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Abstract. The Orthogonal conjunctive normal form of a Boolean function is a con-
junctive normal form in which any two clauses contain at least a pair of complementary
literals. Orthogonal disjunctive normal form is defined similarly. Orthogonalization is
the process of transforming the normal form of a Boolean function to orthogonal normal
form. The problem is of great relevance in several applications, e.g. in the reliability
theory. Moreover, such problem is strongly connected with the well-known propositional
satisfiability problem. Therefore, important complexity issues are involved. A general
procedure for transforming an arbitrary CNF or DNF to an orthogonal one is proposed.
Such procedure is tested on randomly generated Boolean formulae.
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1. Introduction

Let IB = {0, 1}, or, equivalently, {True,False}. A Boolean function of n
Boolean variables xi ∈ IB is a function f(x1, ..., xn) from the Boolean hy-
percube IBn to the Boolean set IB. We assume the reader familiar with the
basic concepts of Boolean algebra (see e.g. [11], [19]). A Boolean function
can be represented in several manners. The most used one is by means of a
Boolean (or propositional) formula F in conjunctive (CNF) or disjunctive
(DNF) normal form. Both normal forms are widely used, the choice of-
ten depending on the applicative context. Orthogonal conjunctive normal
form (OCNF) is a CNF in which any two clauses contain at least a pair
of complementary literals. Orthogonal disjunctive normal form (ODNF)
is defined similarly. The orthogonal form is of great relevance in solving
several hard problems, e.g. in the reliability theory. One of the funda-
mental issues in reliability is to compute the probability p that a complex
system is in operating state (and not in failed state, see for instance [3], [4]).
The state of the system depends on the state xi (operating or failed) of its
† Requests for reprints should be sent to: Renato Bruni, Dip. di Informatica e Sis-
temistica, Università di Roma “La Sapienza”, Via Michelangelo Buonarroti 12, Roma
00185, Italy
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i-th component, for i = 1, ..., n. Such relationship is usually described by
means of a Boolean function g(x1, ..., xn), so that, knowing the state of the
components, the state of the system is immediately computable. Since the
probabilities pr of each component to be in operating state are generally
known, p also can be computed by using g. However, such computation
may be difficult [16]. For systems where g is expressed by a Boolean for-
mula in ODNF, this probability is very easily computed by summing the
probabilities associated to all individual terms, since any two terms corre-
spond to pairwise incompatible events. Another important application is
in the field of mathematical statistics, where the orthogonality property is
needed for assuring independence among statistical variables, and in par-
ticular in the analysis of Variance, where it is used to separate the variation
inside each group from the variation among the groups themselves [18].

A classical problem is therefore to derive the orthogonal form, or disjoint
products form, of a Boolean function. A reliability algorithm based on the
computation of the orthogonal form is proposed for instance in [14]. In gen-
eral, however, computation of the orthogonal forms is a hard problem [5].
One of the few interesting classes of formulae for which this can performed
efficiently is the class of shellable DNF, introduced by Ball and Provan [2].
It has been recently proved by Boros et al. [5] that every positive Boolean
function (i.e. a Boolean function that can be written as a DNF having
no negative literals) can be represented by a shellable DNF. However, the
complexity of recognizing shellable DNF is not known, and testing the lex-
icoexchange property (a strengthening of shellability) is NP-complete [5].

A procedure to transform a generic normal form formula into an orthog-
onal normal form, also briefly called orthogonal form, is here described.
Such operation is called orthogonalization. The proposed procedure is ap-
plicable to both CNF and DNF. Therefore, in Sect. 2, we introduce a
unified notation for normal forms, in order to represent both CNF and
DNF. A basic procedure to orthogonalize a generic formula is described in
Sect. 4. During the above process, the size of the formula tends to expo-
nentially increase. This is not surprising, since in Sect. 3 we show that an
NP-complete problem like propositional satisfiability [6], [10], [13] becomes
easy for formulae in orthogonal form. (This can be related to a procedure
for solving satisfiability by counting the number of possible solutions pro-
posed in [12].) Hence, the NP complexity [9] can be seen as being absorbed
by the orthogonalization process. Improvements on the above basic proce-
dure, with the aim of minimizing the size of the formula both in the final
result and during the computation, are then presented in Sect. 5.
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2. Notation and Equivalence of Problems

A Boolean CNF formula is the logic conjunction (∧) of m clauses, each
clause being the logic disjunction (∨) of literals, each literal being either a
positive (xi) or a negative (¬xi) Boolean (or propositional) variable. By
denoting with Pj ⊆ {1, ..., n} the set of positive variables of the j-th clause,
and with Nj ⊆ {1, ..., n} the set of negative variables of the same clause,
this is ∧

j=1...m

(
∨

i∈Pj

xi ∨
∨

i∈Nj

¬xi)

Conversely, a Boolean DNF formula is the logic disjunction of m terms,
each term being the logic conjunction of literals, defined as above. By
denoting with Pj ⊆ {1, ..., n} the set of positive variables of the j-th term,
and with Nj ⊆ {1, ..., n} the set of negative variables of same term, this is

∨
j=1...m

(
∧

i∈Pj

xi ∧
∧

i∈Nj

¬xi)

The proposed procedure will apply to both CNF and DNF. Therefore, a
notation which can represent both forms is needed. Clauses and terms
can be viewed as pairs of sets (Pj , Nj) of literals plus a logical operator
connecting all such literals. Such structures will be called monomials, and
denoted by mj . The Boolean function expressed by a single monomial mj

will be denoted by mj(x1, ..., xn). A CNF or DNF formula F can now
be viewed as a collection of monomials. An external operator is applied
between monomials, that will be here indicated with the symbol ⊥, and an
internal operator is applied between literals of the same monomial, that will
be here indicated with the symbol �. Both CNF and DNF are therefore
representable as follows.

⊥ ( � xi � � ¬xi)
j=1...m i∈Pj i∈Nj

Clearly, ⊥ means ∧ when considering CNF, and ∨ when considering DNF,
and vice versa holds for �. Given a so defined monomial mj, let the set
Tj ⊆ IBn where mj has value 1 be the set of true points of mj

Tj = {(x1, ..., xn) ∈ IBn : mj(x1, ..., xn) = 1}
and the set Fj ⊆ IBn (the complement of Tj with respect to IBn) where mj

has value 0 be the set of false points of mj

Fj = {(x1, ..., xn) ∈ IBn : mj(x1, ..., xn) = 0}
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Given now a generic Boolean formula F , let the global set of true points
be T = {(x1, ..., xn) ∈ IBn : f(x1, ..., xn) = 1}, and the global set of false
points be F = {(x1, ..., xn) ∈ IBn : f(x1, ..., xn) = 0}. When F has the
structure of normal form (CNF or DNF), the following relations hold:

Lemma 1 In the case of CNF, the sets T and F are given by:

T =
n⋂

j=1

Tj F =
n⋃

j=1

Fj

Lemma 2 In the case of DNF, the sets T and F are given by:

T =
n⋃

j=1

Tj F =
n⋂

j=1

Fj

Note that T and F are not immediately computable from F , nor their
cardinalities are. Besides the fact that their cardinality can be exponential
in the number of variables, even expressing such sets in some compressed
but usable form appears hard. In fact, knowing the set T (or equivalently
F ) would give the solution of an NP-complete problem, namely the propo-
sitional satisfiability problem (see e.g. [10]). Also, knowing the cardinality
|T | (or equivalently |F |) would give the solution of the decision version of
the propositional satisfiability problem, which is still NP-complete. This
theoretically means, moreover, that every problem in NP can be polyno-
mially reduced to the problem of finding this cardinality [9].

On the contrary, the sets Fj for CNF and Tj for DNF are immediately
computable and expressible in compressed form (see below). However, in
the case of a generic CNF or DNF, such sets are not disjoint, but can overlap
each other: it can be Tj ∩ Tk �= φ or Fj ∩Fk �= φ for some j, k ∈ {1 . . .m}.
Due to the above reason, for finding respectively the cardinalities |T | and
|F |, it would be necessary to identify respectively all the Tj and all the
Fj . Since the number of points in Tj and Fj can be exponential in the
number of variables, the approach of identifying all the Tj and all the Fj

has exponential worst-case time complexity. This is not surprising. On
the other hand, if all the Tj (resp. all the Fj) would be pairwise disjoint
sets, in order to find the cardinality |T | (resp. |F |) it would suffice to know
the cardinalities of the Tj (resp. Fj), and sum them. Such cardinalities
are, in fact, trivially computable. In order to proceed with our notation
unification, dissimilarities between true and false sets should be overcome.
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Consider again the satisfiability problem. It consists in finding if, in the
Boolean hypercube IBn, there is at least one true point for all clauses (for
DNF formulae), or at least one false point for all terms (for DNF formulae).
Altogether, false points are bad for CNF, while true points are bad for DNF.
We will now call the set of such bad points B, with the convention that
B = F for CNF, and B = T for DNF. Moreover, every monomial mj has
its set of bad points Bj of the Boolean hypercube IBn, with the convention
that Bj = Fj for CNF, and Bj = Tj for DNF. (More intuitively, every
mj forbids a set of points: in the case of CNF, the j-th clause forbids its
Fj , while, in the case of DNF, the j-th term forbids its Tj). Conversely,
we will call G the set of good points, with the convention that G = T
for CNF, and G = F for DNF. Every monomial mj has therefore his set
of good points Gj , with Gj = Tj for CNF, and Gj = Fj for DNF. Sets
Bj and Gj on IBn are directly obtainable by the structure of mj . In the
case of CNF, Bj (in implicit form) is given by a vector of length n, called
pattern, having 0 for each variable appearing positive in mj , 1 for each
variable appearing negative in mj , and ∗ (don’t care) for each variable not
appearing in mj . Expanding every ∗ with both 0 and 1 gives all the points
of Bj explicitly. Clearly, Gj is given by IBn \ Bj . In the case of DNF, Bj

(in implicit form) is given by a pattern having 1 for each variable appearing
positive in mj , 0 for each variable appearing negative in mj , and ∗ for each
variable not appearing in mj . Explicit expression of all points of Bj and Gj

are obtainable as above. Pattern notation can be unified by using symbol
‘+’ for 1 in case of CNF, for 0 in the case of DNF, and symbol ‘−’ for 0 in
the case of CNF, for 1 in the case of DNF.

Example 1: Suppose n = 5. Given monomial (x1�¬x3�x4), the pattern
for the set of its bad points is {−, ∗, +,−, ∗}, corresponding to {0, ∗, 1, 0, ∗}
in the case of CNF, to {1, ∗, 0, 1, ∗} in the case of DNF.

Table 1. Conventions used in the unified notation for CNF and DNF.

form ext. op. int. op. bad pt. good pt. pattern
CNF ∧ ∨ F T 0 1
DNF ∨ ∧ T F 1 0
Unified ⊥ � B G − +

The cardinalities of the above Bj and Gj are easily computable, as follows.
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Lemma 3 Let n be the number of variables, and l(mj) be the number of
distinct literals appearing in mj. The cardinalities of the above introduced
Bj and Gj are |Bj | = 2n−l(mj), and |Gj | = 2n − |Bj | = 2n − 2n−l(mj).

We denote with (φ) the empty monomial, i.e. the monomial mφ which is
an empty set of literals. According to Lemma 3, B(φ) = IBn, hence (φ)
has only bad points. Finally, we denote with φ the empty formula, i.e. the
formula Fφ which is an empty set of monomials. By definition, φ has only
good points, so Gφ = IBn.

3. The Orthogonal form

A Boolean formula (in unified notation) is in orthogonal normal form when
every pair of monomials mj and mk contain at least one Boolean variable
xi (not necessarily the same i for all the couples of indexes (j, k)) as a
positive instance (xi) in one of them (for instance mj) and as a negative
instance (¬xi) in the other (for instance mk).

mj = (. . .�xi� . . .), mk = (. . .�¬xi� . . .) ∀ j, k ∈ {1 . . .m}
The above situation for mj and mk is variously expressed in literature: the
above monomials are said to be orthogonal [5], or to clash [8] on xi, or to
resolve [17] on xi, or also to hit [7] on xi.

Theorem 1 A Boolean formula is in orthogonal normal form if and only
if the above defined sets Bj are pairwise disjoint.

The above theorem clearly particularizes for CNF as follows,

Fj ∩ Fk = φ ∀ j, k ∈ {1 . . .m}
(Tj ∩ Tk can be �= φ for some j, k ∈ {1 . . .m})

and for DNF as follows.

Tj ∩ Tk = φ ∀ j, k ∈ {1 . . .m}
(Fj ∩ Fk can be �= φ for some j, k ∈ {1 . . .m})

Proof: We first prove that orthogonal form ⇒ Bj ∩ Bk = φ ∀ j, k ∈
{1 . . .m}. If two monomials mj and mk clash on at least one variable xc,
the corresponding Bj and Bk are defined by two patterns which respectively
have − and + in at least position c, hence they define two sets Bj and Bk

which cannot have any common point. We now prove that Bj ∩ Bk =
φ ∀ j, k ∈ {1 . . .m} ⇒ orthogonal form. Since Bj and Bk are disjoint,
the patterns corresponding to them must contain in at least one position c
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respectively + and − (or − and +). This because any other combination
(+ and +, + and ∗, etc.) would contradict the hypothesis of Bj and Bk

disjoint. Therefore, by letting xc be the variable corresponding to position
c, monomials mj and mk corresponding to such patterns must both contain
xc and clash on it. Finally, since we assumed that every pair of sets Bj , Bk

has empty intersection, every pair of monomials mj , mk are orthogonal.

Since the orthogonal form is a necessary and sufficient condition for hav-
ing all the Bj pairwise disjoint, it is a condition for trivially solving the
problem of computing |B|, which implies trivially solving the propositional
satisfiability problem, with the above implications on all problems in NP.
Example 2: Suppose we are interested in checking satisfiability of:

(¬x1�¬x2�x3�x4�x5)⊥(¬x1�¬x2�x3�x4�x5)⊥(x2�x3�x4�x5)⊥
⊥(x3�¬x4�x5)⊥(x3�x4�¬x5)⊥(x3�¬x4�¬x5)⊥(¬x3)

In our terms, we need to check whether the global B covers the whole IB5.
There are many different and very efficient techniques to solve the satisfia-
bility problem (see for a survey [10]). In practical cases, however, without
imposing restrictions on the structure of the formula (Horn, quadratic, etc.)
they have worst-case exponential time complexity. On the other hand, com-
puting the above defined sets Bj, and their cardinalities, is straightforward:

( x1�¬x2� x3� x4� x5) → B1 = {−, +,−,−,−} |B1| = 1
(¬x1�¬x2� x3� x4� x5) → B2 = {+, +,−,−,−} |B2| = 1

( x2� x3� x4� x5) → B3 = { ∗,−,−,−,−} |B3| = 2
( x3�¬x4� x5) → B4 = { ∗, ∗,−, +,−} |B4| = 4
( x3� x4�¬x5) → B5 = { ∗, ∗,−,−, +} |B5| = 4
( x3�¬x4�¬x5) → B6 = { ∗, ∗,−, +, +} |B6| = 4

(¬x3) → B7 = { ∗, ∗, +, ∗, ∗} |B7| = 16

By computing the union of all the Bj , we have that B actually covers IB5

(see Fig. 1 below, reporting the case of a CNF). Hence, the given formula
is unsatisfiable. Since the number of points of such union is exponential (in
the worst case) in the number of variables, this procedure has exponential
time complexity. On the contrary, one could observe that the formula is
orthogonal, hence the Bj are pairwise disjoint. On this basis, trivially,
|B| = |B1|+ |B2|+ |B3|+ |B4|+ |B5|+ |B6|+ |B7| = 32. This suffices to say
that B covers IB5, whose cardinality is 25 = 32, and so the given formula
is unsatisfiable. Altogether, by using the fact that the given formula is in
orthogonal form, one can very easily solve the satisfiability problem.
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Figure 1. The sets Bj of example 2 on the Boolean hypercube IB5 in the case of a CNF.

4. Basic Orthogonalization Procedure

In order to present a procedure for the orthogonalization of a generic
Boolean formula, we first need to define an operation, which will be called
multiplication and denoted with 
, applied to a pair of monomials mj and
mk. The result of such multiplication is a new monomial containing all
the literals of mj and of mk (but without repeated ones) when the two
monomials are not orthogonal, and the empty formula φ (i.e. a formula for
which there are only good points, cfr. Sect. 2) when they are orthogonal.

mj 
 mk = (�xi � �¬xi) 
 (�xi � �¬xi) =
i∈Pj i∈Nj i∈Pk i∈Nk

=




φ if mj and mk are orthogonal

( �xi � �¬xi ) otherwise
i∈(Pj∪Pk) i∈(Nj∪Nk)

Theorem 2 Consider any two monomials mj and mk, with their corre-
sponding sets Bj, Gj , Bk and Gk. Let ml = mj 
mk be their product. The
set of the bad points for mh is Bl = Bj ∩ Bk, while the set of good points
is Gl = Gj ∪ Gk.

Proof: Given a generic monomial mj , by adding literals to mj the set
Bj can in general only be reduced (this means decreasing the false set for
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CNF, decreasing the true set for DNF) and therefore the set Gj increased.
Monomial ml can be seen as adding literals to mj, so Bl ⊆ Bj , and can
also be seen as adding literals to mk, so Bl ⊆ Bk. Therefore, Bl ⊆ Bj ∩Bk.
Moreover, any point x ∈ Bj ∩Bk is a bad point for ml, hence x ∈ Bl. This
proves Bl = Bj ∩Bk, and consequentially Gl = Gj ∪Gk. Coherently, when
mj and mk are orthogonal, the result of the multiplication, by definition, is
the empty formula φ, the sets Bj and Bk are disjoint by Theorem 1, their
intersection is empty, and so is the set Bφ by definition.

Given an arbitrary monomial mj = (xh�xh+1�...�xi), its negation ¬(mj)
is easy computable (by De Morgan’s laws [19]) as the following set of mono-
mials connected by our external operator: (¬xh)⊥(¬xh+1)⊥...⊥(¬xi) =
¬(mj). However, the expression for ¬(mj) is not unique. One could, in
fact, consider a negation which is in orthogonal form, namely the orthogonal
negation ¬o(mj) of mj . Such negation ¬o(mj) is composed by k monomi-
als oj

1⊥oj
2⊥ . . .⊥oj

k, the first of them containing the negation of the first
variable, the second of them containing the first variable and the negation
of the second one, and so on, as follows.

(¬xh)⊥(xh�¬xh+1)⊥ ... ⊥(xh�xh+1�...�¬xi)

Example 3: The orthogonal negation of m = (x1�x2�¬x3) is

¬o(m) = om
1 ⊥om

2 ⊥om
3 = (¬x1)⊥(x1�¬x2)⊥(x1�x2�x3)

We also define the multiplication of a monomial mk by the negation ¬(mj)
of another monomial mj as the set of monomials obtained multiplying mk

by each of the monomial in ¬(mj). We denote this operation by mk
¬(mj).
Basing on this, a basic orthogonalization operation can be developed. For
clarity reasons, we report the procedure without indicating negative vari-
ables. However, this does not cause any loss of generality, since negative
variables can perfectly be present, and the negations will eventually appear
in the result according to elementary rules of Boolean algebra.

Basic Orthogonalization Operation: Consider any two distinct mono-
mials mj and mk not already orthogonal. Let Cjk be the (possibly empty)
set of common literals between mj and mk, and Dj and Dk the (possibly
empty) sets of literals respectively belonging only to mj and only to mk.

mj = (�xi � �xi) mk = (�xi � �xi)
i∈Dj i∈Cjk i∈Dk i∈Cjk
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Note that, since they are not orthogonal, they cannot contain complemen-
tary literals: xi ∈ mj ⇒ ¬xi �∈ mk. Choose one of the sets of different lit-
erals, for instance Dj , and consider the monomial md composed by all such
literals. Compute now its orthogonal negation ¬o(md) = od

1⊥od
2⊥ . . .⊥od

j .
We have that the (sub)formula mj⊥mk is equivalent (in the sense that they
both represent the same Boolean function, we prove this throughout the
rest of this section) to the following (sub)formula obtained by replacing mk

with mk 
 ¬o(md).

mj ⊥ od
1 
 mk ⊥ od

2 
 mk ⊥ . . .⊥ od
j 
 mk

The essential point is that the obtained (sub)formula is now in orthogonal
form. Hence, the (sub)formula composed by the two monomials mj and
mk have been orthogonalized. Note that the number of monomials of the
result is 1 plus the cardinality of the set of non-common literals (Dj) used.
In order to obtain a smaller number of monomials, we always choose the
set of non-common literals of minimum cardinality. When one of this two
sets is empty, this means that one of the monomials, say mj , is a subset
of the other mk. Coherently, by choosing Dj for the above procedure, the
result is only mk. In fact, the Boolean (sub)formula mj⊥mk is equivalent,
in this case, to the Boolean (sub)formula mk. The following two theorems
prove that replacing mk with mk 
¬o(md) produces an equivalent formula.

Theorem 3 Consider a monomials mj and the negation ¬(mk) of another
monomial, with their corresponding sets Bj, Gj, B¬k and G¬k. The set of
bad points for their product mj 
 ¬(mk) is Bj ∩ B¬k, while the set of good
points is Gj ∪ G¬k.

Proof: Denote the set of bad points for the h-th monomial of ¬(mk)
by Bh

¬k, and denote the number of monomial composing ¬(mk) by p. We
clearly have B¬k =

⋃p
h=1 Bh

¬k. Moreover, by Theorem 2, for each single
monomial product constituting mj 
¬(mk) we have that the corresponding
set of bad points is Bj ∩Bh

¬k. Therefore, the set of bad points of the entire
mj 
 ¬(mk) is

⋃p
h=1(Bj ∩Bh

¬k), which is Bj ∩B¬k. As a consequence, also
the set of good points of the entire mj 
 ¬(mk) is Gj ∪ G¬k.

Theorem 4 Consider an arbitrary Boolean formula F in normal form
representing the Boolean function f(x1, ..., xn). If an arbitrary monomial
mj ∈ F is multiplied by the negation ¬(mk) of another arbitrary monomial
mk ∈ F , the new Boolean formula obtained F ′ still represents the same
f(x1, ..., xn).

Proof: It is sufficient to prove that the sets B and G are the same for
F and F ′. As can be observed in the following Fig. 2, monomial mk
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determines in IBn a partition in Bk and Gk. Its negation ¬(mk) determines
a partition B¬k = Gk and G¬k = Bk. Now multiply another monomial
mj by ¬(mk), obtaining new monomials mj 
 ¬(mk), add mj 
 ¬(mk) and
remove mj from the formula F , obtaining F ′. The set G′

j corresponding to
mj 
¬(mk), by Theorem 3, is Gj ∪G¬k, which is ⊇ Gj . So, the set of good
points G for the formula F , which is the intersection of all the Gj , cannot
decrease. We now prove that G cannot increase. It could only increase
in the area of G¬k, since G′

j = Gj ∪ G¬k. However, all points of G¬k are
forbidden by the fact that G ⊆ Gk. Hence, G is the same for F and F ′,
and therefore B also remains the same. The thesis follows.

Bk = G¬k

Gj

G 

Gk

Figure 2. The partition of the Boolean hypercube IBn determined by Bk and Gk

Example 4: Given the formula composed by two monomials m1 and m2.

m1 = (x1�¬x2�x5)⊥(¬x2�x3�x4) = m2

the defined sets of non-common literals are

D1 = (x1�x5) and D2 = (x3�x4)

Their cardinality is the same. We choose D1, and the orthogonal negation
of the monomial corresponding to D1 is the following.

(¬x1)⊥(x1�¬x5)

By using the orthogonalization operation, the above formula becomes

(x1�¬x2�x5)⊥((¬x1) 
 (¬x2�x3�x4))⊥((x1�¬x5) 
 (¬x2�x3�x4))

which is the following orthogonal formula.

(x1�¬x2�x5)⊥(¬x1¬x2�x3�x4)⊥(x1�¬x2�x3�x4�¬x5)
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Theorem 5 Given an arbitrary Boolean formula F in normal form, repre-
senting the Boolean function f(x1, ..., xn), it is always possible to transform
it into an orthogonal normal form O still representing same f(x1, ..., xn).

Proof: The (constructive) proof is given by the above orthogonalization
operation, since that is a general procedure capable of orthogonalizing any
two monomials. Define the orthogonalization of two monomial by means
of such procedure as a step. Given therefore an arbitrary formula with m
monomials, by iterating this orthogonalization operation to exhaustion un-
til every pair of monomials are orthogonal, the orthogonal form is obtained
in a finite number of steps, at most

(
m
2

)
.

5. Improvements on the Basic Procedure

Unfortunately, by repeatedly applying above operation to exhaustion, the
size of the formula tends to exponentially increase. As remarked above,
this is not surprising, since the process of orthogonalization makes easy an
NP-complete problem like satisfiability. Hence, the NP complexity [9] can
be seen as being absorbed by the orthogonalization process, so it is unlikely
that the orthogonalization process can be made inexpensive. However,
improvements on the above basic procedure, with the aim of minimizing
the size of the formula both in the final result and during the computation,
are possible, as follows.

5.1. Absorption of Implied Monomials

Consider two generic monomials mj and mk appearing in the same formula
F , which represents the Boolean function f(x1, ..., xn), as follows.

mj = (�xi � �¬xi) mk = (�xi � �¬xi)
i∈Pj i∈Nj i∈Pk i∈Nk

If Pj ⊆ Pk and Nj ⊆ Nk, monomial mk is logically implied by mj [11], [19],
and can therefore be removed from F obtaining a smaller formula F ′ still
representing the same f(x1, ..., xn). This operation is applied in order to
reduce the number of monomials in the formula.

5.2. Synthesis Resolution

This operation is a special case of the general operation called resolution
[1], [17] in the case of CNF, and consensus [15] in the case of DNF. Given
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a formula F representing the Boolean function f(x1, ..., xn). If F con-
tains two monomials which are identical except for one literal xs appearing
positive in one monomial and negative in the other, as follows:

mj = (xs � �xi � �¬xi) mk = (�xi � �¬xi � ¬xs)
i∈Pj i∈Nj i∈Pj i∈Nj

their resolvent [17] mr, reported below, can be added to F , obtaining a
new formula F ′ still representing the same Boolean function f(x1, ..., xn).

mr = (�xi � �¬xi)
i∈Pj i∈Nj

Moreover, their resolvent logically implies both its parents mj and mk,
hence they can be removed from the formula, obtaining a new formula F ′′

still representing the same Boolean function f(x1, ..., xn). This operation
helps in reducing the number of monomials in the formula.

Finally, being our aim not to excessively increase the size of the formula,
for each orthogonalization step t, we define the quality qt of such step as the
number ot of clauses orthogonalized by such step divided by the number
nt of new clauses created by such step: qt = ot/nt (it can be computed in
advance). In our procedure, we set an initial quality limit qlimit, in order
to initially perform the most convenient basic orthogonalizations. During
iterations, at the beginning of each phase of basic orthogonalization steps,
if no steps respecting current limit are possible, current limit is decreased.

Complete Orthogonalization Procedure

Input: An arbitrary Boolean formula F in CNF or DNF
Output: An equivalent Boolean formula F ′ in OCNF or ODNF

Repeat :
If the current formula is orthogonal, Stop
Else if qlimit allows no basic orthogonaliz. steps, decrease qlimit

Perform all basic orthogonalization steps of quality q ≥ qlimit

Perform all possible synthesis resolutions
Perform all possible absorptions

6. Testing of the Procedure

The algorithm was tested on artificially generated CNF formulae obtained
from the SATLIB collection of the Darmstadt University of Technology.
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Table 2. Orthogonalization procedure on artificially generated
CNF formulae.

Problem minit mmax mortho time
uf20-01 91 1443 130 1.93
uf20-02 91 912 100 1.53
uf20-03 91 859 132 1.59
uf20-04 91 861 134 1.09
uf20-05 91 341 31 0.11
uf20-06 91 723 40 0.58
uf20-07 91 506 85 0.49
uf20-08 91 895 136 1.67
uf20-09 91 1669 144 4.49
uf20-010 91 1068 128 1.72
uf20-011 91 418 130 0.35
uf20-012 91 1117 190 2.58
uf20-013 91 784 65 0.74
uf20-014 91 947 167 2.19
uf20-015 91 980 120 1.78
uf20-016 91 954 102 1.47
uf20-017 91 787 109 1.27
uf20-018 91 1530 105 2.44
uf20-019 91 861 70 1.09
uf20-020 91 1335 98 2.64
uf20-021 91 870 73 0.59
uf20-022 91 700 79 0.81
uf20-023 91 1575 211 3.40
uf20-024 91 837 171 1.63
uf20-025 91 935 82 1.31
uf20-026 91 836 59 1.05
uf20-027 91 888 63 0.78
uf20-028 91 740 93 1.03
uf20-029 91 618 66 0.70
uf20-030 91 509 90 0.61

They represent 3-SAT problems. The following Table 2 reports the num-
ber of monomials of the original formula (minit), the number of monomial
in the orthogonalized formula produced (mortho), the maximum number
of monomial reached by the formula during the orthogonalization process
(mmax), and computational time in seconds on a PC Pentium IV 1.7GHz.
Such testing is intended solely as a study of the behavior of the orthogonal-
ization procedure, since it currently does not constitute, from the practical
point of view, a fast alternative for solving satisfiability problems.

It can be observed that the number of monomials in the orthogonalized
formula generally increases, although not always. Moreover, intermediate
formulae contains a much larger number of monomials. This turns out
to be a general rule in performing similar operations. However, there are
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practical applications where the advantages of having the orthogonal form
completely surmount the disadvantage of such size increase.

7. Conclusions

The orthogonal form of a Boolean formula has remarkable properties. Sev-
eral hard problems become easy when in orthogonal form. A general pro-
cedure for the orthogonalization of an arbitrary CNF or DNF is developed.
A unified and coherent notation for representing at the same time CNF and
DNF is therefore introduced. The procedure is proved to always produce
the orthogonal form (OCNF or ODNF) in a finite number of steps. The
problem is indeed computationally demanding. As predictable, in the ini-
tial phase of the procedure, the size of the formula tends to exponentially
increase. On the other hand, the size of the formula decreases again when
approaching to the final phase. In spite of this size growth, orthogonaliza-
tion appears to be the preferable way to solve some practical problems, for
instance in the field of reliability theory. Some computational complexity
implications of the orthogonalization process are analyzed.
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