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Abstract

Personnel scheduling deals with the attribution of a number of duty shifts to
a number of workers respecting several types of requirements. In this work,
the problem of scheduling physicians in health care departments is studied.
This problem is NP-hard, and we propose a flexible Mixed Integer Linear Pro-
gramming formulation that allows easy modifications for representing different
situations and scenarios. This formulation can be solved to optimality by a
standard Branch-and-Cut procedure even for very long planning horizons. A
real-world case study is considered. A comparison of the solutions obtained by
the proposed approach with the solutions currently adopted in the considered
structure is presented. Results are very encouraging both from the schedule
quality (e.g., workload balancing) and from the computational point of view.

Keywords: Staff Scheduling, Personnel Scheduling, Physicians, Rostering,
Mixed Integer Linear Model.

1. Introduction

Personnel scheduling problems deal with the assignment of a number of
tasks to a number of workers while respecting a number of restrictions that of-
ten make the problem harder than a simple assignment problem. Generally this
attribution must be done in order to strictly satisfy service requirements and5

contractual agreements, and to maximize workers’ preferences and/or minimize
costs, where these objectives are applicable. These problems are very relevant
in many working environments and assume different connotations in the differ-
ent contexts, but typically constitute highly constrained optimization problems.
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Consequently, in the last few decades they have been studied widely and several10

different approaches have been proposed (see for references [10, 26]). In the
field of health care, personnel scheduling problems are particularly pervasive,
because many services need to be assured on a continuous basis, twenty-four
hours a day, seven days a week, and so any organization of the work must be
based on duty rostering.15

This work deals with the problem of scheduling physicians in the depart-
ments of a health care structure (e.g., hospital), where a schedule is an assign-
ment of physicians to perform different medical guard services in those depart-
ments. Scheduling health care personnel is in general particularly challenging.
However, the quality of these schedules is very important, because high perfor-20

mances in health care services could hardly be achieved when using low quality
rosters, e.g., rosters causing unbalanced workloads or excessive stress in the
workers. Performing periods of medical guard service in the hospitals is part of
the physicians charges. Those periods usually last 10/12 hours, hence their good
scheduling, taking into account suitable rest periods and any other additional25

requirement, is essential in improving the overall efficiency of the system.
The problem of personnel scheduling in health care has been addressed by

several authors. However, most of the work has been focused on nurse schedul-
ing (see, e.g., [7, 9, 16, 19]). The physician scheduling problem is different
from nurse scheduling, since, in general, nurses work under collective agreement30

while physicians may have individual and ad hoc contractual duties. Another
difference is in the objectives. In the nurse staff problem, both preference satis-
faction and costs aspects must be considered. In the physician scheduling, only
the satisfaction of the physician is typically taken into account, as physician
retention is another issue often faced by hospital administrations. As a conse-35

quence, nurse scheduling is usually performed in two steps [8]. First, a schedule
is generated to satisfy the collective agreement for the regular staff, minimiz-
ing staff shortages and surplus. Then, shortages are solved by using external
personnel and overtime. The physician schedule is usually a one step process,
where scheduling requirements must be joined with physician availability.40

Most of works from the literature on physician scheduling deal with the prob-
lem of scheduling physicians in particular contexts, such as emergency rooms
[1, 8, 20, 15] or operating rooms [21, 24]. Recently, in [17], the problem of gener-
ating a master schedule for the physicians in a hospital is addressed, by consid-
ering the full range of day-to-day activities of the physicians (including surgery,45

clinics, scopes, calls, administration). However, for large instances, this overall
problem could not be solved exactly but only heuristically. In [23], a set covering
model for scheduling physicians in a hospital is presented and tested on real-
world instances, but only with a 2-week planning horizon. The same instances
are solved heuristically in [6]. Despite the differences from nurse and physician50

scheduling, the mathematical formulations and the solution approaches used
for solving the two problems may have points in common. Indeed, the solution
approach employed in [2] for the nurse scheduling problem was slightly modified
and successfully applied to the physician scheduling problem in [1].

In this work, a Mixed Integer Linear Programming formulation for the physi-55
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cian scheduling problem is presented. This model imposes satisfying all service
requirements and contractual agreements, while trying to respect, as far as pos-
sible, workers’ preferences. The proposed model is able to represent the various
aspects of the problem generally considered in literature, and is also flexible,
allowing easy modifications for representing different situations. This model60

can be solved to optimality by means of a standard Branch&Cut procedure for
planning horizons even beyond the standard needs. The paper is organized as
follows. In the rest of this Section, a brief discussion of the problem complexity
is given. In Section 2, the general structure of the problem is formally defined.
Section 3 describes the formulation proposed for the general problem, while Sec-65

tion 4 analyzes the capability of this model to represent the different aspects of
the problem. Section 5, finally, reports computational results and comparison
on real world instances.

1.1. Complexity Issues

Since the personnel scheduling problem generally is an assignment of shifts to70

physicians, in its very basic version it could be modeled as a standard assignment
problem, and consequently solved in polynomial time [14]. ¿From the literature,
easy cases of personnel scheduling have been modeled as network flow models
and solved in polynomial time (e.g. [3, 27]). However, as soon as the problem
gains more richness, more complex models are needed, as, for example, the75

multicommodity network flow models used in the case of railways [25], that are
NP-hard [12].

In the case of physician scheduling, a number of additional requirements ex-
ists, that make the problem particularly difficult. One of the main complicating
requirement is the fact that physicians need to have rest periods after any shift80

performed. Another complicating requirement is assigning shifts to doctors in
order to balance the workload as much as possible. Those requirements imply
using additional mathematical machinery for somehow “counting” the number
of shifts. Indeed, Brucker et al. [4] show that the physician scheduling problem
is NP-hard when the planning horizon is composed by 3n shifts, where n is the85

total number of physicians, and 3 not consecutive shifts must be assigned to
each physician (by reduction from the exact covering by 3-sets (X3C) problem
[14]). Recall that the problem 3-Satisfiability (3SAT) reduces to X3C [14], and
that the problem qSAT remains NP-complete for any q ≥ 3. From this, it fol-
lows that exact covering by p-sets for p ≥ 3 is NP-complete, too. Therefore,90

the physician scheduling problem is NP-hard also when the planning horizon is
composed by pn shifts and p not consecutive shifts must be assigned to each
physician, with p ≥ 3.

Evidently, the physician scheduling problem has a combinatorial optimiza-
tion structure, with the ground set being the set of every possible attribution of95

shifts to doctors, and each feasible solution is only a subset of this ground set
producing a certain value for the selected objective (which can be, for example,
a measure of the workload balancedness).
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2. Definition and General Problem Structure

In this section, a formal definition of the Physician Scheduling problem is100

given. We consider the scheduling of physicians to perform different medical
guard services in the departments of health care structures such as hospitals.
Physicians, hereinafter called also doctors, have to guarantee their presence in
a number of departments, so as to be ready to assist patients and solve the dif-
ferent issues that may arise. This means doctors must cover a number of time105

slots, or shifts, in those departments, according to a number of rules. Such rules
may be different from case to case, but several general aspects are common to
all cases. Basically, there are rules for ensuring coverage of the departments, suf-
ficient rest, vacation time or other unavailabilities of the doctors, and workload
balancing among the doctors. Balancing generally constitutes the most impor-110

tant preference aspect in practice, and indeed other preference aspects were
not allowed in the analyzed real world case for avoiding disputes. Additional
preferences could of course be allowed in specific cases, constituting additional
elements in this structure. Therefore, a mathematical model of the problem
should provide enough flexibility for introducing them. We now formalize the115

problem structure, giving also some concrete examples just for helping com-
prehension. Clearly, there are cases that may considerably differer from such
examples, but still fall within the same general structure.

Shifts. The scheduling is generally planned by using a certain planning horizon,
for instance 6 months or 1 year, and all the shifts in the planning horizon120

constitute a set S = {s1, . . . , sm}. This horizon cannot be too short, since
doctors need to know their duties with some advance, but not exceedingly long,
because otherwise re-organizations, changes in the personnel, etc. would often
nullify the rostering. Generally, we need to distinguish among:

1. Shifts located on regular working days, constituting a set Sd ⊂ S. They125

are for instance shifts lasting the 12 hours from 8 a.m. to 8 p.m. of the
week days from Monday to Saturday.

2. Shifts located on regular nights, constituting a set Sn ⊂ S. They are
for instance shifts lasting the 12 hours from 8 p.m. to 8 a.m. following
the week days from Monday to Saturday (e.g. Monday night, in common130

terminology, is the night between Monday and Tuesday, even if Monday
officially starts at 0.00 am of the night between Sunday and Monday).

3. Shifts located on Sundays, constituting a set Ss ⊂ S. They are for instance
the 12 hours day shift and the 12 hours night shift located on Sundays.

4. Shifts located on holidays, constituting a set Sho ⊂ S. They are the 12135

hours day or night shifts that happen to be on a major holiday (Christmas,
New Year’s day, etc.).

5. Shifts located in weekends, constituting a set Swe ⊂ S. They are the 12
hours day or night shifts that happen to be on Saturdays or on Sundays.

Clearly, Sd ∩ Sn = ∅, Sd ∩ Ss = ∅, Sn ∩ Ss = ∅, and Sd ∪ Sn ∪ Ss = S. On the140

contrary, Swe and Sho may intersect the above Sd, Sn, Ss, and are needed for
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evaluating the weight of the workload of each doctor. Some type of shifts (nights,
weekends, ...) are considered by the physicians unpleasant and more weighty
than ordinary. To represent this, we define inconvenient shifts those belonging
to Sn, Swe, Sho. We denote by T the set of the types of shifts {d, n, s, ho, we},145

so that the generic type of shift can be expressed as St with t ∈ T .

Coverage. Let the set of the different departments be D = {d1, . . . , dq}; let the
set of the different doctors be G. Each department dh must be covered by a
number c1h of doctors (usually one, may depend on the department) during
each regular day shift in Sd, while it has a number (generally >> c1h) of doc-
tors that can be on duty there during the day. Each doctor, on the basis of
his/her competence, is able to cover only a specific department. In general, we
may be interested in further distinguishing among the doctors that can cover
department dh: for example they may have different contractual duties even if
similar competences. Therfore, we partition the set G of all doctors into groups
G1, . . . , Gt so that group Gk is homogeneous with regard to competence and
contractual duties, and we have G = G1∪ . . . ∪Gt and Gk ∩Gk′ = φ for k 6= k′.
For each department dh we have a set Hh of the indices of the groups of doctors
that can be on duty there during the day. For example, if department d1 can
be covered by groups G1 and G2, we have H1 = {1, 2}. Hence, the relationship
between departments and groups is such that

H1 ∪ · · · ∪Hq = {1, . . . , t}.

We denote the elements of G1 by the numbers {1, . . . , n1}, those of G2 by the
numbers {n1 + 1, . . . , n1 + n2}, so that in general

Gk = {
k−1∑
p=1

np + 1, . . . ,

k∑
p=1

np}.

The total number of doctors is n = n1 + · · · + nt. During nights, sundays and
holidays (Sn, Ss, Sho, the above defined inconvenient shifts), the requirement for
a presence is relaxed, and usually the whole set of departments is covered by
only a number c2 of doctors (for example just one). Clearly, the competence150

requirements must be relaxed as well.

Rest or unavailability. When assigning shifts to doctors, some contractual rules
regulating rest periods, annual leave, exemptions must be respected. Those
rules may vary from case to case, but should at least respect the applicable
laws, see also the European Working Time Directive 2003/88/EC [11].155

1. After one shift (for instance 12 hours) on duty, a doctor has to rest for at
least a number r1 of shifts (for instance 4 shifts, 48 hours, or sometimes
even less, depending on the specific case ). This very basic rest requirement
is common to all cases of the problem.
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2. After a shift located in a weekend, a doctor should not receive another160

shift located in a weekend for at least a number r2 of shifts (for instance
28 shifts, 14 days; in other words, anybody doing a weekend shift will have
no weekend duty shifts in two weeks, but may have other shifts on regular
working days).

3. Every year a number of days for annual leave must be granted. Usually165

they are about 30 days in an year, depending also on contracts and past
usage, and generally at least 15 of these days can be taken as a consecu-
tive holiday during the summer period. The exact periods are generally
negotiated in advance by the doctors, and are assigned so as not to leave
the departments completely uncovered.170

4. Some categories of doctors may have contracts that do not oblige them
to take some types of inconvenient shifts. For instance, some categories
cannot have nights assigned, or cannot have Sundays.

5. Some doctors may have acceptable reasons for being considered unavail-
able for some type of shifts. For example, they may have priority admin-175

istrative or teaching duties, or religious obligations. Such unavailability
may be either permanent or limited to a period of time.

6. Finally, in some cases, there are categories of doctors (e.g. senior ones)
that may perform shifts (or specific types of shifts), but only until a max-
imum admissible workload.180

Balancing. Even if all shifts are covered and all the above requirements are
respected, a physician scheduling is not acceptable if the amount of work is
not fairly divided among all the doctors. This is a basic workers’ preference
condition, and generally implies two orders of requirements.

First, a requirement based on sheer numbers: as far as possible, all doctors185

in a group should receive the same number of shifts to do along all the planning
horizon. Clearly, this constitutes for the doctors a main parameter in evaluating
the quality of a physician scheduling

Second, the total “weight” of all the assignments received by each doctor in a
group along all the planning horizon should be comparable. This means that the190

number of nights and shifts during weekends or holidays (inconvenient shifts)
should be, as far as possible, similar for all doctors of the group. Clearly, this
can be difficult to achieve, and there are many real-world situations in which
one can prove that the number of nights, weekend and holiday shifts cannot
be exactly the same, even for doctors of the same group. Nonetheless, this195

constitutes for the doctors another main parameter in evaluating the quality of
the scheduling.

Following this general equity principles, several specific criteria for fairly
dividing the workload among doctors can be devised, as explained in Section 3.

3. A Flexible Formulation of the Problem200

We describe here the proposed Mixed Integer Linear formulation for the
physician scheduling problem described in Section 2. This model includes all
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the constraints described in the following Subsection 3.1 for satisfying all ser-
vice requirements and contractual agreements, while trying to respect, as far as
possible, workers’ preferences about workload balancing, as described in Sub-205

section 3.2. A way of taking into account additional preference aspects, when
they should be considered, is described in Subsection 3.3.

3.1. Satifying Hard Requirements

The following set of binary decision variables is used for assigning duty shifts
to doctors.

xij =


1 if doctor i covers duty shift j,

with i ∈ G, j ∈ S

0 otherwise

By using such xij variables we can express all the above introduced rules as
linear constraints. Coverage of all the day shifts, for department dh, becomes
the following set of constraints.∑

i∈Gk:k∈Hh

xij = c1h ∀j ∈ Sd (1)

Clearly, similar sets of constraints are needed for each department, i.e., for all
h = 1, . . . , q. On the other hand, coverage of the inconvenient shifts (nights,
sundays and holidays), for all departments, becomes the following set of con-
straints. ∑

i∈G
xij = c2 ∀j ∈ {Sn ∪ Ss ∪ Sho} (2)

Define the set R(j, ρ1) = {r ∈ S | r = j, j + 1, . . . , j + ρ1}. Now, resting after
each shift, for doctor i, becomes the following set of constraints.∑

r∈R(j,ρ1)

xir ≤ 1 ∀j ∈ S (3)

For instance, the very basic legal requirement of having at least 11 hours of rest
every 24 hours [11] can be obtained for any ρ1 ≥ 1. Also, the requirement of a210

minimum weekly rest period of 24 uninterrupted hours every each 7-day period
[11] can be obtained for example with ρ1 ≥ 3 (working 1 shift in a series of 4
guarantees at least 2 consecutive rest shifts).

By defining the set W (j, ρ2) = {R(j, ρ2) ∩ Swe}, forbidding too near week-
end shifts after each weekend shift, for doctor i, becomes the following set of
constraints, where ρ2 should be large enough to cover the desired number of
weekend (e.g. ρ2 ≥ 14). ∑

r∈W (j,ρ2)

xir ≤ 1 ∀j ∈ Swe (4)

The sets of rest constraints (3) and (4) are needed for each doctor, i.e., for all
i ∈ G. Note that, in case shifts having different lengths are in use, we can215
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compute different ρ1 and ρ2 for the different types of shifts. More precisely,
we can associate a parameter ρ1(j) to each duty shift j in order to respect, for
any different length of shift j and of the following shifts j + 1, . . . , j + ρ1(j),
the granted number of hours after shift j. Similarly, we can associate a ρ2(j)
to each duty shift j in order to respect in any case the granted number of free220

weekends after shift j. This computation can clearly be done offline.
Moreover, we define for the generic doctor i his or her unavailability set Ui,

i.e. the set of shifts that cannot be covered by doctor i. This includes shifts
belonging to the vacation time granted to doctor i (e.g., annual leaves), shifts
during which i has other priority duties, shift types that are not contractually
assignable to i, etc.

xij = 0 ∀i ∈ G, ∀j ∈ Ui (5)

Note that computation of the sets {Ui} is done offline, taking into account
also whether the unavailability is permanent or limited. The unavailability
specification can also constitute a way of expressing a (hard) preference for a
specific set of shifts, when this is allowed, by forbidding the complement of that225

set. Since sets {Ui} contain the information about annual leave, a vacancies
request that would leave a department uncovered would be detected because
the constraints of type (5) would make model (11) infeasible. In this case, a
post-infeasibility analysis is required, see e.g. [5] for a possible approach to the
problem and references on the subject.230

Finally, if the specific doctor i has a limit on the maximum admissible work-
load, for example can do not more than at shifts of type t (i.e. belonging to the
set St), this can be imposed with:∑

j∈St

xij ≤ at (6)

These constraints should be considered for the specific i ∈ G entitled to have
this limit, and for the suitable t ∈ T . Note that, when no limits on the maximum
admissible workload can be granted, doctors must cover shifts until all service
requirements are satisfied, regardless to their total workload (“goal-oriented”
point of view). On the contrary, when all doctors can specify a maximum235

admissible workload, this can make the problem infeasible (“worker-oriented”
point of view). Clearly, when only some doctors can specify their maximum
admissible workload, this may produce a heavier goal-oriented management of
the others, so this opportunity should be used with care.

3.2. Pursuing Workload Balance240

For balancing the overall workload, we use an upper bound to the number of
shifts assigned to each doctor. Note that, since the cardinalities of the groups
Gk may be different while the number of day shifts in Sh is the same for all
groups, the required workload per doctor may be different from group to group.
Therefore, we use a different real-valued nonnegative decision variable for each
group:

yk ≥ 0 maximum number of shifts assigned to
doctors in Gk
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The workload balancing for the doctors of group Gk becomes the following set
of constraints. ∑

j∈S
xij ≤ yk ∀i ∈ Gk (7)

Clearly, similar sets of constraints are needed for each group, i.e., for all k =
1, . . . , t .

For balancing the workload of inconvenient shifts (nights, weekends, ma-
jor holidays), there are essentially two alternatives. One alternative is upper
bounding the number of the shifts assigned to each doctor differently for each245

single category of inconvenient shifts, therefore introducing, for the number of
nights, the number of weekend shifts and the number of holiday shifts, different
sets of variables similar to the y ones.

The second alternative is weighting the hardness of each type of inconvenient
shift, and upper bounding only the total weight of the shifts that each doctor250

has to do in inconvenient shifts. The hardness of each type of inconvenient shift
can be evaluated by using the following weights:

• wn for regular week nights,

• wsa for regular Saturday days,

• wsa n for regular Saturday nights,255

• wsu for regular Sunday days,

• wsu n for regular Sunday nights,

• who for holidays (or also individual weights for each holiday).

The second alternative requires that a fair division of workload can be obtained
not only by assigning the same number of each type of inconvenient shift to the260

doctors, but also by assigning, for instance, 10 nights and 3 Sundays to doctor a
and 5 nights and 5 Sundays to doctor b, if the sum of the corresponding weights
is the same. Note that the choice on how to model this balancing condition may
appear rather trivial from the mathematical point of view, but has considerable
impact on the life organization of the doctors.265

The second alternative has several advantages on the first one. First, it
allows more feasible solutions, because it is not limited to solutions having, for
each type of inconvenient shift, the same number for all doctors, but accepts
also solutions having different numbers of them but such that the sum of the
weights of the inconvenient shifts assigned to each doctor is the same.270

Second, it allows more flexibility, since different weights for the different
holidays could be specified, and even personalized weights, if needed, could be
specified: each doctor could give his/her weight values to each type of inconve-
nient shift (somebody could prefer doing nights instead of weekends, somebody
the opposite, etc.). This would also be useful in dealing with the management275

of senior doctors.
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Third, it can also be used for assigning, for each different type of inconvenient
shift, the same number for doctors of the same group (as it is for the first
alternative) by using incomparable weights for the different types of inconvenient
shifts, i.e. such that the sum of any possible number of weights of one type can280

never reach the weight value of another type. For instance, if the total number
of shifts is s = 730 (one year planning horizon with 2 shifts per day), when
wn = 1 and wsa = 1000, the sum of any possible number of nights would never
weight as much as one Saturday day, so they could never compensate each other
and therefore the number of nights and the number of Saturday days should be285

the same for all doctors in the same group.
Fourth, it requires less variables in the model, with consequent computa-

tional advantages.
Therefore, we use another real-valued nonnegative decision variable for each

group:

zk ≥ 0 maximum weight in inconvenient shifts assigned
to doctors in Gk

The inconvenient shifts balancing for the doctors of group Gk becomes the
following set of constraints, where wj denotes the element, among the above
defined weights, corresponding to the inconvenient shift j.∑

j∈{Sn∪Swe∪Sho}

wjxij ≤ zk ∀i ∈ Gk (8)

Clearly, similar sets of constraints are needed for each group, i.e., for all k =
1, . . . , t.290

In order to make the balancing constraints work, we need to minimize the
above maximum values yk and zk, obtaining a bi-objective structure with the
following two objectives:

min

t∑
k=1

yk (9)

min

t∑
k=1

zk (10)

Using objective (9) corresponds to assigning the same number of shifts to the
doctors of the same group; using objective (10) to assigning the same workload
in inconvenient shifts to the doctors of the same group. Note that, when groups
with different cardinalities correspond to the same department dh, a ∆ increase
in the variables yl and zl upper bounding the larger group Gl has more coverage295

power (i.e., covers more shifts) than the same ∆ increase in the variables ys and
zs upper bounding the smaller group Gs. Therefore, an increase in yl and
in zl would be preferred to an increase in ys and in zs during the search for
the optimal solution. In case this behaviour wants to be avoided, the upper
bounding variables {yk} and {zk} should receive weigths {nk} (the cardinalities300
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of the groups {Gk}), so that an increase in yl and in zl would not be preferred
anymore.

This bi-objective can be scalarized by giving weights b1 and b2 to the two
objectives, or by using one of them as constraint and the other as unique ob-
jective. By choosing the first option, the overall Mixed Integer Linear model is
the following, where we have, in order: objective function given by (9) and
(10); coverage constraints (1) and (2); rest constraints (3) and (4); annual
leave/unavailability constraints (5); maximum workload constraints (6); work-
load balance constraints (7) and (8).

min b1

t∑
k=1

yk + b2

t∑
k=1

zk

s.t.
∑

i∈Gk:k∈Hh

xij = c1h ∀j ∈ Sd, ∀h ∈ {1, . . . , q}∑
i∈G

xij = c2 ∀j ∈ {Sn ∪ Ss ∪ Sho}∑
r∈R(j,ρ1)

xir ≤ 1 ∀j ∈ S, ∀i ∈ G

∑
r∈W (j,ρ2)

xir ≤ 1 ∀j ∈ Swe, ∀i ∈ G

xij = 0 ∀i ∈ G, ∀j ∈ Ui∑
j∈St

xij ≤ at i ∈ G, t ∈ T∑
j∈S

xij ≤ yk ∀i ∈ Gk, ∀k ∈ {1, . . . , t}∑
j∈{Sn∪Swe∪Sho}

wjxij ≤ zk ∀i ∈ Gk, ∀k ∈ {1, . . . , t}

xij ∈ {0, 1} ∀i ∈ G, ∀j ∈ S

yk ∈ IR+ ∀k ∈ {1, . . . , t}
zk ∈ IR+ ∀k ∈ {1, . . . , t}

(11)

Note that this model has no specific structure except for linearity, and this gen-
erality allows for easy modifications in the cases when additional requirements
(e.g. different workers’ preferences) should be taken into account.305

3.3. Additional Preferences

We remarked that, in many practical cases, additional preferences are not
allowed, for avoiding disputes. Nonetheless, there may be cases when they
should be considered, and we assume them expressed by means of the following
preference values for each i ∈ G and j ∈ S, with 1 meaning maximum preference.

pij ∈ [0, 1] preference of doctor i for shift j

11



A first option in these cases would be considering an additional term in the
objective of (11) with the following structure∑

i∈G

∑
j∈S

(1− pij)xij

Clearly, the smaller its value, the more the shifts assignment corresponding to
the values of the xij variables satisfies the higher preference values (the number
of xij variables at 1 in any feasible solution is the same, but each of them is
multiplied by a value (1 − pij) representing the “unsatisfaction” that each 1310

causes). However, this structure would consider only the aggregate preference
satisfaction, and the preferences of the different doctors may be satisfied at very
different levels. In other words, we would respect as much as possible the overall
preferences, but there may be some doctors whose preferences are respected at
a very low degree.315

For balancing also the amount of the preferences that are respected, we use
the following set of real-valued nonnegative decision variables.

vk ≥ 0 maximum preference unsatisfaction for the
doctors in Gk

The unsatisfaction level of doctor i ∈ Gk would be
∑
j∈S(1−pij)xij . Therefore,

for each group, i.e., for all k ∈ {1, . . . , t}, we need the following set of constraints∑
j∈S

(1− pij)xij ≤ vk ∀i ∈ Gk (12)

and the term added in the objective function of (11) becomes

b3

q∑
k=1

vk. (13)

where parameter b3 should be carefully set in order to weight the relative im-
portance of the preference satisfaction compared to that of balancing both shifts
and the workload in inconvenient shifts (first two terms of the objective in (11)).

4. Comparison to Other Models from the Literature

In this section, we analyze the capability of our model to represent practical320

requirements in comparison with that of the other approaches proposed in the
literature. Gendreau et al. [15] distinguish the constraints of the physician
scheduling problem (for emergency rooms management) on the basis of their
logical meaning, and present a quite exhaustive classification of them by using
the following four categories:325

• supply and demand constraints,

• workload constraints,
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• fairness constraints,

• ergonomic constraints.

The supply and demand constraints deal with the availabilities of the physicians330

and the requirements of the emergency rooms. The workload constraints deal
with the workload (number of hours or number of shifts) that is assigned to
physicians during a given planning period. These constraints impose that each
physician should be assigned an amount of work that lies within a specified
interval, and they also limit the number of shifts of the same type. The fairness335

constraints control the distribution of different kinds of shifts during the whole
planning period, assuring in particular that the inconvenient shifts are fairly
distributed. The ergonomic constraints, finally, model rules ensuring a certain
level of quality for the schedules produced, such as controlling the number of
consecutive night shifts, assigning suitable rest periods after each duty shift,340

allowing some free weekends after a duty shift on a weekend, etc. The main
contribution of this work is the above analysis, and no mathematical model is
explicitly presented. Physicians’ preferences are also briefly analyzed.

A classification of constraints in categories is proposed also by Beaulieu et
al. [1]. The considered classes are similar to the previous ones, but they also345

distinguish the constraints into compulsory rules (e.g., rules that must abso-
lutely be enforced) and flexible rules (e.g., rules that can be violated). Using
the class names given above [15], the supply and demand constraints, the work-
load constraints, as well as the ergonomic constraints arising from contractual
agreements (e.g., regulating rest periods, annual leave, vacations, exemptions)350

are classified as compulsory rules. The flexible rules include the ergonomic con-
straints which aim at improving the quality of the schedule and the fairness
constraints. In this case, physicians’ preferences are not explicitly considered.

Following a different approach, Gunawan and Lau [17] propose a number of
mathematical models, mainly focused on the physicians’ preferences satisfaction:355

the goal is to generate a schedule taking into account the ideal schedule of each
physician. The above works could be considered to represent collectively all the
aspects of the physician scheduling problem: the constraints proposed in the
other works on this subject do not move away from this scheme and often cover
only a subset of it.360

The model proposed in our work is indeed able to represent most of the
typologies of constraints and rules introduced above, including issues on the
physicians’ preferences. Supply and demand constraints correspond to the cov-
erage requirements reported in Section 2 and are modeled by constraints (1)
and (2). Observe, in this regard, that our model is able to take into account the365

requirements of different departments at the same time, while the mathemati-
cal models presented in [1] and [15] can not be used when the requirements of
more than one department must be considered. The workload constraints are
modeled by means of conditions (6). The compulsory ergonomic constraints are
expressed by conditions (3), (4) and (5).370

All the flexible rules are properly modeled by considering the bounding vari-
ables (yk, zk, vk) and suitable terms in our objective. More precisely, the fairly
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distribution of the regular and inconvenient shifts are controlled by the con-

straints (7) and (8) and by the two terms b1

q∑
k=1

yk and b2

q∑
k=1

zk of the objective

function. Finally, physicians’ preferences are taken into account by adding the375

extra term (13) in the objective function. Observe that, the importance of physi-
cians’ preferences with respect to the other objectives can be tuned by properly
setting parameters b1, b2 and b3. Note also that the model proposed in our work
allows more flexibility than other models. For example, the amount of rest after
work may be changed by simply modifying constants ρ1 and ρ2 in constraints380

(3) and (4) , while in other models the entire structure of the constraints would
need to be changed.

5. Performance Analysis on a Real-World Case Study

The described formulation has been particularized to the case of the Hema-
tology Center of the “Umberto I” University Hospital in Rome, Italy, that is part385

of the Department of Cellular Biotechnologies and Hematology of “Sapienza”
University of Rome. In this real context, four groups of doctors exist, composed
of 24, 1, 5 and 2 units, i.e., G1 = {1, . . . , 24}, G2 = {25}, G3 = {26, . . . , 30} and
G4 = {31, 32} and two departments d1 and d2. Night shifts are not contractu-
ally assignable to doctors in G2 and G4. Group G2 covers the same department390

than group G1, so the two should be considered together for the daily covering
constraints. The same happens for groups G3 and G4. Hence, H1 = {1, 2} and
H2 = {3, 4}. The parameter values are: ρ1 = 4, ρ2 = 28, c11 = c12 = 1, c2 = 1.
The management of the above Hematology Center use to compute the schedule
by hand, by applying a two-phase procedure roughly described in the following.395

During the first phase, the shifts of the set Sd (containing regular working
days only) are assigned to physicians of each set Gk in a round robin way (fol-
lowing, for example, alphabetic order). In particular, for each department dh,
the schedule is built by trying to assign each shift to exactly c1h physicians of
Gk, with k ∈ Hh, and by assuring that a rest period of ρ1 shifts exists between400

any two shifts assigned to the same physician.
During the second phase, the shifts in the sets Sn, Swe, Sho (i.e., the incon-

venient shifts) are considered and assigned to all the groups of physician that
are charged with those kinds of shifts, in order to respect all the rest of the
constraints. This should be obtained by initially assigning them using another405

round robin procedure, assuring now that a rest period of ρ2 shifts exists be-
tween any two shifts in Swe assigned to the same physician. After this, exchanges
and new insertions are performed, in order to yield a solution respecting all the
constraints on resting and being as balanced as possible with respect both to
regular and inconvenient shifts. Clearly, the criteria for doing this last exchange410

and insertion operations are not algorithmically expressed, and can be also quite
subjective.

On the other hand, the proposed model (11) has been implemented by using
AMPL modeling language [13] and solved by means of ILOG Cplex 11.2 solver

14



n m k y σ(y) z σ(z)

By hand
(∼ 4 hours)

32 240 4


11
5
20
16




0.71
0.00
0.93
0.81




25
7
25
14




4.07
0.00
2.42
12.83



Solving
model (11)

(2 sec.)
32 240 4


9
8
17
17




0.38
0.00
0.00
0.00




23
15
23
23




2.40
0.00
2.11
0.0



Table 1: Comparison with the current solution approach of the case study

[18] running on an Intel Core 2 processor PC at 2.4 GHz with 2Gb of RAM.415

The results were compared to those of the described by hand approach. The
planning horizon for this comparison was necessarily short (4 months), because
this is generally the maximum size that the hospital management can solve by
hand with reasonable effort.

Table 1 contains the aggregate result of this comparison. In particular, it420

reports a description of the instance: number of doctors n; number of shifts
in the planning horizon m; number of groups k; followed by an analysis of the
workload balancing of the schedules obtained with the two approaches. In order
to do this, we a consider the value of the y variables for each group (maximum
number of shifts in the group); an evaluation, for each group, of the imbalance425

in the number of shifts, denoted as σ(y) and explained below; the value of the z
variables for each group (maximum weight in inconvenient shifts in the group);
an evaluation, for each group, of the imbalance in the weight of inconvenient
shifts, denoted σ(z) and explained below.

For evaluating the k−th group imbalance in the number of shifts, we use
the standard deviation σk(y) of the number of shifts for group k. By denoting
with ti the number of shifts assigned to each doctor i of group k and with θk
the average of such values, we have:

σk(y) =

√√√√ 1

nk

nk∑
i=1

(ti − θk)2

Components σk(y) for k = 1, . . . , q constitute the vector σ(y). Values σk(z) are430

computed analogously by considering the weight in inconvenient shifts assigned
to each doctor of group k, and constitute the vector σ(z). The weight in in-
convenient shifts is computed by using weights wn = 3, wsa = 2, wsa n = 4,
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wsu = 5, wsu n = 4, who = 6. Those values were determined by gathering the
opinions of the physicians of the mentioned structure.435

This analysis shows that the solution obtained by solving model (11) is more
balanced (σ(y) and σ(z) have smaller values). Consequently, the maximum
number of shifts and the maximum weight in inconvenient shifts, for each group,
is lower for all the groups that could be fully utilized with the by hand approach.
On the contrary, for groups that could not be fully utilized with the by hand440

approach because of their limitations in inconvenient shifts (e.g. G2), the above
values are higher. The two above aspects are therefore both in favor of the
solution obtained by solving model (11). Note, moreover, that, by solving model
(11), one can easily test increasing values of ρ1 and ρ2, exploring so the overall
feasibility of more comfortable shift distributions. Clearly, there is no match in445

the analysis of the solution times required by the two approaches. Hence, the
solution obtained by solving model (11) appear superior under every respect.

We also report more detailed information on the two solutions. Tables 2 and
3 give, for each doctor i, the number of shifts belonging to Sd (# regular); the
number of shifts belonging to Sn (# night); the number of day shifts located450

in weekends (# we day); the number of night shifts located in weekends (# we
night); the number of shifts located on holidays (# holiday); the total number
of shifts (# tot). Observe that the solution by hand ranges from 6 to 11 shifts
and from 18 to 20 shifts for each doctor in G1 and G3 respectively, while the
solution found by model (11) ranges from 8 to 9 shifts and exactly 17 shifts for455

each doctor in G1 and G3 respectively, confirming what observed for Table 1.
Note, finally, that a perfect workload balancing could be unobtainable when

considering short planning horizons (just as an example, when there is a small
number of holiday shifts in the horizon, it could be impossible to assign them
to each doctor). On the contrary, the longer the planning horizon, the better460

workload balancing can be achieved. For this reason, we consider other 4 in-
stances of the described real-world problem (called Inst{1,2,3,4}), obtained by
using, in the above described case, a planning horizon of respectively 6, 12, 18,
24 months. However, planning horizon longer than 1 year are considered mainly
for computational reasons.465

For every instance, Table 4 reports again practical aspects of the instance
and an analysis of the workload balancing of the schedule obtained by solving
that instance. This analysis shows that the workload balancing is in many
cases perfect, since all members of the group have exactly the same workload
(the standard deviation is 0), and in the other cases is anyway satisfactory.470

Note that the workload of the members of a group can be very different from
that of another group, but balancing among different groups was not required
and could be, in general, not perfectly obtainable, as observed in Section 3.
However, if some balancing among different groups should also be taken into
account, easy modifications of the proposed model, for example introducing475

additional or alternative upper bounding variables similar to the mentioned y
and z, could provide this additional functionality.

Table 5, on the other hand, reports, for the same instances, some com-
putational analysis: the overall number of simplex iterations needed to solve
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i # regular # night # we day # we night # holiday tot

1 2 3 1 1 1 8
2 4 4 1 0 0 9
3 4 4 2 0 1 11
4 3 2 2 1 1 9
5 3 2 2 2 0 9
6 4 3 0 2 1 10
7 4 3 1 0 1 9
8 3 4 2 0 0 9
9 4 4 0 1 0 9

10 4 3 1 2 0 10
11 3 2 1 2 0 8
12 3 2 1 0 0 6
13 4 3 0 1 0 8
14 4 3 0 2 0 9
15 2 2 1 1 1 7
16 3 3 1 1 1 9
17 4 3 1 0 0 8
18 3 3 2 1 0 9
19 3 2 2 1 0 8
20 4 3 0 1 0 8
21 3 4 1 1 0 9
22 2 3 1 2 0 8
23 3 3 0 2 0 8
24 4 4 0 1 0 9
25 3 0 2 0 0 5
26 11 2 2 2 1 18
27 12 2 3 1 1 19
28 13 2 2 1 1 19
29 12 2 4 2 0 20
30 11 3 4 2 0 20
31 12 0 4 0 0 16
32 12 0 2 0 0 14

Table 2: Analysis of the solution obtained by hand
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i # regular # night # we day # we night # holiday tot

1 3 3 1 1 1 9
2 3 3 1 1 0 8
3 3 3 1 1 1 9
4 3 3 1 1 0 8
5 3 3 1 2 1 9
6 2 4 2 0 0 8
7 3 3 2 1 0 9
8 4 3 1 1 0 9
9 4 2 1 1 1 9

10 4 2 1 2 0 9
11 3 3 1 1 1 9
12 4 2 1 2 0 9
13 3 3 2 1 0 9
14 3 3 2 1 0 9
15 4 3 1 1 0 9
16 3 4 1 0 1 9
17 3 4 2 0 0 9
18 3 3 1 1 1 9
19 3 3 1 1 1 9
20 4 3 1 1 0 9
21 3 3 1 1 1 9
22 3 2 1 2 0 8
23 4 2 1 2 0 9
24 3 3 1 1 1 9
25 5 0 3 0 0 8
26 12 2 1 2 0 17
27 11 3 2 1 0 17
28 11 3 3 0 0 17
29 12 2 1 2 0 17
30 11 3 2 1 0 17
31 13 0 4 0 0 17
32 13 0 4 0 0 17

Table 3: Analysis of the solution solving model (11)
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instance n m k y σ(y) z σ(z)

Inst1 32
362

(6 months)
4


15
15
22
22




0.81
0.00
0.49
0.50




33
33
8
8




0.37
0.00
0.00
0.00



Inst2 32
730

(12 months)
4


30
29
44
44




0.81
0.00
0.40
0.00




67
64
16
16




0.90
0.00
0.40
0.00



Inst3 32
1092

(18 months)
4


44
44
65
65




0.69
0.00
0.00
0.50




100
100
22
22




0.63
0.00
0.00
0.00



Inst4 32
1460

(24 months)
4


59
59
87
87




0.99
0.00
0.00
0.00




133
133
30
30




0.44
0.00
0.00
0.00



Table 4: Practical aspects and workload imbalance in the solution of the case study
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instance simplex iter. br. nodes cuts added time

Inst1 20,710 380 1 39 s.
Inst2 31,556 539 45 150 s.
Inst3 15,203 200 3 162 s.
Inst4 158,216 1,968 50 1,009 s.

Table 5: Computational aspects of the solution of the case study

the linear relaxations; the total number of branching nodes enumerated by the480

branch-and-cut procedure; the total number of cuts added by the branch-and-
cut procedure; running time in seconds. Observe that the proposed model allows
to compute in reasonable times the solution for planning horizons that are even
beyond the practical needs (usually no more than 1 year). Observe, moreover,
that the number of branching nodes is in general quite small for the different in-485

stances, while the number of simplex iterations is large. Therefore, the proposed
formulation (11) appears quite a strong one.

6. Conclusions

We formalized the general aspects of the physician scheduling problem and
analyzed its computational complexity. Then, we proposed a Mixed Integer490

Linear Programming formulation for this problem. This model imposes satisfy-
ing all service requirements and contractual agreements (including rest periods
and annual leave), while trying to respect, as far as possible, workers’ prefer-
ences, with particular attention on workload balancing. The proposed model
is able to represent the various aspects of the problem generally considered in495

previous literature on the subject. In any case, the generality of the proposed
model allows for easy modifications in the cases when additional requirements
should be taken into account. This model has been used for solving, on several
planning horizons, a real-world case of physician scheduling in some of the de-
partments of one of the biggest Italian university hospitals. Results have been500

analyzed both form the schedule quality and from the computational point of
view, and demonstrate the effectiveness of the proposed optimization approach,
also in comparison with the solution approach currently adopted in the health
care structure considered as case-study.
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