130.5

4 200 45,716 416,074 157.9

6 050 20,306 145,322 85.8

6 100 20,306 160,371 139.8

6 150 20,306 186,434 174.5

6 200 20,306 198,121 202.6

Table 2: Imputation times in minutes for 4 persons household and 6 persons
households.

The statistical performances of the proposed methodology, implemented in
a software system called DIESIS (Data Imputation Editing System - Italian
Software) has also been strictly evaluated and compared with the performance
of the Canadian Nearest-neighbour Imputation Methodology (CANCEIS) [1]
by a simulation study based on real data from the 1991 Italian Population
Census. We report here the summarized results, while for details we refer to
[11]. CANCEIS has been selected for the comparative statistical evaluation be-
cause at the time of writing it is deemed to be the best specific methodology to
automatically handle hierarchical demographic data. The quality of imputed
data was evaluated by comparing the original questionnaires (here known)
with the corrected ones. We report in Table 3 the value of some particularly
meaningful statistical indicator: the percentage of not modified values erro-
neously imputed by the procedure (Etrue); the percentage of modified values
not imputed (Emod); the percentage of imputed values for which imputation
is a failure (Iimp). Therefore, lower values correspond to a better data quality.
Reported value is computed as average on the demographic fields relation

to head of the house, sex, marital status, age, years married. Results
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of such comparison are very encouraging: the quality of the imputation per-
formed by the proposed procedure is generally comparable, and sometimes
better, than CANCEIS.

DIESIS CANCEIS

Data set Etrue Emod Iimp Etrue Emod Iimp

4 050 0.04 24.61 15.02 0.09 25.62 16.07

4 100 0.09 26.02 15.48 0.17 26.01 16.69

4 150 0.13 26.32 16.20 0.26 27.16 18.10

4 200 0.19 27.25 17.10 0.40 28.40 19.10

6 050 0.08 31.20 20.47 0.15 32.13 20.94

6 100 0.16 31.44 20.29 0.32 32.67 21.64

6 150 0.25 32.83 21.45 0.48 33.88 23.41

6 200 0.35 33.01 21.88 0.66 35.11 24.26

Table 3: Percentage of not modified values erroneously imputed (Etrue), per-
centage of modified values not imputed (Emod), percentage of imputed values
for which imputation is a failure (Iimp).

The proposed procedure introduces surprisingly few changes in fields that were
not perturbed, is able to discover more than two times out of three the values
which were modified, and imputes values which are generally correct. Note
that, when randomly modifying values, the record can still appear correct,
in the sense that it still satisfies the rules, so detection of perturbed values
inherently has no possibility of being always exact. Note, moreover, that for
fields having many values, such as the case of age, the correct imputation
is extremely difficult. Detailed results on the Italian Census 2001 correction
should be made available, as far as concerning information that can be made
publicly accessible, at the Italian Statistic Office web site 3 .

5 Conclusions

Imputation problems are of great relevance in every process of data collecting.
They also arise when cleaning databases which can contain errors. Imputa-
tion problems have been tackled in several different manners, but satisfactory
data quality and computational efficiency appear to be at odds. A discrete

3 www.istat.it
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mathematics model of the whole imputation process allows the implementa-
tion of an automatic procedure for data imputation. Such procedure repairs
the data using donors, ensuring so that the marginal and joint distribution
within the data are, as far as it is possible, preserved. The sequence of arisen
integer programming problems can be solved to optimality by using state-of-
the-art implementation of branch-and-cut procedures. Related computational
problems for considered data sets are completely overcome. Each single im-
putation problem is solved to optimality in extremely short times (always
less than 1 second). Therefore, computational limits of a generic imputation
procedure can be pushed further by using the proposed approach. Also, this
would allow the use of a more numerous set of rules. Consequently, consider-
able accuracy improvements of a generic process of data imputation are made
possible.

The statistical performances of the proposed procedure has been strictly evalu-
ated on real-world problems, and compared with the performance of the Cana-
dian Nearest-neighbour Imputation Methodology, which is deemed to be, at
the time of writing, the best methodology to automatically handle hierarchical
demographic data. Results are very encouraging both form the computational
and from the data quality point of view.
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