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Abstract

This paper presents an approach for determining the amino acid sequence of a
peptide through the solution of propositional satisfiability problems. Data obtained
from the mass spectrometry analysis of a peptide are used to build a propositional
logic formula, whose models represent coherent interpretations of that set of data
and can be used to generate all possible correct results of the analysis itself. Some
computational results on real-world peptide analysis problems are reported, which
show the effectiveness of our approach.
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1 Introduction

Proteins are composed by the joining of smaller parts called peptides, while
each peptide is composed by a single sequence of components called amino
acids. The analysis of the amino acid sequence of peptides, called sequencing,
is one of the most important and frequent issues in biological and medical
research. In particular, protein analyses are generally achieved by dividing a
protein molecule into its component peptides (via enzymatic digestion and
subsequent fractionation with HPLC or capillary electrophoresis), and by in-
dividually analyzing each peptide. Thus, peptide sequencing arises as a fun-
damental step in protein identification. Moreover, peptide sequencing has an
importance on its own in a number of situations such as the study of unknown
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peptides, the research for new drugs, and the synthesis of peptide-like active
factors and peptides used in therapy.

A first approach to peptide sequencing was the so-called Edman method [1],
which may be implemented either manually or through the use of automatic
devices called protein sequenators. However, such a procedure has several
drawbacks [2]. Nowadays, a widely used and well established approach to
peptide sequencing consists in the use of mass spectrometry (e.g. [3–5]). Such
kind of analysis produces a mass spectrum, that is the absolute molecular
weight distribution of the molecules of a sample containing the peptide un-
der analysis. The study of the weight pattern in the spectrum can be used
for understanding the peptide sequence (e.g. [6]). The sequencing is generally
further helped by the use of the so called MS/MS (mass spectrometry/mass
spectrometry), or tandem mass, methodology (e.g. [7]). This procedure works
as follows: after the first mass analysis, some molecules of the protonated pep-
tide under analysis, called precursor ion, are selected and collided with non
reactive gas molecules. This interaction leads to the fragmentation of many of
such molecules, and the collision-generated decomposition products undergo
a new mass analysis. By doing so, the analysis gives the absolute molecular
weight of the full molecules of the precursor ion, as well as those of the various
ionized fragments that could be obtained from such kind of molecules. Note
that, on the contrary, non ionized molecules do not appear in the spectrum.
Such experiments are performed by using several instrumental configurations,
mainly triple quadrupole (QQQ), quadrupole time-of-flight (Q-TOF) and ion
trap devices [5]. Since the weights of the possible amino acid components are
known, and rules for determining the weights of amino acid sequences of known
composition are available (even if, unfortunately, the weight of a sequence is
not simply the sum of the weights of the components), one could in principle
use the MS/MS information in order to determine the sequence. Note, also,
that the molecular weights of the above-mentioned fragments of the peptide
constitute an essential information for the sequencing.
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Fig. 1. A MS/MS spectrum generated by collision-induced dissociation.

A typical MS/MS spectrum, however, does not contain any direct reference
to amino acids, being a mere succession of peaks corresponding to different
molecular weights (see e.g. Fig. 1). Further processing is then requested, and
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generally performed as follows. To begin with, all peaks below a certain inten-
sity are removed, being too noise-affected to be considered significant. After
this peak selection phase, the higher molecular weight is assumed to be the one
of the full peptidic complex under analysis, whereas the others correspond to
its fragments. Now, a known approach consists in looking for peptide-specific
weight patterns in the spectrum (called peptide tags, or fragment fingerprints),
and checking them against similar patterns available from data bases [8]. The
use of data bases assumes that the protein (or the peptide) under investigation
is an already known one. However, due to the very large number of possible
sequences, this is not a frequent case. Moreover, a protein may also differ from
the standard known form because the sequence underwent some modifications.
Therefore, alternative methods are often required and direct identification is
to be addressed.

Direct peptide sequencing, known as de novo sequencing, is achieved by various
recently available techniques (many of which developed by mass spectrometry
producers). These procedures: (i) either look for continuous series of fragments
differing by just one amino acid, which is therefore identified, or (ii) iteratively
generate a large number of virtual sequences and evaluate the match of the
corresponding (theoretical) mass patterns with the (actual) mass pattern of
the peptide under investigation. In both cases, the whole sequence can be ob-
tained when the spectrum contains the complete series of the fragments. This,
however, is often unlikely to occur. The fragmentation process is a stochastic
one, and though in fact peptides tend to break at the conjunction of amino
acids, they usually do not break at every conjunction of amino acids. Further-
more, such cleavages may be of several different types. And, if the intensity of
the hitting is increased, the peptide produces more fragments, but may break
at locations which are not the conjunction of amino acids. This makes the
problem a very difficult one for the above de novo techniques. Note, moreover,
that there are also cases when the information contained in the spectrum is
simply not enough to determine a unique sequence, because more than a se-
quence exists which perfectly fits such a spectrum. Consider, for instance, the
case of an incomplete fragmentation: it would be impossible to determine the
exact sequence of a peptide portion which did not break up. In these cases,
all the possible sequences fitting the spectrum should be found, in order to
guarantee accurate and objective results of the analysis.

Due to its combinatorial nature, the problem has been more recently ap-
proached by means of two different discrete mathematics approaches. The
first is the graph theoretical construction proposed in [9], which evolved into
the dynamic programming algorithms proposed in [10,11]; the second is the
branching-based algorithm proposed in [12]. The first approach has the ad-
vantage of requiring polynomial computational time for finding each solution
[13], when imposing some limitations to the problem, namely no multicharged
fragments can appear in the spectrum, and only peaks corresponding to a set
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of fragment types which is “simple” [11] (e.g. only a-ions, b-ions and y-ions)
can appear in the spectrum. When overriding such limitations, polynomial
time cannot be guaranteed, and in any case the procedure cannot work with a
spectrum in which all types of fragments and of charges may appear. The sec-
ond approach, on the contrary, has no structural limitations regarding types of
fragments and charges, and performs a complete search. However, it produces
an heavier computational load, and so it is hardly applicable for peptide above
a certain dimension.

This paper presents an innovative construction for approaching the peptide
sequencing problem as a propositional satisfiability problem. Data obtained
from the mass spectrometry analysis of a generic peptide, constituted by an
unknown sequence of amino acids, can be used to build a propositional logic
formula. The models of this formula can be employed to generate all possible
correct results of the analysis itself. In particular, a mathematical formaliza-
tion of the fragmentation process is given in Section 2. After this, the peak
interpretation problem is modeled by means of propositional logic. Each peak
selected in the spectrum is used to build up a clause representing all the possi-
ble interpretations of that peak, as described in Section 3. A set of additional
clauses, representing incompatibilities and other possibly known informations,
is also generated. Then, we prove that all and only the coherent interpreta-
tions of the spectrum are given by the models of the generated set of clauses.
Finally, for each of the above interpretations, all the possible compatible se-
quences of amino acids are generated, as explained in Section 4. Successful
results on real-world peptide analysis problems are presented in Section 5.

2 A Mathematical View of the Fragmentation Process

When a peptide undergoes a MS/MS analysis, the occurring fragmentation
process gives an essential support to the sequencing. Peptides basically are sin-
gle sequences of building-blocks called amino acids. Each amino acid molecule
has the following general chemical structure.

COOH

H

H
2
N C

R

There is a large number of possible amino acids, differing in the internal chemi-
cal structure of the radical R, and, therefore, for their functional characteristics
and their molecular weights. The most commonly considered ones generally
include those reported in Table 1. Moreover, each amino acid may also present
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one of the many possible modifications, such as phosphorylation, acetylation,
methylation, etc. This would produce alterations to its standard molecular
weight. Note also that the equivalent mass involved in the molecular bind-
ings leads to non-integer values for the amino acid weights, and that the very
weight of each amino acid type is not a single fixed value, but may assume
different values, depending on the presence of different isotopes of the various
atoms constituting the amino acid. Values reported in Table 1 are just the
average masses of the molecules.

Name Abbreviations Molecular Weight Limitations

Glycine Gly (or G) 75.07 -

Alanine Ala (or A) 89.34 -

Serine Ser (or S) 105.10 -

Proline Pro (or P) 115.14 -

Valine Val (or V) 117.15 -

Threonine Thr (or T) 119.12 -

Cysteine Cys (or C) 121.16 -

Taurine Tau 125.15 only c-terminal

Piroglutamic Acid pGlu 129.10 only n-terminal

Leucine Leu (or L) 131.18 -

Asparagine Asn (or N) 132.12 -

Aspartic Acid Asp (or D) 133.11 -

Glutamine Gln (or Q) 146.15 -

Lysine Lys (or K) 146.19 -

Glutamic Acid Glu (or E) 147.13 -

Methionine Met (or M) 149.22 -

Histidine His (or H) 155.16 -

Phenylalanine Phe (or F) 165.16 -

Arginine Arg (or R) 174.21 -

Tyrosine Tyr (or Y) 181.19 -

Table 1: Commonly considered amino acids.

An accurate and generalizable sequencing procedure should be able to deal
with the above uncertainties, by taking as part of the problem data the infor-
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mation about which are the components that should be considered as possible
for the current analysis, their weight values, the desired numerical precision of
the sequencing procedure, set on the basis of the accuracy of the adopted mass
spectrometry device, and any other incidentally known information. When
performing an analysis, in fact, we obviously do not know the solution, but we
often know which aspects of the solution could be considered as possible for
the current analysis, and which ones could not. At worst, if we do not know
anything, simply every aspect of the solution should be considered as possible.

This situation may therefore be formalized by considering the number n of
possible components (the amino acids) that must be considered for the current
analysis, the set N = {1, 2, . . . , n} of the indices i corresponding to such
components in increasing weight order, the set

A = {a1, a2, . . . , an}, ai ∈ R+

of the weight values of such components that must be considered for the
current analysis, together with the sets

Min = {m1, m2, . . . , mn}, mi ∈ Z+

Max = {M1, M2, . . . , Mn}, Mi ≥ mi, Mi ∈ Z+

respectively of the minimum and the maximum of the possible number of
molecules of each component that must be considered for the current analy-
sis, the number d of decimal digits that can be considered significant for the
current analysis, and a value δ ∈ R+ of the maximum numerical error that
may occur in the current analysis.

Amino acids can link to each other into a peptidic chain, by connecting the
aminic group NH2 of one molecule with the carboxylic group COOH of another
molecule. The free NH2 extremity of the peptide is called N-terminus, while the
free COOH extremity is called C-terminus. Some amino acids, expecially the
modified ones, can be situated only in particular positions of the sequence, i.e.
only N-terminal or only C-terminal. Since each of the peptidic bonds releases
an H2O molecule, the weight of a peptide is not simply the sum of the weights
of its component amino acids. Moreover, the weights observed in the spectrum
correspond to the actual weights only for the ionized molecules (ions) which
retain one single electrical charge. When, on the other hand, a ion retains
more than one charge, the weight observed in the spectrum is only a fraction
of the actual ion weight. By considering the set

Y 0 = {y0
1, y

0
2, . . . , y

0
n}, y0

i ∈ Z+

of the numbers of molecules of each component (here the amino acids) con-
tained in the overall compound (here the peptidic complex), and the number
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e0 ≥ 1 of electrical charges retained by the ionized overall compound, the ob-
served weight w0 of the overall compound is given by the following equation,

w0 =

∑
i∈N (y0

i (ai − ca)) + ca + c0e0

e0
± δ (1)

where ca and c0 are constant values. When considering d = 3 decimal digits,
ca is 18.015 and c0 is 1.008.

Example 2.1 A small peptide with sequence Leu-His-Cys-Thr-Val ionized by
only one charge, considering only d = 2 decimal digits, has an observed weight
of w0 = (131.18 − 18.02) + (155.16 − 18.02) + (121.16 − 18.02) + (119.12 −
18.02) + (117.15 − 18.02) + 19.02 ± δ = 572.69 ± δ.

Several different types of fragments can be obtained during the fragmentation
process. Most of them are of standard types and will be here called canonical.
In particular, there are three possible canonical N-terminal ionized fragments,
called a-ion, b-ion, c-ion, and three possible canonical C-terminal ones, called
x-ion, y-ion, z-ion, as illustrated in Fig. 2. Note that b-ions and y-ions are
generally the most common.

a-ion: from N-terminus until 

any link like the marked one

b-ion: from N-terminus until 

any link like the marked one

y-ion: from C-terminus until 

any link like the marked one

C-terminus

COOH

Rq

C

HH

N

O

CC

HH

N

Rk
N-terminus

C

OH

H2N C

R1

1-st  aa.       ……      k-th  aa.        ……       q-th  aa.

z-ion: from C-terminus until 

any link like the marked one

c-ion: from N-terminus until 

any link like the marked one 

x-ion: from C-terminus until 

any link like the marked one

Fig. 2. Different types of fragments obtainable from a peptide.

Again, each fragment has a weight which is not simply the sum of those of its
component amino acids. By considering the number f of fragment peaks se-
lected in the spectrum, the set F = {1, 2, . . . , f} of the indices j corresponding
to such peaks in decreasing weight order, the set

W = {w1, w2, . . . , wf}, wj ∈ R+
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of the weights corresponding to such peaks (so that w0 remains the weight of
the overall compound), the sets

Y j = {yj
1, y

j
2, . . . , y

j
n}, yj

i ∈ Z+ j = 1, . . . , f

of the numbers of molecules of each component contained in the fragment of
weight wj, j = 1, . . . , f , the number tmax of all the possible canonical types of
fragments that should be considered for the current analysis, the set

T = {1, 2, . . . , tmax}

of the indices t corresponding to such types, the maximum number of electrical
charges emax that a ion may retain in the current analysis, the set

E = {1, 2, . . . , emax}

of the numbers e of electrical charges that a ion may retain in the current
analysis, the type tj ∈ T of the fragment of weight wj , j = 1, . . . , f , and the
number ej ∈ E of electrical charges retained by the fragment of weight wj ,
j = 1, . . . , f , the relation that can be observed in the spectrum is the following.

wj =

∑
i∈N [yj

i (ai − ca)] + ct + c0ej

ej

± δ, j = 1, . . . , f (2)

Values ca and c0 are as above, and ct is a constant value depending on the type
tj of the fragment. When considering d = 3 decimal digits, ct is -28.002 for
a-ions, 0.000 for b-ions, 17.031 for c-ions, 44.009 for x-ions, 18.015 for y-ions,
1.992 for z-ions.

Besides, additional (non canonical) fragmentation may also occur: losses of
small neutral molecules such as water, ammonia, carbon dioxide, carbon monox-
ide, or breaking of a side chain. In such cases, the weight of the fragment
decreases accordingly. Finally, since fragments appear in the spectrum only
when they are ionized, the fact that a fragment is observed does not mean
that its complement fragment will be observed as well.

Example 2.2 When considering the spectrum reported in Fig. 1, and mak-
ing the simplifying hypothesis of selecting only the numbered peaks (even if
in practice a slightly larger set of peaks should be considered), we have w0 =
851.3, f = 9, and W = {764.3, 651.3, 627.1, 538.2, 496.1, 425.1, 382.9, 201.0, 173.1}.
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3 Clausal Encoding of the Peak Interpretation Problem

Each peak of weight wj selected from the spectrum may be of one of the types
t ∈ T , but the exact type is generally unknown. In other words, each peak
may have several different interpretations. If a peak of weight wj is considered
for instance an a-ion, it may have a certain sequence; if it is considered a b-
ion, it cannot have that sequence, and so on. Moreover, since there are rules
about incompatibility of fragments and electrical charges of ions, not all of the
interpretations are admissible: when interpreting one peak, the interpretations
given to all other peaks must be considered. The peak interpretation problem
is therefore a decision problem that should be solved by considering all peaks
at the same time, and which is defined as follows.

Definition 3.1 The peak interpretation problem consists in assigning to each
peak wj selected from the spectrum, j = 1, . . . , f , (at least) one hypothesis
about the type tj ∈ T and the charge ej ∈ E of the fragment that originated
wj in such a way that all interpretations given to all peaks are coherent, in
the sense that they respect a number of rules formalizing our knowledge of
the problem.

Rules holding for every analysis are the incompatibility and multicharge rules
given below. Other analysis-specific rules may be generated, as observed below.
Note that each peak should have at least one interpretation, but not necessarily
only one. A peak may in fact be originated by more than one type of fragment
incidentally having the same observed weight, even if this happens very rarely
in practice.

We formalize the peak interpretation problem by means of propositional logic.
By denoting with wj → t, e the fact that peak wj is interpreted as being due
to a fragment of type t ∈ T and having an electrical charge e ∈ E, we consider
for each interpretation of wj a propositional variable

xj→t,e ∈ {True,False}, j ∈ F, t ∈ T, e ∈ E

When considering for instance the 6 above canonical types of fragments ob-
tainable from a peptide and a maximum electrical charge emax = 2, we have
T = {1, 2, 3, 4, 5, 6} and E = {1, 2}. The possible interpretations of a peak wj

are therefore 12, and this may be represented by means of the following clause
containing 12 variables

(xj→1,1 ∨ xj→2,1 ∨ . . . ∨ xj→6,1 ∨ xj→1,2 ∨ xj→2,2 ∨ . . . ∨ xj→6,2)
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In order to get rid of the fact that the weight of peptides and of their fragments
is not simply the sum of those of their component amino acids, we define now
a different (theoretical) model of polymeric compound, as follows.

Definition 3.2 Given a (real) single charge peptide of observed weight w0, the
normalization of such peptide produces a (theoretical) polymeric compound
of weight w0 − (ca + c0), whose weight, as well as the weights of its fragments,
is simply the sum of those of its components. Such normalization gives what is
here called the normalized peptide. The possible components of such normal-
ized peptide are (theoretical) components having the following weights (which
are those that amino acids assume in the internal part of the peptidic chain)

Ā = {(a1 − ca), (a2 − ca), . . . , (an − ca)}

By definition, the normalization of a single charge real peptide of observed
weight w0 is composed by a number of molecules of each of the components in
Ā equal to the number of molecules Y 0 = {y0

1, y
0
2, . . . , y

0
n} of each amino acid

contained in the real peptide of observed weight w0.

Example 3.3 The normalized peptide corresponding to the real peptide of
weight 572.69 of Example 2.1 has a weight of (572.69 - 19.02) = 553.67, and
its component have the following weights: (131.18 -18.02) = 113.16, (155.16
-18.02) = 137.14, (121.16 -18.02) = 103.14, (119.12 -18.02) = 101.10, (117.15
-18.02) = 99.13. If such normalized peptide breaks for instance in Leu-His and
Cys-Thr-Val, such fragments have respectively the weights: (113.16 + 137.14)
= 250.30 and (103.14 + 101.10 + 99.13) = 303.37.

We will consider for such normalized peptide the above described topological
concepts of N-terminus, C-terminus, peptidic bonds, etc., in their intuitive
sense, as if it was a real peptide.

When a peak receives an interpretation, this means that an hypothesis has
been done about where the cleavage occurred in the peptide, and also about
which was the chemical structure of the peptide in that point. Asserting that,
for a single charge peptide of observed weight w0, peak wj is, for instance, a
single charge b-ion means that, starting from the N-terminus of the normaliza-
tion of that peptide, there has been a cleavage between CO and NH, and that
the part of such normalization going from the N-terminus to that cleavage has
a weight of

wj − 1.008 ± δ

On the contrary, asserting that, for the same single charge peptide of ob-
served weight w0, the same peak wj is now, for instance, a single charge y-ion
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means that, starting from the C-terminus of the normalization of that pep-
tide, there have been a cleavage between NH and CO, and that the part of
such normalization going from the C-terminus to that cleavage has a weight
of wj − 19.023 ± δ. Therefore, the part of the same normalization going from
the N-terminus to that cleavage has a weight of

w0 − (ca + c0) − (wj − 19.023) ± δ = w0 − wj ± δ

The two interpretations therefore bring to radically different hypothesis on the
structure of the normalized peptide, as illustrated by the following diagram
for w0 − (ca + c0) ≈ 850 and wj ≈ 300.

CO NHCO NH

w0 - wj

wj - 1.008

C-terminusN-terminus

We now consider, for the each variable xj→t,e, with j ∈ F, t ∈ T, e ∈ E, the
weight that the part of the normalized peptide going from the N-terminus to
the cleavage corresponding to interpretation wj → t, e would assume.

Definition 3.4 An N-terminal portion of a normalized peptide is any part
of that compound going from the N-terminus to any peptidic bond between
CO and NH (a part that, if such bond was broken, would constitute a b-ion).
The hypothesized weight of such N-terminal portion is the one given by the
following function b(j, t, e)

b(j, t, e) =




(wj − ct − c0ej)ej for a-ions, b-ions, c-ions

(w0 − ca − c0e0)e0 − (wj − ct − c0ej)ej for x-ions, y-ions, z-ions

Note that charge e0 of the precursor ion is known and fixed during each sin-
gle analysis. By using the above concepts, variable xj→t,e = True implies
that there exists an N-terminal part of the normalized peptide having weight
b(j, t, e) ± δ.

CO NH

b(j,t,e)

xj→t,e = True ⇒ C-terminusN-terminus

We are now able to introduce, in form of clauses, the additional sets of rules
that an interpretation should respect in order to be coherent. A first one is
the set of incompatibility rules. To this aim, we denote here variables using
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their corresponding values for b. Two variables xb′ and xb′′ are incompatible
if, for example, the difference between b′ and b′′ is smaller than the smallest
possible component, that is:

|b′ − b′′| < (a1 − ca) − 2δ

More generally, xb′ and xb′′ are incompatible if the difference between b′ and
b′′ has a weight value which cannot be any combination of possible com-
ponents. In other words, it does not exist any non-negative integer vector
(y1, y2, . . . , yn)tr ∈ Zn

+ verifying the following equation.

|b′ − b′′| = y1(a1 − ca) + y2(a2 − ca) + . . . + yn(an − ca) ± 2δ

Therefore, incompatibility clauses of the following form are added for all the
couples of incompatible variables xb′ and xb′′ .

(¬xb′ ∨ ¬xb′′)

Another set of rules that should be considered in order to have a coherent in-
terpretation is that of multicharge rules. Depending on the mass spectrometry
device, ions retaining more than one electrical charge, called multicharged ions,
are usually less common than single charged ions, and it is common practice to
assume that, if a multicharged ion has been observed in the spectrum, also the
corresponding single charged one should appear in the spectrum. Therefore,
each variable xj′→t,e with e > 1 implies, if it exists, another variable xj′′→t,1

with (j′ − c0e)e = j′′ − c0, as follows

(¬xj′→t,e ∨ xj′′→t,1)

Finally, a number of additional clauses representing a priori known information
about the specific mass spectrometry device used for the analysis, about the
analyzed compound, or about other possibly known relations among the inter-
pretations of the various peaks may also be generated. This because, clearly,
the more information can be introduced by means of clauses, the more reliable
the results of the analysis will be.

By assuming no limitations on the structure of the generated clauses, therefore
allowing the full expressive power of propositional logic, we obtain at this
point a set of v clauses C1, C2, . . . , Cv. Generally, incompatibility clauses are
by far the more numerous. Since all clauses must be considered together,
we construct their conjunction, that is a generic propositional formula F in
conjunctive normal form (CNF)

F = C1 ∧ C2 ∧ . . . ∧ Cv
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Each truth assignment {True,False} for the variables xj→t,e, with j ∈ F, t ∈
T, e ∈ E, such that F evaluates to True is known as a model of F . We now
have the following result.

Theorem 3.5 Each model µ of the generated propositional formula F is a
coherent solution of the peak interpretation problem for the peptide under
analysis. Moreover, no coherent solution of the peak interpretation problem
which does not correspond to a model µ of F can exist.

The proof relies in the fact that the formula F represents by construction
all the rules (peak assignment rules, incompatibility rules, multicharge rules)
that a peaks interpretation must satisfy to be considered coherent. Therefore,
each model µ is an interpretation satisfying all the rules. Conversely, each
interpretation satisfying all the rules corresponds to a truth assignment for
the variables xj→t,e such that F is True.

Finding a model of a generic CNF, or proving that such model does not
exist, is known as the satisfiability problem (SAT). Extensive references can
be found in [14–17]. This problem is NP-complete [13] in the general case.
However, for the average size of generated instances, solution times of a DPLL
branching algorithm are very modest. Note also that, in some special cases of
peptide analysis, one may be able to obtain polynomially solvable formulae
by imposing syntactical limitations on the structure of the generated clauses
(see e.g. [18–21]). For instance, when considering only b-ion and y-ion as the
possible types of fragments, and only single charged ions, we obtain Quadratic
formulae [22], which are polynomially solvable.

Since we are interested in all possible solutions of the peptide analysis, we are
interested in all the possible peaks interpretations, that is we are interested in
finding all the models

{µ1, µ2, . . . , µr}

of F . This was obtained in practice by modifying the SAT solver BrChaff [23]
in such a way that, after finding a model, the search does not stop, but keeps
exploring the branching tree, until its complete examination.

In the case F does not even have one model, this may mean that the consid-
ered sets of fragment types T and/or possible charges E are not enough to give
an interpretation to every considered peak, or simply that the mass spectrom-
etry analysis suffered from some experimental disturbance which produced
uninterpretable noise peaks. In such latter case, either the mass spectrometry
should be improved, or the formula F should be considered as an instance of
the maximum satisfiability problem (Max-SAT) [17], which consists in finding
a truth assignment for the variables xj→t,e maximizing the number of clauses
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which evaluate to True. Note that this latter solution means that not all rules
for having a coherent interpretation are respected, therefore the result of the
analysis is less reliable.

Example 3.6 When considering the compound of Example 2.2. (w0 = 851.3,
f = 9, and W = {764.3, 651.3, 627.1, 538.2, 496.1, 425.1, 382.9, 201.0, 173.1}),
the possible components of Table 1, and allowing a-ion, b-ion, c-ion, x-ion,
y-ion, z-ion, and double and single charges, we obtain a formula F with 108
variables and 4909 clauses, which has 3 models.

4 Generation of the Sequences Compatible with an Interpretation

As described, each variable xj→t,e with j ∈ F, t ∈ T, e ∈ E, corresponds to
an hypothesized weight b(j, t, e) of an N-terminal portion of the normalized
peptide. Therefore, given a model µ for the generated formula F , consider all
the hypothesized weights of the N-terminal portions corresponding to all the
True variables of µ. By ordering such values in increasing weight order, we
obtain what we call the succession of breakpoints Bµ corresponding to model
µ for the normalized peptide under analysis.

Bµ = {b1, b2, . . . , bp}

This means that, when giving to the considered peaks W the interpretation
represented by µ, we have located the peptidic bonds of the normalized peptide
under analysis at the locations given by the values of the elements of Bµ, as
illustrated by the following diagram.

CO NHCO NH

w0 -ca -c0

b1

C-terminusN-terminus

0

b2 bp

CO NH

…

increasing hypothes. weight of N-term. port.

Define now a gap as the difference between two adjacent breakpoints (bh+1, bh),
and a subsequence as the portion of the peptide spanning between two pep-
tidic bonds corresponding to the two above adjacent breakpoints. Now we
compute, for each value of gap bh+1 − bh, all the non-negative integer vectors
(y1, y2, . . . , yn)tr ∈ Zn

+ verifying the following equation.

bh+1 − bh = y1(a1 − ca) + y2(a2 − ca) + . . . + yn(an − ca) ± 2δ

The results are all the possible subsequences that may cover the gap bh+1−bh.
Denote such set of subsequences by S(bh+1 − bh). Note that S(bh+1 − bh)
depends only on the value of the gap bh+1 − bh, not on the locations of the
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breakpoints. The first gap b1 −0 and the last one w0 − (ca + c0)− bp should be
managed in a way which is slightly different from that of the central gaps. They
are indeed the only gaps which may contain components having limitation on
their position in the sequence (only N-terminal or only C-terminal, see Section
2), hence this should be considered. Furthermore, only an imprecision δ instead
of 2δ should be considered for the first gap, since only one extremity of the
gap can be affected by such imprecision. Define b0 = 0 for a more uniform
notation.

In order to compute such subsequences, we use a specialized branching algo-
rithm very closely related to DPLL SAT solvers, which proceeds by progres-
sively fixing values for the yi variables such that their domains [mi, Mi] ∩ Z+

are respected (see Section 2), thus generating subproblems with progressively
decreasing dimension. Internal nodes of the obtained search tree correspond
to partial variable assignments, while the leaves correspond to complete vari-
able assignments. Backtrack is performed when the weight corresponding to
a partial variable assignment ȳ exceeds the desired gap

ȳ1(a1 − ca) + ȳ2(a2 − ca) + . . . + ȳn(an − ca) − 2δ > bh+1 − bh

or when the weight of a complete variable assignment ỹ does not reach such
gap

ỹ1(a1 − ca) + ỹ2(a2 − ca) + . . . + ỹn(an − ca) + 2δ < bh+1 − bh

Such approach evidently has exponential time complexity. However, since each
gap bh+1 − bh generally has a value corresponding to a very small number of
components (never more than 4 or 5), the sets S(bh+1 − bh), h = 0, . . . , p can
be computed in extremely short times.

When all the sets of subsequences S(bh+1 − bh), h = 0, . . . , p are available, all
the possible sequences Sµ of the normalized peptide under the peak interpre-
tation µ can be generated with the concatenation of such sets in all possible
ways, operation which we denote by ⊕, but eliminating sequences violating
the minimum mi or maximum Mi value on the number of each component.

Sµ = S(b1 − b0) ⊕ S(b2 − b1) ⊕ . . . ⊕ S(w0 − c0 − bp)

Finally, when considering the sets of all the possible sequences {Sµ1 ,Sµ2 , . . . ,Sµr}
for all the possible models {µ1, µ2, . . . , µr} of F , the complete set of all possible
sequences S of the normalized peptide is obtained:

S = Sµ1 ∪ Sµ2 ∪ . . . ∪ Sµr

By construction, the set of all the possible sequences S of the normalized
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peptide is also the set of all the possible sequences of the real peptide under
analysis, so the sequencing problem have been solved.

Note that, in the case when the formula F is unsatisfiable, and a truth as-
signment maximizing the number of clauses which evaluates to True has been
found, some gap may admit no subsequences because some incompatibility
clauses are not respected. A less reliable solution can in this case be obtained
by merging each unsequenceable gap with one of its neighbouring ones (prefer-
ably the smaller).

Example 4.1 When considering the formula F of Example 3.6 with 108
variables, 4909 clauses and 3 models, we obtain 3 breakpoint successions,
reported below together with all their corresponding possible sequences:

{87.0, 224.2, 339.2, 452.2, 565.2, 662.2} which gives two sequences:
Ser-His-Asp-Leu-Leu-Pro-Gly-Leu
Ser-His-Asp-Leu-Leu-Pro-Leu-Gly

{87.0, 224.2, 339.2, 452.2, 565.2, 678.3} which gives two sequences:
Ser-His-Asp-Leu-Leu-Leu-Gly-Pro
Ser-His-Asp-Leu-Leu-Leu-Pro-Gly

{87.0, 184.0, 355.2, 452.2, 565.2, 662.2} which gives four sequences:
Ser-Pro-Gly-Asn-Pro-Leu-Pro-Gly-Leu
Ser-Pro-Gly-Asn-Pro-Leu-Pro-Leu-Gly
Ser-Pro-Asn-Gly-Pro-Leu-Pro-Gly-Leu
Ser-Pro-Asn-Gly-Pro-Leu-Pro-Leu-Gly

However, since in this series of examples we selected from the spectrum of Fig.
1 only the numbered peaks, results are not as accurate as it would be possible
when selecting more peaks.

5 Implementation and Computational Experience

The proposed approach is implemented in C++ and tested on a Pentium IV
1.7GHz PC. After the initial input routine, which (i) reads all informations
about possible components and possible types of fragments and charges, (ii)
reads the spectrum and extracts from it all peaks above a certain value, the
logic formula F representing the peak interpretation problem is generated. All
models of F are then found by means of the DPLL SAT solver BrChaff [23],
modified in order to search for all the models of the given formula. Then, for
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each model µ of F , the breakpoint succession is computed, and all the pos-
sible subsequences covering each gap are produced by means of a specialized
branching algorithm and linked together. Finally, by considering the union
of the set of sequences corresponding to the different models of F , all the
solutions of the sequencing problem are obtained.

Input Data Results

w0 f tmax emax n x v r S time

572.20 7 2 1 20 14 108 1 1 0.1

572.20 7 6 2 20 84 3571 2 2 1.9

851.30 18 2 1 20 36 543 1 4 0.5

851.30 18 4 2 24 144 6780 4 7 2.0

851.30 18 6 3 24 324 12642 10 16 5.6

859.12 20 3 1 40 60 2904 4 26 1.6

859.12 20 6 2 40 240 8156 5 29 4.1

913.30 16 2 1 20 32 539 2 7 1.0

913.30 16 6 3 20 288 10741 8 32 6.8

968.58 19 2 1 20 38 768 6 24 1.3

968.58 19 6 2 20 228 7021 10 38 4.1

1108.60 21 2 1 26 42 2687 8 18 3.5

1108.60 21 4 2 26 168 7456 16 64 12.2

1479.84 20 2 1 20 40 690 7 22 14.3

1479.84 20 6 2 20 240 8796 18 102 33.9

1570.60 22 2 1 21 44 2498 9 35 28.5

1570.60 22 6 2 21 264 9657 14 98 56.8

1607.69 27 2 2 26 108 5744 6 20 44.3

1607.69 27 6 3 26 486 22565 11 63 473.0

Table 2: Real-world peptide sequencing problems.

Table 2 reports various experiments of real peptide sequencing problems. In
particular, we indicate: the weight of the peptide (w0); the number of peaks
extracted from the spectrum (f); the number of considered types (tmax) and
charges (emax) of fragments; the number of possible components (n); the num-
ber of variables (x) and clauses (v) of the obtained formula; the number of

17



models (r) of the obtained formula, the overall number of solutions (S), and
computational times (in seconds) for the whole sequencing procedure. Those
results are intended to give real-world examples of application, rather than
exploring all the computational possibilities of the proposed procedure, since
the latter is not the focus of present paper.

As observable from the table, results clearly depend on the choice of possible
types and charges of fragments. This was of course expected. The number of
sequences compatible with the given input data is sometimes large, but all
the solutions are generally very related, in the sense that some parts are just
common, and some other are given by all the combinations of a (generally
small) number of components. Computational times are very moderate. The
whole procedure, according to biochemist experts, is a very powerful, accurate
and flexible sequencing tool, and allows the sequencing of compounds not
handled by other available techniques.

6 Conclusions

The problem of the determination of the amino acid sequence of a peptide
is considered. Such problem is of basic relevance in biological and medical
research, but is difficult to model and computationally hard to solve. Data ob-
tained from the mass spectrometry analysis of a generic polymeric compound,
constituted, according to specific chemical rules, by a sequence of components,
are here used to build a propositional logic formula. The models of this formula
represent coherent interpretations of the set of data, and are employed to gen-
erate all possible correct results of the analysis itself. The problem has been
therefore subdivided into a peaks interpretation phase and a sequence genera-
tion phase. The peaks interpretation phase is solved by means of a DPLL SAT
solver modified in order to search for all the models of a formula. The sequence
generation phase is solved by means of a specialized branching algorithm very
closely related to DPLL SAT solvers. Also due to the moderate dimension
of the problems which the proposed approach generates, computational lim-
its are completely overcome. The results of the reported tests on real-world
peptide sequencing problems are very encouraging from the accuracy point of
view.
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