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Abstract

Several fields of knowledge management operate by using rules. Many
example arise in Data Mining and Database Theory, but also in the
fields of Normative or Regulation. A major issue is the presence of
contradictions into a set of rules, since this usually makes such a set
unusable. Each contradiction should therefore be located and removed.
We present here an automatic procedure for solving this difficult prob-
lem. A main advantage is that this procedure works only at the formal
level, so it can be performed without the need of going into the semantic
meaning of the rules under analysis. A detailed and realistic example
of application of the proposed procedure is given and commented.

Keywords: Alternative Theorems, Inconsistency Selection, Linear Models

1 Introduction

In several fields of knowledge, many tasks are accomplished by using sets of ex-
pressions called rules (see e.g. [9]). Rules are typically used do detect, among
a possibly large set of elements, the ones verifying some condition. This hap-
pens for example in Data Mining, in Database Theory, in Statistics, but also
in less mathematical fields such like Normative or Regulation. The condition
may be of any nature, for instance ”being correct”, ”being wrong”, ”being
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convenient”, ”respecting the laws”, ”being compliant with a standard”, etc.
The set of rules may have several origins: it could be automatically generated,
for instance learned by some dataset, or be written by human experts, or also
be the result of an updating or a merging of other sets of rules. A major issue
is the presence of contradictions into the set of rules itself. This can frequently
arise, in particular when the set of rules has been assembled from different
sources. Generally, the presence of contradictions makes such a set not usable
anymore. Each contradiction should therefore be located and removed, either
by deleting or by slightly changing some of the rules. This is however a very
difficult problem in general: a contradiction can be quite hidden, or involve
many rules, or there can be several contradictions. Moreover, this difficulty
rapidly increases with the size of the set of rules [10].

We present here an automatic procedure for finding a contradiction into a
set of rules. The procedure can be iterated until all contradictions are removed
from a set. A main advantage of the proposed approach is that this procedure
works only at the formal level, so it can be performed without the need of going
into the semantic meaning of the rules under analysis and can be applied to
rules arising from any field. In particular, Section 2 explains how several kind
of rules can be formally represented into linear inequalities. After this, Section
3 presents a theoretical condition, based on a variant of Farkas’ lemma (see
e.g. [14]), used to detect a single contradiction. All contradictions are detected
by iterating this procedure, and the structure of the set of all contradictions,
together with the relationships among themselves, are also studied. Finally,
Section 4 gives a detailed explanation of the operations performed by the
proposed procedure on a realistic set of rules.

2 Encoding Rules into Linear Inequalities

In Database theory, a record schema is a set of fields fi, with i = 1 . . .m,
and a record instance is a set of values vi, one for each of the above fields. In
order to help exposition, we will focus on records representing persons. Note,
however, that the proposed procedure is not influenced by the meaning of
processed data. The record scheme will be denoted by P , whereas a generic
record instance corresponding to P will be denoted by p.

P = {f1, . . . , fm} p = {v1, . . . , vm}

Example 2.1. For records representing persons, fields are for instance age or
marital status, and corresponding examples of values are 18 or single.

Each field fi, with i = 1 . . .m, has its domain Di, which is the set of every
possible value for that field. A distinction is usually made between quantita-
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tive, or numerical, fields, and qualitative, or categorical fields. The proposed
approach is able to deal with both qualitative and quantitative values.

In several applications, records verifying some condition are selected by
using rules. Each rule can be seen as a mathematical function rk from the
Cartesian product of all the domains to the Boolean set {0,1}, as follows.

rk : D1 × . . . × Dm → {0, 1}
p �→ 0, 1

We call logical rules the rules expressed only with logical conditions, math-
ematical rules the rules expressed only with mathematical conditions, and
logic-mathematical rules the rules expressed using both types of condition.
See [3] for further details on different kind of rules.

Values appearing in the rules are called breakpoints, or cut points, for the
domains. They represent the logical watershed between values of the domain,
and will be indicated with bj

i . Such breakpoints are used to split every domain
Di into ni subsets Sj

i representing values of the domain which are equivalent
from the rules’ point of view. We congruently have Di =

⋃ni

j=1 Sj
i .

Example 2.2. Suppose that, by scanning a given set of rules R, the following
breakpoints are obtained for the field age of a person.

b1
age = 0, b2

age = 14, b3
age = 18, b4

age = 26, b5
age = 110, b6

age = blank

and, by using the breakpoints and the rules to cut Dage, we have the nage = 5
subsets. The last subset is the out-of-range one.

Sage∈{0...13} = {0, . . . , 13}, Sage∈{14...17} = {14, . . . , 17},
Sage∈{18...25} = {18, . . . , 25}, Sage∈{26...110} = {26, . . . , 110},

Sage = out of range = {. . . ,−1} ∪ {111, . . .} ∪ {blank}

Now, the variables for the announced linear inequalities can be introduced:
a set of m real variables zi ∈ [0, U ], one for each domain Di, and a set of
n = n1 + . . . + nm binary variables xij ∈ {0, 1}, one for each subset Sij . We
represent each value vi of p with a real variable zi, by defining a mapping ϕ
between values of the domain and real numbers between 0 and an upper value
U . Note that, occasionally, it could be convenient to bound some of the zi

variables to be integer, as described in [3], with obvious specific modifications
in the rest of the procedure. However, we continue our description considering
the general case of real z variables.

The membership of a value vi to the subset Sij is encoded by using the
binary variables xij .

xij =

{
1 when vi ∈ Sij

0 when vi �∈ Sij
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Binary and real variables are linked by using a set of linear inequalities called
bridge constraints. They impose that, when zi has a value such that vi be-
longs to subset Sij , the corresponding xij is 1 and all others binary variables
{xi1, . . . , xij−1, xij+1, . . . , xini

} of field fi are 0. By using these variables, all
the above types of rule can be expressed. For further details see [3, 4].

Example 2.3. Consider the following logical rule.

¬(marital status = married) ∨ ¬(age < 14)

By substituting the logical conditions, it becomes the linear inequality:

(1 − xmarital status = married) + (1 − xage∈{0...13}) ≥ 1

Consider, instead, the following logic-mathematical rule.

¬(marital status = married) ∨ (age− years married ≥ 14)

By substituting the logical and mathematical conditions, we have

(1 − xmarital status = married) ∨ (zage − zyears married ≥ 14)

which becomes the following linear inequality

U(1 − xmarital status = married) + zage − zyears married ≥ 14

Altogether, from the set of rules R, a set of linear inequalities is obtained.
Each record p determines an assignment of values for the introduced variables
xij and zi. By denoting with x and z the vectors respectively made of all the
components xij and zi, i = 1 . . .m, j = 1 . . . ni, as follows,

x = (x11, . . . , x1n1 , . . . , xm1, . . . , xmnm)T z = (z1, . . . , zm)T

the set of rules R becomes a system of linear inequalities, expressed in compact
notation as follows. ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

B

[
x
z

]
≥ b

0 ≤ zi ≤ U i = 1 . . .m
x ∈ {0, 1}n

z ∈ R
m

(1)

Since x has n = n1 + ...+nm components and z has m components, and letting
l be the total number of inequalities, B is in general a l× (n+m) real matrix,
and b a real l-vector.
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3 Locating Contradictions

A contradiction in the set of rules corresponds to an unsatisfiable set of in-
equalities within the above described system of linear inequalities. Such an
unsatisfiable set is called Infeasible Subsystem (IS). When an IS is minimal,
i.e. becomes satisfiable by removing anyone of its inequalities, is called Irre-
ducible Infeasible Subsystem(IIS) [1, 7, 15]. In the case of systems of linear
inequalities having real variables, the problem has been approached both by
means of heuristics [6] and exact algorithms [11]. In the case of systems of lin-
ear inequalities having integer variables (more computationally demanding),
the problem has been approached by means of additive or subtractive heuris-
tics [12]. We propose here a procedure based on a variant of well known Farkas’
lemma adapted from the continuous to the discrete case.

Theorem 3.1 (Farkas’ lemma) Let A be an s× t real matrix and let a be a
real s-vector. Then there exists a real t-vector x ≥ 0 with Ax = a if and only
if yTa ≥ 0 for each real s-vector y with yTA ≥ 0.

Geometrically, this means that if an s-vector γ does not belong to the cone
generated by the s-vectors a1, . . . , at (columns of A), there exists a linear hy-
perplane separating γ from a1, . . . , at. There are several equivalent forms of
Farkas’ lemma. The following variant is more suitable to our purposes. Given
a matrix A ∈ R

s×t and a vector a ∈ R
s, consider the system:

{
Ax ≤ a

x ∈ R
t (2)

and the new system of linear inequalities obtained from the former one:⎧⎪⎪⎨
⎪⎪⎩

yTA = 0
yTa < 0

y ≥ 0
y ∈ R

s

(3)

We have that exactly one of the two following possibilities holds:

• (2) is feasible, i.e. there exists x ∈ R
t verifying all its inequalities.

• (3) is feasible, i.e. there exists y ∈ R
s verifying all its inequalities.

An IIS can be selected within (2) by solving the following new system [11]:

⎧⎪⎪⎨
⎪⎪⎩

yTA = 0
yT a ≤ −1

y ≥ 0
y ∈ R

s

(4)
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The support of a vertex denotes the indices of its non-zero components; 0,
1 and U respectively denote vectors of zeroes, ones and Us of appropriate
dimension.

Theorem 3.2. (Gleeson and Ryan) Consider two systems of linear in-
equalities respectively in form (2) and (4). If (4) is infeasible, (2) is feasible.
On the contrary, if (4) is feasible, (2) is infeasible, and, moreover, each IIS of
(2) is given by the support of each vertex of the polyhedron (4).

The proof is based on polyhedral arguments using properties of extreme rays,
see [11]. Therefore, checking the feasibility of (2), and, if infeasible, identifying
one of its IIS, becomes the problem of finding a vertex of a polyhedron, that
can be easily solved (e.g. with the simplex algorithm [2, 14]).

However, in the case of (1), we have a systems of linear inequalities were
we are interested in mixed-integer solutions. In order to use the results given
for the linear case, let us consider the linear relaxation of such system (1).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−B

[
x
z

]
≤ −b[

x
z

]
≤

[
1
U

]

−
[

x
z

]
≤ 0[

x
z

]
∈ R

n+m

(5)

The above system (5) is now in the form of (2). The l inequalities from the
first group will be called rules inequalities, even if, for some of them, there
can be no one-to-one correspondence with rules (see Sect. 4). By denoting
with I the identity matrix, the [l + 2(n + m)] × (n + m) matrix A and the
[l+2(n+m)]-vector a are composed as follows. Number of rows for each block
is reported on the left.

A =

⎡
⎣ −B

I
−I

⎤
⎦ l

n + m
n + m

a =

⎡
⎢⎢⎣
−b
1
U
0

⎤
⎥⎥⎦

l
n
m

n + m
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Therefore, a system which plays the role of (4) can now be written.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yT

⎡
⎣ −B

I
−I

⎤
⎦ = 0

yT

⎡
⎢⎢⎣
−b
1
U
0

⎤
⎥⎥⎦ ≤ −1

y ≥ 0, y ∈ R
[l+2(n+m)]

(6)

So far, the following result on the pair of systems (1) and (6) holds. The
restriction of the support of a vertex to rules inequalities will denote the indices
of its non-zero components among those corresponding to rules inequalities.

Theorem 3.3. Consider two systems of linear inequalities respectively in form
(1) and (6). In this case, if (6) is feasible, (1) is infeasible, and the restriction of
the support of each vertex of the polyhedron (6) to rules inequalities contains
an IIS of (1). On the contrary, if (6) is infeasible, (5) is feasible, but it cannot
be decided whether (1) is feasible or not.

Proof: We first prove that the restriction of the support of a vertex of (6) to
rule inequalities contains an integer IIS of (1). Assume (6) is feasible, and let
v1 be the vertex found. Therefore, (5) is infeasible (from Theorem 3.1), and
an IIS in (5), called here IIS 1, is given by the support of v1. Such IIS 1 is in
general composed by a set RI 1 of rules inequalities and a set BC1 (possibly
empty) of box constraints (the ones imposing 0 ≤ xij ≤ 1, 0 ≤ zi ≤ U). The
set of inequalities RI 1 has no integer solutions, since removing the BC 1 from
IIS 1, while imposing the more strict integer constraints IC 1 (the ones imposing
xij ∈ {0, 1}), keeps IIS 1 unsatisfiable. Therefore, an integer IIS is contained
into RI1. The integer IIS may also be a subset of the inequalities of RI1,
because, though IIS 1 = RI1 ∪ BC1 is minimally infeasible, RI1 ∪ IC1 may be
not minimal: we are imposing the more strict integer constraints instead of
the box constraints. Therefore, the procedure produces an integrally infeasible
subsystem containing an integer IIS for (1).

On the other hand, not all integer IIS in (2) can be obtained by such proce-
dure. This because, if (6) is infeasible, (5) is feasible (by Theorem 3.1). When
imposing the more strict integer constraints instead of the box constraints,
however, nothing can be said on the feasibility of (1).

Example 3.1. Consider a set of rules R on two conditions α1, α2, as follows.
One may already note that R contains an inconsistency.

r1 = (α1), r2 = (α2), r3 = (¬α1 ∨ ¬α2), r4 = (α1 ∨ ¬α2)
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In this case, n = 2 and m can be considered 0, since no z variables are needed
to express the above rules. A and a can easily be obtained, as follows.

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0
0 −1
1 1

−1 1
1 0
0 1

−1 0
0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

a =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
−1

1
0
1
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore, the system to be solved, in the form of (6), is the following.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−y1 + y3 − y4 + y5 − y7 = 0
−y2 + y3 + y4 + y6 − y8 = 0
−y1 − y2 + y3 + y5 + y6 ≤ −1

y1, y2, y3, y4, y5, y6, y7, y8 ≥ 0
y ∈ R

8

Solving such system yields the vertex (1, 1, 1, 0, 0, 0, 0, 0). Therefore, R
contains an inconsistency, and the set of conflicting rules is {r1, r2, r3}.
More than one IIS can be contained in an infeasible system. Some of them
can overlap, in the sense that they can share some inequalities, although they
cannot be fully contained one in another. Formally, the collection of all IIS
of a given infeasible system is a clutter (see e.g. [1]). However, from the
practical point of view, we are interested in IIS composed by a small number
of rules inequalities. Moreover, it may happen that not all of them are equally
preferable for the composition of the IIS that we are selecting. Hence, a cost
ck for taking each of the [l+2(n+m)] inequalities into our IIS can be assigned.
Such costs ck for the inequalities of (5) corresponds to costs for the variables
of system (6). A cost [l + 2(n + m)]-vector c is therefore computed, and the
solution of the following linear program produces now an IIS having the desired
inequality composition. ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min cT y

yT

⎡
⎣ −B

I
−I

⎤
⎦ = 0

yT

⎡
⎢⎢⎣
−b
1
U
0

⎤
⎥⎥⎦ ≤ −1

y ≥ 0, y ∈ R
[l+2(n+m)]

(7)
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The result of Theorem 3.3 is not completely analogous to the linear case. In
order to obtain more analogy, let us define the following property.

Integral-point property. A class of polyhedra which, if non-empty, contain
at least one integral point (i.e. a point respecting integrality constraints) has
the integral-point (IP) property.

Theorem 3.4. If the polyhedron (5), which is the linear relaxation of (1),
has the integral-point property, the following holds. If (6) is infeasible, (1) is
feasible. On the contrary, if (6) is feasible, (1) is infeasible and each integer
IIS is given by the restriction of the support of each vertex of polyhedron (6)
to rules inequalities.

Proof: If (6) is infeasible, (5) is feasible by Theorem 3.1. Since we assumed
that the IP-property holds for (5), it contains at least one integral point.
Since the box constraints hold for (5), this integer point must be such that
x ∈ {0, 1}n, hence (1) is feasible. On the contrary, if (6) is feasible, the
restriction of the support of a vertex in (6) to rule inequalities, that is a set
of inequalities denoted by RI1, has no integer solutions by Theorem 3.3. We
now prove by contradiction that RI1 is minimally infeasible, hence it is an
integer IIS. Suppose RI1 not minimal; then there exists a smaller set RI ′

1 such
that RI ′

1 ∪ IC1 has no integer solutions. On the other hand, by Theorem 3.2,
RI1 ∪ BC1 is minimal, so RI ′

1 ∪ BC1 must be feasible, and since it has the
IP-property, it has an integer solution, which is the contradiction. The thesis
follows.

So far, when the IP property holds, solving a linear programming problem
solves our inconsistency selection problem. There are several cases in which the
linear relaxation (5) defines a polyhedron having the integral-point property
(see e.g. [5, 8, 13]). Note that, imposing some syntactic restrictions, rules
could be written in order to obtain one of such cases.

4 Applying the Proposed Procedure

Assume that each individual is described by a data record (a set of values for
a set of fields). Let the fields be either categorical, e.g. name, profession, tax1
(= if the individual has to pay a tax called tax1), tax2, tax3, or numerical, e.g.
age, length of career, income.

Let the domain of profession be a set of strings (e.g. pr1, pr2, pr3); blank
being an admissible value, e.g. for non-working people); the domain of tax1,
tax2, tax3 be {yes, no}; the domain of age be a suitable subset of the set of real
non-negative numbers R+ (or of Z+, with obvious modifications); the domain
of length of career be a suitable subset of R+∪blank (blank being an admissible
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value, e.g. for non-working people); the domain of income be a suitable subset
of R+ (being 0 for non-working people).

Assume there is a set of rules for economical regulation (something similar
to laws), as follows. Clearly, the focus is not on numerical values appearing in
the rules, that may be unrealistic, but on the structure of the set. Note that,
in order to test the consistency of this set, we need to consider also rules that
a human would consider obvious, but not a machine, called unexpressed rules.

• Logical rules
Some taxes must be paid for some professions

L1 if profession = (pr1 or pr2) then tax1 must be yes

L2 if profession = pr3 then tax2 must be yes

Some taxes must be paid for some income values

L3 if income ≥ 1000 then tax3 must be yes

For poor people taxes cannot exceed 100

L4 if income ≤ 200 then total tax must be ≤ 100

• Mathematical rules
Income must be related to length of career

M1 income ≤ 1000 + 20×length of career

M2 income ≥ 200 + 30×length of career

Taxes must be at least one third of the income

M3 total tax ≥ 0.33×income

Taxes cannot exceed income

M4 total tax ≤income

• Logico-mathematical rules
If income is too high for the career, tax 3 must me paid

LM1 if income −30×length of career ≥ 400 then tax3 must be yes

• Unexpressed rules
Professions are mutually exclusive

U1 Pr1 ⊕Pr2 ⊕Pr3

There are relations implied by the meaning of the words

U2 total tax = tax1+tax2+tax3
Some Fields are naturally limited

U3 age ≥ 0 and ≤ 110

U4 length of career ≥ 0 and ≤ 92

U5 ε ≥ 0 and ≤ 0.001
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U6 total tax ≥ 0 and ≤ 2000

U7 income ≥ 0 and ≤ 5000

From the above rules we can identify some variables. Some of them are logical,
and are also called propositions, and some are real-valued.

1) XPRO1 (binary)

2) XPRO2 (binary)

3) XPRO3 (binary)

4) XTAX1 (binary)

5) XTAX2 (binary)

6) XTAX3 (binary)

7) XTTAX0-100 (binary)

8) XINC0-200 (binary)

9) TTAX (real≥ 0)

10) INC (real≥ 0)

11) AGE (real≥ 0)

12) LEN (real≥ 0)

13) EPS (real≥ 0)

In the general case, from the rules we can identify some logical propositions,
that are the elementary concepts expressed in the rules. We may have:

• Level propositions, e.g. L1, L2, L3, L4. They are conditions that become
stronger as their index increases, so L4 ⇒ L3, L2, L1 and L3 ⇒ L2, L1
and L2 ⇒ L1 and L1 does not imply anything. Conversely, ¬L1 ⇒
¬L2,¬L3,¬L4 and ¬L2 ⇒ ¬L3,¬L4 and ¬L3 ⇒ ¬L4 and ¬L4 does
not imply anything. A set of level propositions is complete when at least
one of them must hold, so L1 is always true.

They can represent for instance that the value of a certain field of some
data records belongs to some sets S1, S2, S3, S4 in a domain S such that
S1 ⊇ S2 ⊇ S3 ⊇ S4 (and are complete when S1 = S).

• Exclusive propositions, e.g. E1, E2, E3. They are mutually exclusive:
at most one of them holds, so E1 ⇒ ¬E2,¬E3 and E2 ⇒ ¬E1,¬E3
and E3 ⇒ ¬E1,¬E2. Equivalently, ¬E1 ∨ ¬E2 and ¬E2 ∨ ¬E3 and
¬E1 ∨ ¬E3. A set of exclusive propositions is complete when at least
one of them must hold, so E1 ∨ E2 ∨ E3.

They can represent for instance that the value of a certain field of some
data records belongs to some sets S1, S2, S3 such that S1∩ S2 = φ and
S2 ∩ S3 = φ and S1 ∩ S3 = φ (complete when S1 ∪ S2 ∪ S3 = S).
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• Standard propositions, e.g. F, G, H, I. They have no predefined relations
among them, and any relation among them can be expressed, e.g. F ⇒ G
and F ∧ H ⇒ I.

The rules may contain one or more inconsistency, as explained in Section 3.
Note that inconsistencies may be either complete, when no record can respect
the rules, or partial, when no record having a specific value vi for a specific field
i (value that should not be forbidden) can respect the rules. In this example
we have:

• No complete inconsistency: there are records respecting all the rules.

• A partial inconsistency for length of career ≥ 67
(M2 says income ≥ 2210 and M3 says total tax ≥ 729.3, while U2 says
total tax can be at most 720 when all tax1, tax2, tax3 are paid. Since U7
says 0 ≤ income ≤ 5000, that is a contradiction).

• Another partial inconsistency for length of career ≥ 81
(M1 says income ≤ 2620 while M2 says income ≥ 2630, that is a contra-
diction).

• Another partial inconsistency for income ≥ 2182
(M3 says total tax ≥ 720.06, while U2 says total tax can be at most 720
when all tax1, tax2, tax3 are paid. Since U7 says 0 ≤ income ≤ 5000,
that is a contradiction).

Partial inconsistencies can be tested with the proposed procedure by simply
imposing the value activating them, for instance by adding a constraint. We
now analyze the above three examples with our procedure. First we convert
rules into inequalities, until putting all of them in the form ≤

L1 if profession = (pr1 or pr2) then tax1 must be yes

= profession = ¬ XPRO1 ∨ XTAX1 and ¬ XPRO1 ∨ XTAX1

= XTAX1 + (1-XPRO1) ≥ 1 and XTAX1 + (1-XPRO2) ≥ 1

1) -1 XTAX1 +1 XPRO1 ≤ 0

2) -1 XTAX1 +1 XPRO2 ≤ 0

L2 if profession = pr3 then tax2 must be yes

= XTAX2 + (1-XPRO3) ≥ 1

3) -1 XTAX2 +1 XPRO3 ≤ 0

L3 if income ≥ 1000 then tax3 must be yes

= ¬tax3 ⇒ income < 1000

= tax3 ∨ income ≤ 1000 − ε
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= -M TAX3 +INC +EPS ≤ 1000

4) -M TAX3 +1 INC +1 EPS ≤ 1000

L4 if income ≤ 200 then total tax must be ≤ 100

= (1-XINC0-200) + XTTAX0-100 ≥ 1

5) 1 XINC0-200 -1 XTTAX0-100 ≤ 0

M1 income ≤ 1000 + 20×length of career

= INC -20 LEN ≤ 1000

6) 1 INC -20 LEN ≤ 1000

M2 income ≥ 200 + 30×length of career

= INC -30 LEN ≥ 200

7) -1 INC +30 LEN ≤ −200

M3 total tax ≥ 0.33×income

= TTAX -0.33 INC ≥ 0

8) -1 TTAX +0.33 INC ≤ 0

M4 total tax ≤income

= TTAX -INC ≤ 0

9) 1 TTAX -1 INC ≤ 0

LM1 if income −30×length of career ≥ 400 then tax3 must be yes

= -M TAX3 + 30 LEN -INC +EPS ≤ 400

10) -M TAX3 +30 LEN -1 INC +1 EPS ≤ 400

U1 Pr1 ⊕Pr2 ⊕Pr3

= PRO1 +PRO2 ≤ 1 and PRO1 +PRO3 ≤ 1 and PRO2 +PRO3 ≤ 1

11) 1 PRO1 +1 PRO2 ≤ 1

12) 1 PRO1 +1 PRO3 ≤ 1

13) 1 PRO2 +1 PRO3 ≤ 1

U2 total tax = tax1+tax2+tax3 (with tax1=100, tax2=120, tax3=500)

= TTAX -100 XTAX1 -120 XTAX2 -500 XTAX3 = 0

14) 1 TTAX -100 XTAX1 -120 XTAX2 -500 XTAX3 ≤ 0

15) -1 TTAX +100 XTAX1 +120 XTAX2 +500 XTAX3 ≤ 0

• XTTAX0-100=1 iff TTAX≤ 100

= M (1-XTTAX0-100) ≥ TTAX -100 and -M XTTAX0-100 ≥ TTAX -100 -EPS

16) M XTTAX0-100 +1 TTAX ≤ M+100

17) M XTTAX0-100 +1 TTAX -1 EPS≤ 100

• XINC0-200=1 iff INC≤ 200

= M (1-XINC0-200) ≥ INC -200 and M XINC0-200 ≥ 200 +EPS - INC
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18) M XINC0-200 +1 INC ≤ M +200

19) -M XINC0-200 -1 INC +1 EPS ≤ -200

U3 age ≥ 0 and ≤ 110

= AGE ≥ 0 and AGE ≤ 110

20) -1 AGE ≤ 0 21) 1 AGE ≤ 110

U4 length of career ≥ 0 and ≤ 92

= LEN ≥ 0 and LEN ≤ 92

22) -1 LEN ≤ 0 23) 1 LEN ≤ 92

U5 ε ≥ 0 and ≤ 0.001

= EPS ≥ 0 and EPS ≤ 0.001

24) -1 EPS ≤ 0 25) 1 EPS ≤ 0.001

U6 total tax ≥ 0 and ≤ 2000

= TTAX ≥ 0 and ≤ 2000

26) -1 TTAX ≤ 0 27) 1 TTAX ≤ 2000

U7 income ≥ 0 and ≤ 5000

= INC ≥ 0 and INC ≤ 5000

28) -1 INC ≤ 0 29) 1 INC ≤ 5000

• XPRO1 binary

30) -1 XPRO1 ≤ 0 31) 1 XPRO1 ≤ 1

• XPRO2 (binary)

32) -1 XPRO2 ≤ 0 33) 1 XPRO2 ≤ 1

• XPRO3 (binary)

34) -1 XPRO3 ≤ 0 35) 1 XPRO3 ≤ 1

• XTAX1 (binary)

36) -1 XTAX1 ≤ 0 37) 1 XTAX1 ≤ 1

• XTAX2 (binary)

38) -1 XTAX2 ≤ 0 39) 1 XTAX2 ≤ 1

• XTAX3 (binary)

40) -1 XTAX3 ≤ 0 41) 1 XTAX3 ≤ 1

• XTTAX0-100 (binary)

42) -1 XTTAX0-100 ≤ 0 43) 1 XTTAX0-100 ≤ 1

• XINC0-200 (binary)

44) -1 XINC0-200 ≤ 0 45) 1 XINC0-200 ≤ 1

Overall, we have the following set of linear inequalities in form ≤
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1) -1 XTAX1 +1 XPRO1 ≤ 0

2) -1 XTAX1 +1 XPRO2 ≤ 0

3) -1 XTAX2 +1 XPRO3 ≤ 0

4) -M TAX3 +1 INC +1 EPS ≤ 1000

5) 1 XINC0-200 -1 XTTAX0-100 ≤ 0

6) 1 INC -20 LEN ≤ 1000

7) -1 INC +30 LEN ≤ −200

8) -1 TTAX +0.33 INC ≤ 0

9) 1 TTAX -1 INC ≤ 0

10) -M TAX3 +30 LEN -1 INC +1 EPS ≤ 400

11) 1 PRO1 +1 PRO2 ≤ 1

12) 1 PRO1 +1 PRO3 ≤ 1

13) 1 PRO2 +1 PRO3 ≤ 1

14) 1 TTAX -100 XTAX1 -120 XTAX2 -500 XTAX3 ≤ 0

15) -1 TTAX +100 XTAX1 +120 XTAX2 +500 XTAX3 ≤ 0

16) M XTTAX0-100 +1 TTAX ≤ M+100

17) M XTTAX0-100 +1 TTAX -1 EPS≤ 100

18) M XINC0-200 +1 INC ≤ M +200

19) M XINC0-200 +1 INC -1 EPS ≤ 200

20) -1 AGE ≤ 0 21) 1 AGE ≤ 110

22) -1 LEN ≤ 0 23) 1 LEN ≤ 92

24) -1 EPS ≤ 0 25) 1 EPS ≤ 0.001

26) -1 TTAX ≤ 0 27) 1 TTAX ≤ 2000

28) -1 INC ≤ 0 29) 1 INC ≤ 5000

30) -1 XPRO1 ≤ 0 31) 1 XPRO1 ≤ 1

32) -1 XPRO2 ≤ 0 33) 1 XPRO2 ≤ 1

34) -1 XPRO3 ≤ 0 35) 1 XPRO3 ≤ 1

36) -1 XTAX1 ≤ 0 37) 1 XTAX1 ≤ 1

38) -1 XTAX2 ≤ 0 39) 1 XTAX2 ≤ 1

40) -1 XTAX3 ≤ 0 41) 1 XTAX3 ≤ 1

42) -1 XTTAX0-100 ≤ 0 43) 1 XTTAX0-100 ≤ 1

44) -1 XINC0-200 ≤ 0 45) 1 XINC0-200 ≤ 1
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By ordering the binary (x) and real variables (z), the overall matrix and the
overall vector of system (5), corresponding to A and a of system (2), unless an
easy reordering of some of the box inequalities, are the following:

XPRO XPRO XPRO XTAX XTAX XTAX XTTAX XINC TTAX INC AGE LEN EPS vector
1 2 3 1 2 3 0-100 0-200 a

1 ( L1) 1 0 0 -1 0 0 0 0 0 0 0 0 0 0

2 ( L1) 0 1 0 -1 0 0 0 0 0 0 0 0 0 0

3 ( L2) 0 0 1 0 -1 0 0 0 0 0 0 0 0 0

4 ( L3) 0 0 0 0 0 -12000 0 0 0 1 0 0 1 1000

5 ( L4) 0 0 0 0 0 0 -1 1 0 0 0 0 0 0

6 ( M1) 0 0 0 0 0 0 0 0 0 1 0 -20 0 1000

7 ( M21) 0 0 0 0 0 0 0 0 0 -1 0 30 0 -200

8 ( M3) 0 0 0 0 0 0 0 0 -1 0.33 0 0 0 0

9 ( M4) 0 0 0 0 0 0 0 0 1 -1 0 0 0 0

10 ( LM1) 0 0 0 0 0 -12000 0 0 0 -1 0 30 1 400

11 ( U1) 1 1 0 0 0 0 0 0 0 0 0 0 0 1

12 ( U1) 1 0 1 0 0 0 0 0 0 0 0 0 0 1

13 ( U1) 0 1 1 0 0 0 0 0 0 0 0 0 0 1

14 ( U2) 0 0 0 -100 -120 -500 0 0 1 0 0 0 0 0

15 ( U2) 0 0 0 100 120 500 0 0 -1 0 0 0 0 0

16 (U2) 0 0 0 0 0 0 12000 0 1 0 0 0 0 12100

17 (U2) 0 0 0 0 0 0 -12000 0 -1 0 0 0 1 -100

18 (U2) 0 0 0 0 0 0 0 12000 0 1 0 0 0 12200

19 ( U2) 0 0 0 0 0 0 0 -12000 0 -1 0 0 1 -200

20 ( U3) 0 0 0 0 0 0 0 0 0 0 -1 0 0 0

21 ( U3) 0 0 0 0 0 0 0 0 0 0 1 0 0 110

22 ( U4) 0 0 0 0 0 0 0 0 0 0 0 -1 0 0

23 ( U4) 0 0 0 0 0 0 0 0 0 0 0 1 0 92

24 (U5) 0 0 0 0 0 0 0 0 0 0 0 0 -1 0

25 (U5) 0 0 0 0 0 0 0 0 0 0 0 0 1 0.001

26 (U6) 0 0 0 0 0 0 0 0 -1 0 0 0 0 0

27 (U6) 0 0 0 0 0 0 0 0 1 0 0 0 0 2000

28 (U7) 0 0 0 0 0 0 0 0 0 -1 0 0 0 0

29 (U7) 0 0 0 0 0 0 0 0 0 1 0 0 0 5000

30 (U7) -1 0 0 0 0 0 0 0 0 0 0 0 0 0

31 (U7) 1 0 0 0 0 0 0 0 0 0 0 0 0 1

32 (U7) 0 -1 0 0 0 0 0 0 0 0 0 0 0 0

33 (U7) 0 1 0 0 0 0 0 0 0 0 0 0 0 1

34 (U7) 0 0 -1 0 0 0 0 0 0 0 0 0 0 0

35 (U7) 0 0 1 0 0 0 0 0 0 0 0 0 0 1

36 (U7) 0 0 0 -1 0 0 0 0 0 0 0 0 0 0

37 (U7) 0 0 0 1 0 0 0 0 0 0 0 0 0 1

38 (U7) 0 0 0 0 -1 0 0 0 0 0 0 0 0 0

39 (U7) 0 0 0 0 1 0 0 0 0 0 0 0 0 1

40 (U7) 0 0 0 0 0 -1 0 0 0 0 0 0 0 0

41 (U7) 0 0 0 0 0 1 0 0 0 0 0 0 0 1

42 (U7) 0 0 0 0 0 0 -1 0 0 0 0 0 0 0

43 (U7) 0 0 0 0 0 0 1 0 0 0 0 0 0 1

44 (U7) 0 0 0 0 0 0 0 -1 0 0 0 0 0 0

45 (U7) 0 0 0 0 0 0 0 1 0 0 0 0 0 1

Now we solve the dual model (7) with objective cost vector c = 1 and using the
above matrix and vector. Model (7) is in this case infeasible so, according to
Theorem 3.4, the primal (1) has no complete inconsistencies. We now search
for each partial inconsistency by imposing the value activating it. In practice
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we try to impose any possible value for each field, and every time we find a
vertex for model (7) we have detected a partial inconsistency.

If we add the constraint that LEN ≥ 67, that corresponds to adding the
following row to the above matrix,

XPRO XPRO XPRO XTAX XTAX XTAX XTTAX XINC TTAX INC AGE LEN EPS vector
1 2 3 1 2 3 0-100 0-200 a

46 0 0 0 0 0 0 0 0 0 0 0 -1 0 -67

we obtain that (7) has a vertex solution

y = {0, 0, 0, 0, 0, 0, 0.035, 0.11, 0, 0, 0, 0, 0, 0.11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 10.75, 0, 12.9, 0, 53.76, 0, 0, 0, 0, 1.06}

where the support is given by the 7th, the 8th, the 14th, the 37th, the 38th, the
39th and the 46th. This means that the corresponding inequalities are forming
an IIS. The partial contradiction is between the 6 inequalities corresponding to
the 4 following rules, and it appears for LEN≥ 67 (46th inequality), as showed
in the beginning of this Section.

M2 income ≥ 200 + 30×length of career

M3 total tax ≥ 0.33×income

U2 total tax = tax1+tax2+tax3

U7 income ≥ 0 and ≤ 5000

If we add the constraint that LEN ≥ 81, that corresponds to adding the
following row to the above matrix,

XPRO XPRO XPRO XTAX XTAX XTAX XTTAX XINC TTAX INC AGE LEN EPS vector
1 2 3 1 2 3 0-100 0-200 a

46 0 0 0 0 0 0 0 0 0 0 0 -1 0 -81

we obtain that (7) has a vertex solution

y = {0, 0, 0, 0, 0, 0.1, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}

where the support is given by the 6th, the 7th and the 46th. This means that
the corresponding inequalities are forming an IIS. The partial contradiction
is between the 2 inequalities corresponding to the 2 following rules, and it
appears for LEN≥ 81 (46th inequality), as showed in the beginning of this
Section.

M1 income ≤ 1000 + 20×length of career

M2 income ≥ 200 + 30×length of career
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If we add the constraint that INC ≥ 2182, that corresponds to adding the
following row to the above matrix,

XPRO XPRO XPRO XTAX XTAX XTAX XTTAX XINC TTAX INC AGE LEN EPS vector
1 2 3 1 2 3 0-100 0-200 a

46 0 0 0 0 0 0 0 0 0 -1 0 0 0 -2182

we obtain that (7) has a vertex solution

y = {0, 0, 0, 0, 0, 0, 0, 16.67, 0, 0, 0, 0, 0, 16.67, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1667, 0, 2000, 0, 8333, 0, 0, 0, 0, 5.5}

where the support is given by the 8th, the 14th, the 37th, the 39th, the 41th and
the 46th. This means that the corresponding inequalities are forming an IIS.
The contradiction partial is between the 5 inequalities corresponding to the
following 3 rules, and it appears for INC≥ 2182 (46th inequality), as showed
in the beginning of this Section.

M3 total tax ≥ 0.33×income

U2 total tax = tax1+tax2+tax3

U7 income ≥ 0 and ≤ 5000

Therefore, the proposed fully automatic procedure was able to discover the
sets of conflicting rules working only at the formal level.
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