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Via Buonarroti 12 - 00185 Roma, Italy

Abstract. A minimally unsatisfiable subformula (MUS) is a subset of clauses of a
given CNF formula which is unsatisfiable but becomes satisfiable as soon as any of its
clauses is removed. The selection of a MUS is of great relevance in many practical
applications. This expecially holds when the propositional formula encoding the
application is required to have a well-defined satisfiability property (either to be
satisfiable or to be unsatisfiable). While selection of a MUS is a hard problem in
general, we show classes of formulae where this problem can be solved efficiently.
This is done by using a variant of Farkas’ lemma and solving a linear program-
ming problem. Successful results on real-world contradiction detection problems are
presented.
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1. Introduction

Several problems arising from different fields are usually encoded into
propositional logic formulae. A propositional formula F in conjunctive
normal form (CNF) is a conjunction of clauses Cj , each clause being a
disjunction of literals, each literal being either a positive (αi) or a neg-
ative (¬αi) propositional variable, with j ∈ {1, . . . ,m}, i ∈ {1, . . . , n}.
By denoting with Ij the set of variables of Cj, and with [¬] the possible
presence of ¬, this is ∧

j=1...m

(
∨
i∈Ij

[¬] αi)

The satisfiability problem (SAT) consists in determining whether there
exists a truth assignment {True,False} for the variables such that F
evaluates to True. Extensive references can be found in (Chandru and
Hooker, 1999; Gu et al., 1997; Kleine Büning and Lettman, 1999;
Truemper, 1998).

Generally, when an instance F encodes a system or a structure one
must design, F should have a well-defined solution property (either to
be satisfiable or to be unsatisfiable). When F is unsatisfiable, but it
should be satisfiable, we would like to modify the underlying system
in order to make F satisfiable. Conversely, when F is unsatisfiable and
it should be so, if the underlying system needs to be re-designed, we
would like to keep F unsatisfiable. The first problem can sometimes be
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approached by solving the maximum satisfiability problem (Max-SAT),
see e.g. (Battiti and Protasi, 1998). This consists in finding a truth
assignment for the variables maximizing the number of clauses Cj which
evaluates to True. So far, satisfiability can be restored by removing
from the underlying system all elements corresponding to clauses which
could not be satisfied. However, such approach is not desirable in many
practical cases. Very often, in fact, we cannot just delete a part of our
system, because we need the functionalities contained in that part.
Instead, we would like to locate and understand the problem, and,
basing on this information, re-design only the small part of the system
causing the problem. As for the second problem, we typically would like
to know which part of the underlying system should not be changed,
and which one can be modified (or possibly removed). Both of the above
problems can be approached by looking for a minimally unsatisfiable
subset of clauses (MUS) within an unsatisfiable F (see Sect. 2).

An algorithm for selecting an approximation of a MUS is proposed
in (Bruni, 2002). The problem of deciding whether a CNF formula
contains a minimally unsatisfiable (MU) subformula of fixed deficiency
δ, for all δ, is proved NP-complete in (Kleine Büning and Zhao, 2002).
Related works in the field of propositional formulae are those on de-
composition of a CNF with maximal deficiency δ� ≤ k (where k is a
constant) into the union of all MUS and the intersection of all maxi-
mally satisfiable subformulae in polynomial time (Kullmann, 2000), and
on recognition of MU formulae with fixed deficiency δ in polynomial
time (Fleischner et al., 2002).

The problem of the selection of an irreducible infeasible subsystem
(IIS), which is the analogous of a MUS in the case of systems of lin-
ear inequalities, has been studied with regard to infeasibility analysis
(Amaldi et al., 1999; Chinneck, 2001; Tamiz et al., 1996). In the case
of systems of linear inequalities having real variables, the problem has
been approached both by means of heuristics (Chinneck, 2001) and
exact algorithms (Gleeson and Ryan, 1990). In the case of systems
of linear inequalities having integer variables (more computationally
demanding), the problem has been approached by means of additive or
subtractive heuristics (Guieu and Chinneck, 1999).

A procedure for the exact selection of a MUS is here presented (Sect.
4). It is based on Farkas’ lemma (Sect. 3) adapted from the linear
to the binary case. While selection of a MUS is a hard problem in
general, we show (Sect. 5) classes of formulae for which this can be done
efficiently by solving a linear programming problem. This depends on
the structure of the polytope defined by the linear relaxation of SAT.
A compendium of studies on such structure is for instance in (Chandru
and Hooker, 1999). This procedure is applied to real-world data mining
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problems (Sect. 6), where logical rules are encoded into clauses (Bruni
and Sassano, 2001). A contradiction in the set of rules corresponds to a
set of clauses jointly unsatisfiable. Checking the rules for inconsistencies
produces a series of MUS selection problems, where all the conflicting
rules should be located, and it would not help deleting some of them.

2. Minimally Unsatisfiable Subformulae

Definition 1. A minimally unsatisfiable subformula (MUS) of a CNF
formula F is a set M of clauses having the following properties:

− M ⊆ F (in the sense of clause-subset, i.e. Cj ∈ M ⇒ Cj ∈ F).

− M is unsatisfiable.

− Every proper clause-subset of M is satisfiable.

Clearly, F contains a MUS if and only if F is unsatisfiable. Therefore,
the problem of deciding whether a formula F contains a MUS is co-
NP-complete, since SAT is well-known NP-complete. A MUS may be
a proper subformula of F or coincide with F . Sometimes in litera-
ture, adverb “minimally” is replaced, with same meaning, by adjective
“minimal”.

Definition 2. Given a CNF formula F , the MUS selection problem
consists in finding a minimally unsatisfiable subformula M ⊆ F or
proving that such a subformula does not exist.

In the general case, more than one MUS can be contained in the same
F . Some of them can overlap, in the sense that they can share some
clauses, but they cannot be fully contained one in another. Formally, the
collection of all MUS of F is a clutter. Relations between the structures
of Max-SAT solution and MUS are investigated in (Bruni, 2002). Note
that the MUS selection problem is different, although closely related,
from the minimal unsatisfiable subformula problem of deciding whether
a CNF formula contains a subformula in MU(k), see (Kleine Büning
and Zhao, 2002). Besides, empirical experience suggests that finding
a MUS typically requires much more time than just solving the SAT
problem, just like finding an IIS requires much more time than just
solving the feasibility of a system of linear inequalities (Guieu and
Chinneck, 1999).

The problems depicted in Sect. 1 correspond to the problem of se-
lecting a MUS, as follows. In the case we want to restore satisfiability
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by locating only the small part of the underlying system causing the
problem, this actually can be solved by locating a MUS. Re-design of
that part is another issue, and, typically, requires again the work of the
original (human or not) designer of the system. Postinfeasibility analy-
sis, in fact, often needs “cooperation of algorithmic engine and human
intelligence” (Chinneck and Dravnieks, 1991). The process could need
to be repeated until all MUS are removed from the formula.

Conversely, in the case when unsatisfiability should be kept while
modifying the underlying system, this again can be solved by locating
a MUS. That is the part of the system that should not be changed.

3. The Linear Case

In the case of systems of linear inequalities, when we are interested in
real-valued solutions, the following result on infeasibility holds:

THEOREM 1. (Farkas’ lemma, 1894) Let A be an h × k real matrix
and let b be a real h-vector. Then there exists a real k-vector x ≥ 0 with
Ax = b if and only if yT b ≥ 0 for each real h-vector y with yT A ≥ 0.

A proof is for instance in (Schrijver, 1986). Geometrically, this means
that if an h-vector b does not belong to the cone generated by the
h-vectors a1, . . . , ak (columns of A), there exists a linear hyperplane
separating b from a1, . . . , ak.

There are several other equivalent forms of Farkas’ lemma, and we
now convert it in one which is more suitable to our purposes. It can
be put as the alternative feasibility of two linear systems by requiring
yT b < 0 instead of yT b ≥ 0. Moreover, removing the limitation x ≥ 0,
we have for the alternative system yT A = 0. Finally, asking for Ax ≤ b,
we have for the alternative system y ≥ 0 (for details, see e.g. Bertsimas
and Tsitsiklis, 1997). The following variant is therefore obtained: given
a matrix A ∈ IRh×k and a vector b ∈ IRh, consider the system of linear
inequalities: {

Ax ≤ b

x ∈ IRk (1)

and the new system of linear inequalities obtained from the former one:


yTA = 0
yT b < 0

y ≥ 0
y ∈ IRh

(2)

We have that exactly one of the two following possibilities holds:
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− (1) is feasible, i.e. there exists x ∈ IRk verifying all its inequalities.

− (2) is feasible, i.e. there exists y ∈ IRh verifying all its inequalities.

An irreducible infeasible subsystem (IIS) is a subset of the inequalities
of an infeasible system that is itself infeasible, but for which any proper
subset is feasible. Clearly, it constitutes the analogous of a MUS in the
case of systems of linear inequalities. An IIS can be selected within (1)
by solving the following new system:


yTA = 0
yT b ≤ −1

y ≥ 0
y ∈ IRh

(3)

The support of a vertex denotes the indices of its non-zero components;
0 and 1 respectively denote vectors of zeroes and ones of appropriate
dimension.

THEOREM 2. (Gleeson and Ryan, 1990) Consider two systems of
linear inequalities in the form (1) and (3). If (3) is infeasible, (1)
is feasible. On the contrary, if (3) is feasible, (1) is infeasible, and,
moreover, each IIS of (1) is given by the support of each vertex of the
polyhedron (3).

The proof is based on polyhedral arguments using properties of extreme
rays, see (Gleeson and Ryan, 1990). Therefore, checking the feasibility
of (1), and, if infeasible, identifying one of its IIS, becomes the problem
of finding a vertex of a polyhedron.

4. Propositional Formulae: the General Case

In the case of propositional formulae, it is well-known that a clause

(
∨
i∈π

αi ∨
∨
i∈ν

¬αi)

can be expressed as a linear inequality by using n binary variables xi ∈
{0, 1} corresponding to the propositional variables αi ∈ {False,True},
and by defining the incidence m-vectors of the set of its positive literals
bπ and of that one of its negative literals bν

n∑
i=1

bπ
i xi +

n∑
i=1

bν
i (1 − xi) ≥ 1 (4)
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Equivalently, by denoting with |ν| the number of negative literals in
the clause, this can be rewritten as

n∑
i=1

bν
i xi −

n∑
i=1

bπ
i xi ≤ |ν| − 1 (5)

Denote now with B the {0,±1}m×n matrix whose rows correspond to
clauses as shown above (each element is -1 if the corresponding propo-
sitional variables is positive, 1 if it is negative, 0 otherwise). Denote
also with ν(B) the m-vector of all the |νj |. The following system of
linear inequalities with binary variables represents a CNF propositional
formula. {

Bx ≤ ν(B) − 1
x ∈ {0, 1}n (6)

In order to use the results given for the linear case, let us consider the
linear relaxation of such system.




Bx ≤ ν(B) − 1
x ≤ 1

−x ≤ 0
x ∈ IRn

(7)

We will suppose that our formula always contains at least a unit clause,
i.e. a clause containing a single literal, since in the absence of that the
linear relaxation (7) is always feasible. Note that, in practical applica-
tions, such assumption is generally verified. The above system (7) is now
in the form of (1). The first group of inequalities of type (5) are called
clausal inequalities. In particular, the matrix A ∈ {0,±1}(m+2n)×n and
the vector b ∈ Z

m+2n are composed as follows.

A =


 B

I
−I


 m

n
n

b =


 ν(B) − 1

1
0


 m

n
n

Therefore, a system which plays the role of (3) can now be written.



yT


 B

I
−I


 = 0

yT


 ν(B) − 1

1
0


 ≤ −1

y1, . . . , yh ≥ 0
y ∈ IRh

(8)
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So far, the following result on the couple of systems (6) and (8) holds.
The restriction of the support of a vertex to clausal inequalities will de-
note the indices of its non-zero components among those corresponding
to clausal inequalities.

THEOREM 3. Consider two systems of linear inequalities in the form
(6) and (8). In this case, if (8) is feasible, (6) is infeasible, and the
restriction of the support of each vertex of the polyhedron (8) to clausal
inequalities contains a MUS of (6). On the contrary, if (8) is infeasible,
(7) is feasible, but it cannot be decided whether (6) is feasible or not.

Proof. We first prove that the restriction of the support of a vertex
of (8) to clausal inequalities contains a MUS of (6). Assume (8) is
feasible, and let v1 be the vertex found. Therefore, (7) is infeasible
(from Theorem 2), and an IIS in (7), called here IIS 1, is given by
the support of v1. Such IIS 1 is in general composed by a set CI 1 of
clausal inequalities (inequalities of the type (5)) and a set BC1 (possibly
empty) of box constraints (the ones imposing 0 ≤ xi ≤ 1). The set
of inequalities CI 1 has no {0, 1} solutions, since removing the BC 1

from IIS 1, while imposing the more strict integer constraints IC 1 (the
ones imposing xi ∈ {0, 1}), keeps IIS 1 unsatisfiable. Therefore, a MUS
is contained into the clauses corresponding to CI 1. Such MUS can
still be a subset of the clauses corresponding to CI 1, because, though
IIS 1 = CI 1 ∪ BC 1 is minimally infeasible, imposing the more strict
integer constraints can make CI 1 ∪ IC 1 not minimal.

On the other hand, not all MUS in (6) can be obtained by such
procedure. This because, if (8) is infeasible, (7) is feasible (by Theorem
2). When imposing the more strict integer constraints instead of the
box constraints, however, nothing can be said on the feasibility of (6).

Example. Consider F1 composed by the four following clauses.

C1 = (α1 ∨ α2), C2 = (¬α1 ∨ α2), C3 = (¬α2), C4 = (α1 ∨ ¬α2)

A and b can easily be obtained, in the following manner.

A =




−1 −1
1 −1
0 1

−1 1
1 0
0 1

−1 0
0 −1




b =




−1
0
0
0
1
1
0
0



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Therefore, the system to be solved, in the form of (8), is the following.


−y1 + y2 − y4 + y5 − y7 = 0
−y1 − y2 + y3 + y4 + y6 − y8 = 0

−y1 + y5 + y6 ≤ −1
y1, y2, y3, y4, y5, y6, y7, y8 ≥ 0

y ∈ IR8

Solving such system yields the vertex (1, 1, 2, 0, 0, 0, 0, 0). Therefore, a
MUS in F1 is given by the set of clauses {C1, C2, C3} (and F1 is proved
unsatisfiable).

From the practical point of view, for the motivations reported above,
we are interested in MUS composed by a small number of clauses.
Moreover, it may happen that not all clauses are equally preferable for
the composition of the MUS that we are selecting. When this can be
evaluated, a cost cj for taking each clause Cj into the MUS that is being
selected can be assigned. Such costs cj for the clauses corresponds to
costs for the variables of system (8). Therefore, a cost h-vector is com-
puted. Its first m components will correspond to clausal inequalities,
while the last 2n components will correspond to box constraints. So far,
the solution of the following linear program produces a MUS having
the desired clause composition.



min
h∑

j=1

cjyj

s.t. yT


 B

I
−I


 = 0

yT


 ν(B) − 1

1
0


 ≤ −1

y ≥ 0, y ∈ IRh

(9)

The result of Theorem 3 is not completely analogous to the linear case.
In order to obtain more analogy, let us define the following property.
An integral point will denote a point having all integer components.

Integral-point property: A class of polyhedra which, if non-empty, con-
tain at least one integral point, has the integral-point (IP) property.

THEOREM 4. If the polyhedron (7), which is the linear relaxation of
(6), has the integral-point property, the following holds. If (8) is infea-
sible, (6) is feasible. On the contrary, if (8) is feasible, (6) is infeasible
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and each MUS is given by the restriction of the support of each vertex
of polyhedron (8) to clausal inequalities.

Proof. We first prove that (8) infeasible ⇒ (6) feasible.
When (8) is infeasible, (7) is feasible (by Theorem 3). Since we assumed
that the IP-property holds for (7), it contains at least one integral
point. Since the box constraints hold for (7), such integer point must
have {0,1}-components, hence (6) is feasible.

We now prove that (8) feasible ⇒ a MUS in (6) is given by the
restriction of the support of a vertex in (8) to clausal inequalities.
Denote such set of clausal inequalities by CI1, and denote also by BC1

and IC1 respectively the box constraints and the integer constraints
on the variables appearing in CI1. It was already proved that, if (8)
is feasible, CI1 corresponds to an unsatisfiable subset of clauses. We
prove, by contradiction, that the set of clauses corresponding to CI 1

is minimal. Assuming CI 1 ∪ IC 1 not minimal, there is a smaller set of
clausal inequalities CI 1

′ ⊂ CI 1 such that CI 1
′ ∪ IC 1 is infeasible. On

the other hand, CI 1 ∪ BC 1 is minimal (by Theorem 2), so the set of
inequalities CI 1

′∪BC 1 must be feasible. However, we assumed that the
IP-property holds for (7), so CI 1

′ ∪ BC 1 contains at least one integral
point having {0,1}-components, which is the contradiction.

Therefore, CI1 corresponds to a MUS.

So far, when the IP property holds, solving a linear programming
problem solves the MUS selection problem. There are several classes of
formulae for which the linear relaxation (7) defines a polyhedron having
the integral-point property. This is discussed in next section. The fol-
lowing Table I reports, for a number of known classes of propositional
CNF, whether such property holds or not.
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Table I. When does the Integral-point property hold.

Class of Propositional Formulae IP Property

Horn (Dowling and Gallier, 1984; Scutellà, 1990) yes

Renamable Horn (Lewis, 1978; Aspvall, 1980) yes

Q-Horn (Boros et al., 1990) no

Extended Horn (Chandru and Hooker, 1991) yes

Balanced (Conforti and Cornuéjols, 1995; Truemper, 1998) yes

Quadratic (Aspvall et al., 1979) no

(Extended) Nested (Knuth, 1990; Hansen et. al., 1993) no

SLUR solvable (Schlipf et al., 1995) no

Matched (Franco and Van Gelder, 2002) yes

Linear Autarkies (van Maaren, 2000; Kullmann, 2000) no

Classes considered above are already known to be easy cases for the
satisfiability problem. Not surprisingly, no easy classes for the MUS
selection problem which were not known to be easy classes for the
Satisfiability problem appear here. This because, since MUS selection
gives the answer to SAT, that would be an easy class for SAT as well.
However, considerable research effort has been spent on searching easy
classes for SAT for at last two decades, hence discovering entirely new
ones does not seem an easy task.

5. Special Classes of Propositional Formulae

Two interesting classes of propositional CNF formulae verify the integral-
point property: formulae which are extended Horn, which include Horn
and renamable Horn, and formulae which are balanced. Moreover, two
other classes of formulae share the IP property, and are incomparable
with the above ones. The first is the class of matched formulae (Franco
and Van Gelder, 2002). The second is the class of satisfiable quadratic
CNF (and consequently satisfiable Q-Horn, etc.), since quadratic for-
mulae are renamable Horn if and only if they are satisfiable. However,
the last two classes are always satisfiable, so they are not of practical
interest with respect to the MUS selection problem.

Extended Horn formulae are characterizable as follows:

THEOREM 5. (Rounding theorem, Chandrasekaran, 1990) Given a
system Ax ≥ b, x ≥ 0, with A being a h × k integral matrix and b an
integral h-vector. If there exist a k × k matrix T such that:
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− T and T−1 are integral;

− each row of T−1 has at most one negative entry, and it is -1;

− each row of AT−1 has at most one negative entry, and it is -1;

then, if x is a (fractional) solution to the above system, so is T−1	Tx
.
The proof, in (Chandrasekaran, 1990), is based on properties of polyhe-
dra having an integral largest element. In the case of a CNF, the above
can be particularized as follows (Chandru and Hooker, 1991). Consider
again the Satisfiability problem, written using inequalities in the form
(4). Denote with D the {0,±1}m×n matrix whose rows correspond to
clauses (its elements are 1 if the corresponding propositional variables
is positive, -1 if it is negative, 0 otherwise), and with d the opportune
right-hand-side m-vector. 


Dx ≥ d
−x ≥ −1

x ≥ 0
x ∈ Z

n

(10)

Its linear relaxation, when put in the form of Theorem 5, becomes:


[
D

−I

]
x ≥

[
d

−1

]
x ≥ 0
x ∈ IRn

(11)

Conditions required in Theorem 5, in the case of CNF formulae, trans-
late as follows. Each row of T−1 should have at most one +1 and at
most one -1. By adding a new {0,±1} column vector r to T−1, whose
values are such that the {0,±1}(n+1)×n matrix

[
T−1|r]

has exactly one
+1 and one -1 per row, we obtain the arcs-nodes incidence matrix of
a direct graph with n + 1 nodes (nodes correspond to the columns of[
T−1|r]

). Such digraph should be a rooted arborescence, i.e. a rooted
directed tree in which all arcs point away from the root r. Arcs of
such digraph corresponds to variables of the formula. The rows of D
(i.e. the clauses) can be interpreted as flows on the defined digraph:
a positive [negative] literal is a unit flow going along [opposite to]
the arc corresponding to that variable. If the flow has the so-called
extended star-chain property (Chandru and Hooker, 1991), that is it
can be partitioned into a (possibly empty) set of unit flows going into
the root on an extended star, and a (possibly empty) unit flow on one
chain, all the conditions of Theorem 5 are verified, and the CNF is
called extended Horn.
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Therefore, if (11) has a fractionary solution, (10) has an integral
solution, so extended Horn formulae verify the IP property. Recognition
of extended Horn formulae is not known to be solvable in polynomial
time. The problem of the arborescence realization arise (Swaminathan
and Wagner, 1986). However, formulae can be build in order to be
extended Horn, by checking (in linear time) if each new clause defines
an acceptable flow in the arborescence (Chandru and Hooker, 1991).
Therefore, the entire procedure of MUS selection can be done in poly-
nomial time, if our application supports to be designed by testing each
new clause, and accepting it only when extended-Horn.

The second class is composed by balanced formulae, defined below.

Definition 3. A {0,±1} matrix is balanced if every square submatrix
with exactly two nonzeroes entries in each row and column sums to a
multiple of four.

The class of balanced matrices contains the classes of totally unimodular
matrices and network matrices (see Truemper, 1998). Note that the
property of balancedness is a general property, in the sense that it
does not requires the matrix to represent a CNF formula. When such
property is verified by a matrix representing a CNF formula (in the
form (10), or, equivalently, in the form (6)), the following result holds.

THEOREM 6. (Conforti and Cornuéjols, 1995) If the matrix repre-
senting the CNF instance in form (10) is balanced, the polytope is
integral, i.e. has all integral extreme points.

The proof, not immediate, is developed using polyhedral theory. The
problem of recognition of balanced matrix has polynomial-time com-
plexity. The algorithm which solves it is based on decomposition results,
and proceeds by decomposing the given matrix, and checking if all the
obtained submatrices are balanced (Conforti et al., 1994). Therefore,
the entire procedure for MUS selection requires polynomial time on
balanced matrices.

One can observe that another procedure to find a MUS could be
based on additive or subtractive filters. Such methods would at first test
if formula F is unsatisfiable. If so, additive methods would generate a
new formula F ′ by adding clauses form F until F ′ is unsatisfiable. So
far, F ′ is the selected IIS. The algorithm proposed in (Bruni, 2002) is
an evolution on additive methods. Subtractive methods would instead
remove from F each clause Cj not needed for unsatisfiability by testing
if the formula remains unsatisfiable when removing Cj . What remains
of F is the selected IIS. Such methods can therefore guarantee to find
a MUS when it exists. However, they require to solve (at most) m
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times the base problem (satisfiability for MUS selection, feasibility for
IIS selection). When this can be done in polynomial time, the whole
procedure would be theoretically polynomial. However, similar “brute
force” approach are recognized to be quite computationally demanding
(Chinneck and Dravnieks, 1991; Gleeson and Ryan, 1990). Moreover,
the proposed approach allows a more powerful manner of choosing the
clause composition of selected MUS, by using the cost function in (9).

Example. Consider the following CNF formula F2.

(¬α1 ∨ α2 ∨ α3) ∧ (α1 ∨ ¬α2 ∨ ¬α3) ∧ (α2 ∨ ¬α4) ∧ (α4)

Suppose also that the following T−1 matrix could be obtained.

a b c d r

T−1 =




−1 0 0 0
0 −1 0 0
0 1 −1 0
0 0 0 −1




1
1
0
1

The rooted arborescence corresponding to T−1 is now as follows. The
flow corresponding to the first [second] clause is given by the shorter
arrows drown over [under] the arcs.

��
��
a

��
��
r

��
��
d

����������
����

������
��
��
b��

� ��
��
c��

�

The flow corresponding to the third [forth] clause is given by the shorter
arrows drown over [under] the arcs.

��
��
a

��
��
r

��
��
d

������

����
����

������
��
��
b��

��
��
c�

Such flows have the extended star-chain property. Therefore, although
neither Horn nor renamable Horn, F2 is extended Horn, so we are in
the conditions of Theorem 4.

Suppose now that we are unable to obtain a suitable T−1 matrix. In
this case, the following matrix, corresponding to F2 in form (10), must
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be tested for balancedness.


−1 1 1 0
1 −1 −1 0
0 1 0 −1
0 0 0 1




It’s easy to see that every square submatrix with two nonzeroes per
row and per column sums to 0, hence it is balanced, so we are again
assured to be in the conditions of Theorem 4. So far, A and b are built
as follows.

A =




1 −1 −1 0
−1 1 1 0

0 −1 0 1
0 0 0 −1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




b =




0
1
0

−1
1
1
1
1
0
0
0
0




Since the IP property is verified, the MUS selection problem is com-
pletely solved by solving the following system.



y1 − y2 + y5 − y9 = 0
−y1 + y2 − y3 + y6 − y10 = 0

−y1 + y2 + y7 − y11 = 0
y3 − y4 + y8 − y12 = 0

y2 − y4 + y5 + y6 + y7 + y8 ≤ −1
y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12 ≥ 0

y ∈ IR12

This system is infeasible. Hence, we are guaranteed that no MUS is
present in F2, which is therefore satisfiable.

6. Implementation and Computational Experience

Many problems of error detection or classification into large data-sets
are solved by using rules (Fellegi and Holt, 1976). By encoding the
rules into clauses, an inconsistency, or contradiction, in the set of rules
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corresponds to a set of clauses jointly unsatisfiable (Bruni and Sassano,
2001). Since rules should be free from contradiction, this is one of the
cases when the resulting logic formula should be satisfiable. Therefore,
checking the rules for inconsistencies produces MUS selection problems.
Note that all the conflicting rules should be located, and it would not
help deleting some of them. In particular, detection of partial inconsis-
tencies (which are inconsistencies having effect only for some values of
the data) produces a series of instances which are very similar. CNF
formulae generated for the validation of rules used for a real-world
census are here considered.

The proposed algorithm is implemented in C++ and runs on a Pen-
tium IV PC. After the initial routine converting rules into clauses and
generating the CNF formulae, the procedure composes the above shown
matrix A and vector b as in (8). By adding an opportune objective
function, a problem in the form (9) is then passed to a standard routine
for solving linear programming (ILOG Cplex 1) implementing the sim-
plex algorithm. When a vertex is found, its support is used to produce
the MUS which is given in output. Although the simplex method has
exponential-time complexity, and there are polynomial-time complexity
methods for solving the same problem (e.g. barrier’s method) and then
finding a vertex, the former alternative is generally reckoned to be
faster in practice (see for instance Bertsimas and Tsitsiklis, 1997 for
a description). When the problem in form (9) is infeasible, either we
check that we are in one of the described special classes (such check
depending on the problem), and in such case no MUS exist, or we
need to solve the satisfiability problem for the original CNF formula.
However, for all considered real problems, when (9) is infeasible, the
original formula turn out to be satisfiable.

Table II reports number of variables (n) and number of clauses (m)
both for the original formula and for the selected MUS, in addition to
computational times (in seconds). We report only instances correspond-
ing to partial inconsistencies, hence formulae containing a MUS. Those
results are intended to give an example of application, rather than
exploring all the computational possibilities of the proposed procedure,
since the latter is not the focus of present paper.

1 More information available at www.cplex.com.
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Table II. Real-world contradiction detection problems.

Original formula Selected MUS

Name n m n m time

EditPartIncons0 3,000 15,003 2 3 1.0

EditPartIncons1 3,000 15,002 21 22 4.1

EditPartIncons2 3,000 15,003 4 5 8.3

EditPartIncons3 3,000 15,003 3 4 6.5

EditPartIncons4 3,000 15,015 30 31 4.2

EditPartIncons5 3,000 15,002 1 2 0.9

EditPartIncons6 3,000 15,005 16 17 4.1

EditPartIncons7 3,000 15,003 6 7 6.5

EditPartIncons8 3,000 14,998 2 3 3.2

EditPartIncons9 3,000 15,003 2 3 1.6

In the majority of the cases, only one MUS was present in the CNF,
that means only one inconsistency was present in the set of rules. If,
however, after repairing the found inconsistency, the new CNF still
contains a MUS, that is another inconsistency, and should as well
be repaired independently. The whole procedure, according to human
experts having the charge of writing the rules, turn out to be a very
satisfactory tool for the design of a contradiction-free set of rules.

7. Conclusions

The problem of MUS selection is formally defined. Such problem is
computationally hard and arises in several applicative fields. This typ-
ically happens when the application is encoded into a propositional
formula which should have a well-defined satisfiability property (either
to be satisfiable or to be unsatisfiable).

A procedure for solving the MUS selection problem is here presented.
Under special conditions, the proposed procedure is able to exactly
solve such problem by simply solving a linear programming problem,
which can be done with polynomial-time or simplex based algorithms.
Known classes of CNF formulae are studied with respect to verification
of such special conditions. The largest classes of CNF formulae verifying
the above conditions result to be extended Horn and balanced formulae.
Computational experience on real-world data mining problems is very
encouraging.
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