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Abstract—This work deals with the problem of producing a fast and accurate data classification, learning it from a possibly small set of

records that are already classified. The proposed approach is based on the framework of the so-called Logical Analysis of Data (LAD),

but enriched with information obtained from statistical considerations on the data. A number of discrete optimization problems are

solved in the different steps of the procedure, but their computational demand can be controlled. The accuracy of the proposed

approach is compared to that of the standard LAD algorithm, of support vector machines and of label propagation algorithm on publicly

available datasets of the UCI repository. Encouraging results are obtained and discussed.
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1 INTRODUCTION

GIVEN a set of data grouped into classes, the problem of
predicting which class new data should receive is

called classification problem. Many approaches to this prob-
lem have been proposed, based on different considerations
and data models. Established ones include: Neural Net-
works, Support Vector Machines, k-Nearest Neighbors,
Bayesian approaches, Decision Trees, Logistic Regression,
Boolean approaches (see for references [1], [2], [3], [4], [5],
[6], [7]). Each approach has several variants, and algorithms
can also be designed by mixing approaches. Specific techni-
ques may better fit to specific classification contexts, but one
approach that is generally considered quite effective for
many practical applications is Support Vector Machines
(SVM) [8]. SVM are based on finding a separating hyper-
plane that maximizes the margin between the extreme train-
ing data of opposite classes, possibly after a mapping to a
higher dimensional space, see also [9], [10].

Roughly speaking, the larger is the training set, the more
information it contains, the more accurate the learned classi-
fier can be, even if clearly there are several aspects involved.
Unfortunately, in many important applications, labeled
data are difficult or expensive to obtain, and a classification
methodology able to be accurate using small training sets
would be very useful. On the contrary, unlabeled data may
be relatively easy to collect. Therefore, techniques have

been developed for improving a classification by using also
a large amount of unlabeled data, that is called validation set.
Those techniques can be introduced into several of the
approaches listed above, obtaining semi-supervised classifiers
(see [11], [12], [13] and references therein). In the case of
SVM they are called Transductive support vector machines
(TSVM) [10], and are based on the concepts described above
but also force the separating hyperplane to be far away
from the unlabeled data. Another major framework in semi-
supervised learning techniques is Label Propagation (LP), ini-
tially proposed in [14], see also [15]. This technique works
by constructing a similarity graph over all the records in the
input dataset, and by propagating the labels of the labeled
records to the unlabeled ones according to the intrinsic data
manifold structures collectively revealed by a large number
of data records.

However, no single algorithm is currently able to provide
the best performance on all datasets, and this seems to be
inevitable [16]. Predicting which algorithm will perform
best on a specific dataset has become a learning task on its
own, belonging to the area called meta-learning [17]. There-
fore, techniques based on the aggregation of a set of differ-
ent (and hopefully complementary) classifiers have been
investigated. They are called Ensemble techniques, and they
include Boosting [18], [19] and Bagging [20]. Roughly speak-
ing, those techniques generate many weak learners and
combine their outputs in order to obtain a classification that
is both accurate and robust. Those weak learners may be
based on several classification approaches.

On the other hand, one interesting Boolean approach to
classification is the Logical Analysis of Data (LAD) [21], [22],
[23], [24], [25], that is inspired by the mental processes that a
human being applies when learning from examples. In this
approach, data should be encoded into binary form by
means of a discretization process called binarization. This is
done by using the training set for computing specific values
for each field, called cut-points in the case of numerical
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fields, that split each field into binary attributes. Discretiza-
tion is also adopted in other classification methodologies,
such as decision trees, and several ways for selecting cut-
points exists, such as entropy based ones (see e.g. [6], [26]).
The selected binary attributes constitute a support set, and
are combined for generating logical rules called patterns.
Patterns are used to classify each unclassified record, on the
basis of the sign of a weighted sum of the patterns activated
by that record. LAD methodology is closely related to deci-
sion trees and nearest neighbor methods, and constitutes an
extension of those two approaches, as shown in [24].

In this paper, we propose the following original enhance-
ments to the LAD methodology. First, the idea of evaluating
the quality of each cut-point for numerical fields and of
each binary attribute for categorical fields, and a criterion
for doing so. Such quality values are computed by using
information extracted from the training set, and are taken
into account for improving the selection of the support set.
The support set selection can therefore be modeled as a
weighted set covering problem, and also as a binary knapsack
problem (see e.g. [27], [28]). In a related work, Boros et al.
[29] consider the problem of finding essential attributes in
binary data, which again reduces to finding a small support
set with a good separation power. They give alternative for-
mulations of such problem and propose three types of heu-
ristics for solving them. An analysis of the smallest support
set selection problem within the framework of probably
approximately correct learning theory, and algorithms for
its solution, is also in [30].

Moreover, the classification of the test set is not given
here simply on the basis of the sign of the weighted sum of
activated patterns, but by comparing that weighted sum to
a suitable classification threshold. Indeed, we propose to com-
pute both the values of pattern weights and the value of
classification threshold in order to minimize errors, by solv-
ing a mixed integer linear programming problem. The
objective of minimizing errors is pursued by (i) minimizing
classification errors on records of the training set and by (ii)
reproducing in the test set the class distribution of the train-
ing set. Pattern weights and classification threshold are in
fact parameters for the classification procedure, and, in our
opinion, this should allow obtaining the best choice of these
parameters for the specific dataset, partially overcoming the
parameter tuning or guessing phase that always represents
a difficult and questionable step.

The known LAD procedure is recalled in Section 2. We
refer here mainly to the “standard” procedure, as described
in [23], although other variants have been investigated in lit-
erature (e.g. [31]). The original contributions of this work
begin with Section 3, which explains motivations and possi-
ble criteria for evaluating the quality of cut-points. In partic-
ular, we derive procedures for dealing with cut-points on
continuous fields having normal (Gaussian) distribution, on
discrete fields having binomial (Bernoulli) distribution, or on
general numerical fields having unknown distribution. This
latter approach is used also for qualitative, or categorical,
fields. The support set selection problem is then reformu-
lated as weighted set covering and as binary knapsack in
Section 4. After that, patterns are generated, and computa-
tion of pattern weights and classification threshold by using
the proposed mixed integer model is described in Section 5.

Results of the proposed procedure on publicly available
datasets of the UCI repository [32] are analyzed and com-
pared to those of the standard LAD methodology, and also
to those of SVM (in its implementation LIBSVM [33], cur-
rently deemed to be among the most effective classifiers),
TSVM (in its implementation UniverSVM [34]), and LP (in
its implementation scikit-learn [35]) in Section 6. Main nota-
tion is summarized in the Appendix.

2 CLASSIFYING WITH THE LAD METHODOLOGY

The structure of records, called record scheme R, consists of a
set of fields fi, with i ¼ 1; . . . ;m. A record instance r, also
simply called record, consists of a set of values vi, one for
each field. A record r is classified if it is assigned to an ele-
ment of a set of possible classes C. In many cases, C has
only two elements, and we speak of binary classification. We
will hereinafter consider this case. Note, however, that the
proposed procedure, mutatis mutandis, could also be used
for the case of multiple classes. A positive record instance is
denoted by rþ, a negative one by r�.

For classifying, a training set S of classified records is
given. Denote by Sþ the set of its positive records and by S�

the set of its negative ones. Sets Sþ and S� constitute our
source of information. A set of records used for evaluating
the performance of the learned classifier is called test set T .
The real classification of each record t 2 T should be known.
We compare the classification of T given by the learned clas-
sifier, also called predicted classification, to the real classifica-
tion of T : the differences are the classification errors of our
classifier. A positive training record is denoted by sþ, a neg-
ative one by s�. A positive test record is denoted by tþ, a
negative one by t�.

LAD methodology begins with encoding all fields into
binary form. This process, called binarization, converts
each (non-binary) field fi into a set of binary attributes aji ,
with j ¼ 1; . . . ; ni. The total number of binary attributes is
n ¼ Pm

i¼1 ni. Note that the term “attribute” is not used here
as a synonym for “field”. A binarized record scheme Rb is

therefore a set of binary attributes aji , and a binarized

record instance rb is a set of binary values bji 2 f0; 1g for
those attributes.

Rb ¼ fa11; . . . ; an11 ; . . . ; a1m; . . . ; a
nm
m g;

rb ¼ fb11; . . . ; bn11 ; . . . ; b1m; . . . ; b
nm
m g:

For each qualitative fields fi, all values can simply be
encoded by means of a logarithmic number of binary attrib-

utes aji , so that ni binary attributes can binarize a quantita-
tive field having up to 2ni different values. For each
numerical field fi, on the contrary, we introduce ni thresh-

olds called cut-points a1
i ; . . . ;a

ni
i 2 R, and the binarization of

a value vi is obtained by considering whether vi lies above

or below each a
j
i . Cut-points a

j
i should be set at values rep-

resenting some kind of watershed for the analyzed phenom-

enon. Generally, a
j
i are placed in the middle of specific

couples of data values v0i and v00i :

a
j
i ¼ ðv0i þ v00i Þ=2:
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This can be done for each couple v0i and v00i belonging to
records from opposite classes that are adjacent on fi. Cut-

points a
j
i are then used for binarizing each numerical field

fi into the binary attributes aji (also called level variables).

The values bji of such aji are

bji ¼ 1 if vi � a
j
i

0 if vi < a
j
i :

�

Example 1. We have records representing persons having
fields weight (in Kg.) and height (in cm.), and a posi-
tive [respectively negative] classifications meaning “is
[resp. is not] a professional basketball player”. Consider
the following training set:

weight height pro.bask.player.?

90 195 yes

Sþ 100 205 yes

75 180 yes

105 190 no

S� 70 175 no

We now plot values belonging to positive [resp. nega-
tive] records by using a framed þ [resp. �]. Cut-points

obtainable from this set S are a1
weight=72.5, a2

weight=

102.5, a1
height=177.5, a

2
height=185, a

3
height= 192.5. Cor-

responding binary attributes obtainable are a1weight,

meaning: weight � 72.5 Kg., a2weight, meaning: weight

� 102.5 Kg., a1height, meaning: height � 177.5 cm.,

a2height, meaning: height � 185 cm., a3height, meaning:

height � 192.5.

A set of binary attributes fajig used for binarizing a
dataset S is called support set U . A support set is exactly
separating if no pair of positive and negative records of S
have the same binary encoding. A single data-set may
have several possible exactly separating support sets.
Since the number of binary attributes obtainable in practi-
cal problems is often very large, and many of them may
be not needed to explain the analyzed phenomenon, we
are interested in selecting a small (or even the smallest)
exactly separating support set. By using a binary variable

xj
i for each aji , such that

xj
i ¼ 1 if aji is retained in the support set

0 if aji is excluded from the support set

�

the integer programming problem (1) should be solved.
For every pair of positive and negative records sþ; s� we

define Iðsþb ; s�b Þ to be the set of couples of indices ði; jÞ
where the binary representations of sþ and s� differ,

except, under special conditions [23], for the indices that
involve monotone values. This problem has a peculiar
mathematical form called set covering [27], [28]: the objec-
tive (sum of all the binary variables) minimizes the cardi-
nality of the support set; the constraints (sums of binary
variables � 1) impose retaining at least one binary attri-
bute for each set of them producing different binarizations
for any pair of positive and negative records

min
x

Pm
i¼1

Pni
j¼1 xji

s:t:
X

ði;jÞ2Iðsþ
b
;s�
b
Þ
xj
i � 1 8Iðsþb ; s�b Þ; sþ 2 Sþ; s� 2 S�

xj
i 2 f0; 1g :

8>>><
>>>:

(1)

Note that this selection does not aim to improve the classifi-
cation power, and actually “the smaller the chosen support
set, the less information we keep, and, therefore, the less
classification power we may have” [23]. Instead, it is neces-
sary for reducing the computational burden of the remain-
ing part of the procedure, which may otherwise become
impracticable. Indeed, a non-optimal solution to (1) would
not necessarily worsen the classification power [23], [29].
Since different support sets correspond to different alterna-
tive binarizations, hence to actually different binarized
record, the support set selection is a key point.

Example 2. Continuing Example 1, by solving to optimality
the above set covering problem (1), we have the alterna-
tive support sets U1 ¼ fa2weight; a1heightg and U2 ¼
fa1weight a2weightg. Moreover, an approximate solution is

U3 ¼ fa1weight; a2weight; a1height; g. The corresponding alter-

native binarizations of S are:

U1 U2 U3

b2we: b1he: b1we: b2we: b1we: b2we: b1he:

0 1 1 0 1 0 1
Sþ 0 1 1 0 1 0 1

0 1 1 0 1 0 1

1 1 1 1 1 1 1
S� 0 0 0 0 0 0 0

The selected support set U is then used to create patterns.
A pattern P is a conjunction (^) of literals, which are binary

attributes aji 2 U or negated binary attributes :aji . Given a

binarized record rb, that is a set of binary values fbjig for the
above binary attributes, each literal of P receives a value:

bji 2 f0; 1g for literal aji ; ð1� bjiÞ 2 f0; 1g for literal :aji . We
have that P ¼ 1 if all literals of P are 1, P ¼ 0 otherwise. We
say that a pattern P covers a record r if the set of values

rb ¼ fbjig makes P ¼ 1. A positive pattern Pþ is a pattern

covering at least one positive record rþ but no negative
ones. A negative pattern P� is defined symmetrically. Pat-
terns can be viewed as rules governing the analyzed phe-
nomenon. We denote as P ðrÞ the value of pattern P applied
to record r:

P ðrÞ ¼ 1 if P covers r
0 if P does not cover r:

�
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Example 3. By continuing Example 2, a positive pattern
obtained using the support set U1 is P1 ¼ :a2weight^
a1height. This means weight < 102.5 Kg. and height �
177.5 cm. Recall P1 is a pattern if P1ðsþÞ ¼ 1 for at least
some sþ 2 S and P1ðs�Þ ¼ 0 for all s� 2 S. Indeed, we
have P1ðsþÞ ¼ 1 for all sþ 2 S and P1ðs�Þ ¼ 0 for all
s� 2 S. Another pattern, obtained using support set U3,

is P2 ¼ a1weight ^ :a2weight ^ a1height. P2 appears to be even

more appropriate than P1, since it means “one is a profes-
sional basketball player if has a medium weight (weight
� 72.5 Kg. and weight < 102.5 Kg.) and height above
a certain value (height � 177.5 cm.)”. P2ðsþÞ ¼ 1 for
all sþ 2 S, P2ðs�Þ ¼ 0 for all s� 2 S.

Positive patterns can be generated by means of two types
of approaches: top-down, i.e. by removing one by one liter-
als from the conjunction of literals covering a single positive
record until no negative records are covered, or bottom-up,
i.e. by conjoining one by one single literals until obtaining a
conjunction covering only positive records. Negative pat-
terns can be generated symmetrically. Also the number of
generated patterns may be too large, so a pattern selection
step can be performed. This is done in [23] by solving
another set covering problem, whose solution gives the set
of the indices Hþ of selected positive patterns and that of
the indices H� of selected negative patterns, with
H ¼ Hþ [H�. Weights wh are now assigned to all patterns
in H, with wh � 0 for h 2 Hþ and wh � 0 for h 2 H�, by
using criteria described in [23]. We skip detail here since we
will discuss this again and propose a new approach in Sec-
tion 5. Finally, each new record r is classified according to
the positive or negative value of the following weighted
sum, called discriminant and denoted by DðrÞ

DðrÞ ¼
X
h2Hþ

whPhðrÞ þ
X
h2H�

whPhðrÞ ¼
X
h2H

whPhðrÞ:

3 EVALUATION OF BINARY ATTRIBUTES

We remarked that selecting a small support set is computa-
tionally necessary, but that excluding attributes means los-
ing information. Therefore, we propose to evaluate the
quality (the separating power) of each attribute and to per-
form such a selection taking into account this evaluation. In

the following Fig. 1, we give three examples of numerical
fields (a,b,c). In each case, we draw (in the area above the
horizontal line) “qualitative” distributions densities of a
large number of values from positive and negative records,
and report (on the same line) a smaller sample of those val-
ues. Very intuitively, cut-points obtainable in case a) are the
worst ones (they do not appear very useful for separating
the two classes), while the cut-point of case c) is the best one
(it has a good “separating power”). Moreover, the different
cut-points of case b) do not have the same quality.

To estimate this, we analyze how a
j
i divides the two clas-

ses, even if the real classification step will use patterns. Dif-
ferent estimators could of course be designed, however
results show that the proposed technique is able to improve
accuracy with respect to the standard LAD procedure.

Given a single cut-point aj
i and a record r, denote byþ the

fact that r is actually positive, and by � the opposite situa-

tion. Moreover, denote by class þ ðaj
iÞ the fact that r is classi-

fied as positive by a
j
i , i.e. stays on the positive side of cut-

point aj
i , and by class � ðaj

iÞ the fact that r is in the opposite sit-
uation. Given a generic set of records N , let Aþ be the set of

the records which are class þ ðaj
iÞ, andA� be the set of records

which are class � ðaj
iÞ. Denote instead byNþ andN� the (pos-

sibly unknown) real positive and negative sets. Errors occur
when a negative record is classified as positive, and vice
versa. False positive errors are N� \Aþ; false negative ones
are Nþ \A�. The relative confusion matrix is given in Table 1
below. Clearly, in the general case of k classes, each matrix

would be relative to the two classes separated by a
j
i .

Since the described support set selection problem is a
non-trivial decision problem, it seems reasonable to model
it as a binary linear programming problem. For doing so,
we need to use a criterion for evaluating the quality of each
binary attribute such that the overall quality value of a set
of binary attributes can be given by the sum of their individ-
ual quality values. We obtain this as follows. A basic mea-
sure of the accuracy of the positive classification obtained
from a

j
i can be the probability of producing a true positive

divided by the probability of producing a false positive

oþðaj
iÞ ¼

Prðþ \ class þ ðaj
iÞÞ

Prð� \ class þ ðaj
iÞÞ

:

A similar measure can evaluate the accuracy of the negative
classification obtained from a

j
i

o�ðaj
iÞ ¼

Prð� \ class � ðaj
iÞÞ

Prðþ \ class � ðaj
iÞÞ

:

Clearly, oþðaj
iÞ 2 ½0;þ1Þ and o�ðaj

iÞ 2 ½0;þ1Þ. The higher
the value, the better positive [resp. negative] classification

Fig. 1. Examples of cut-points in different conditions.

TABLE 1
Confusion Matrix for aj

i

Predicted by a
j
i

þ �
þ Nþ \Aþ Nþ \A�Real � N� \Aþ N� \A�
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a
j
i provides. In order to have a complete evaluation of aj

i , we

consider the product oþðaj
iÞ � o�ðaj

iÞ 2 ½0;þ1Þ. Moreover,
rather than the numerical value of such evaluation, we are
interested in the relative differences among the values
obtained for the different cut-points. Therefore, we can sum
1 to such product, obtaining a value in ½1;þ1Þ.

1þ Prðþ \ class þ ðaj
iÞÞ

Prð� \ class þ ðaj
iÞÞ

� Prð� \ class � ðaj
iÞÞ

Prðþ \ class � ðaj
iÞÞ

:

Denote now by A the set of couples of indices ði; jÞ of a

generic set of cut-points: faj
i : ði; jÞ 2 Ag. The overall accu-

racy of a classification using the cut-points in A is related to
the product of the individual evaluations:

Y
ði;jÞ2A

1þ Prðþ \ class þ ðaj
iÞÞ

Prð� \ class þ ðaj
iÞÞ

� Prð� \ class � ðaj
iÞÞ

Prðþ \ class � ðaj
iÞÞ

" #
:

As noted above, more than the numerical values, we are
interested in producing, for each set of cut-points, values
that can be compared. Therefore, we can apply a scale con-
version and take the logarithm of the above value. This
allows to convert it in a sum, as requested above, obtaining:

X
ði;jÞ2A

ln 1þ Prðþ \ class þ ðaj
iÞÞ

Prð� \ class þ ðaj
iÞÞ

� Prð� \ class � ðaj
iÞÞ

Prðþ \ class � ðaj
iÞÞ

" #
:

In conclusion, the quality qji of a single cut-point aj
i can be

evaluated as follows (so that the quality of a set of cut-points
results in the sum of their individual quality values)

qji ¼ ln 1þ Prðþ \ class þ ðaj
iÞÞ

Prð� \ class þ ðaj
iÞÞ

� Prð� \ class � ðaj
iÞÞ

Prðþ \ class � ðaj
iÞÞ

" #
:

Clearly, qji 2 ½0;þ1Þ. Computing the above probabilities
by counting instances (and denoting by j � j the cardinality
of a set), we have:

qji ¼ ln 1þ
jNþ \Aþj

jNþj
jN� \Aþj

jN�j
�
jN� \A�j

jN�j
jNþ \A�j

jNþj

2
664

3
775

¼ ln 1þ jNþ \Aþj
jN� \Aþj �

jN� \A�j
jNþ \A�j

� �
:

In the general case of k classes, the above cardinalities are

those of the sets appearing in the confusion matrix for aj
i .

However, this evaluation needs the correct classification
fNþ; N�g of the dataset N . We obviously prefer an a priori
quality evaluation, i.e. computable by knowing only the cor-
rect classification of the training set S. We can do this by
using a non-parametric method for fields having unknown
distribution, and a parametric one for fields having known
distribution.

In the case of fields having unknown distribution, qji is
simply obtained by considering the training set S instead of

the generic N , while for each cut-point aj
i sets Aþ and A�

are clearly known (they respectively are the sets or records

that are class þ ðaj
iÞ and class � ðaj

iÞ). Now, the quality of each

attribute aji over a numerical field fi is that of its corre-

sponding cut-point aj
i , that is the defined qji .

In the case of fields where the hypothesis of a known dis-
tribution is satisfactory, their positive and negative density
functions can be computed using the training set S, and the
above quantities jNþ \Aþj, etc. can be evaluated by using
such density functions. In other words, we just know data
from the training set S, but we may infer where other data

will be, and compute how useful a
j
i would be for all of

them. In particular, for any continuous-valued field fi, we
make the hypothesis of a normal (Gaussian) distribution.
Such distribution can indeed model the majority of real-
world values, as a consequence of the central limit theorem
[36]. Denote now bymiþ the mean value that positive records
have for fi and by siþ their (population) standard deviation

(defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
s2Sþ ðvs

i
�miþÞ2

jSþj

r
), denote by mi� and si� the

same quantities for the negative records, and suppose w.l.o.

g. that cut-point aj
i represents a transition from � to þ. By

computing the above parameters from the training set S,

our evaluation of quality qji becomes:

qji ¼ ln 1þ
Rþ1
a
j
i

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðsiþÞ2

p e
�ðt�miþÞ2

2ðsiþÞ2 dt

Rþ1
a
j
i

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðsi�Þ2

p e
�ðt�mi�Þ2

2ðsi�Þ2 dt

�
R a

j
i�1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðsi�Þ2

p e
�ðt�mi�Þ2

2ðsi�Þ2 dt

R a
j
i�1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðsiþÞ2

p e
�ðt�miþÞ2

2ðsiþÞ2 dt

2
6664

3
7775:

In case of a discrete-valued field fi, on the contrary, we
make the hypothesis of binomial (Bernoulli) distribution.
This should indeed describe many discrete real-world
quantities [36]. Denote now by miþ and Miþ the minimum
and the maximum values on field i for positive records,
and by mi� and Mi� the same quantities for the negative
records. Denote also by niþ ¼ Miþ �miþ the number of
possible positive values for fi, and by pþ the characteristic
positive probability of success (also called Bernoulli proba-
bility parameter, estimated as jSþj=niþ). Denote by
ni� ¼ Mi� �mi� and by p� the same quantities for nega-

tive records. Suppose, again, that aj
i is a transition from �

to þ. By computing the above parameters from S, our

evaluation of quality qji becomes now:

qji ¼ ln 1þ
Pniþ

t¼a
j
i
�miþ

niþ
t

� �ðpiþÞtð1� piþÞniþ�t

Pniþ
t¼a

j
i
�miþ

ni�
t

� �ðpi�Þtð1� pi�Þni��t �

2
64

�
Pa

j
i
�mi��1

t¼0
ni�
t

� �ðpi�Þtð1� pi�Þni��t

Pa
j
i
�mi��1

t¼0
niþ
t

� �ðpiþÞtð1� piþÞniþ�t

3
5:

Moreover, we modify the above qji in order to reduce
possible overfitting and to avoid selecting attributes in an
unbalanced manner (e.g. all from the same fields). We

penalize each attribute aji corresponding to a cut-point aj
i

originated by a few isolated points of one class laying near
many points of the opposite class. More precisely, we set

two thresholds n1 and n2 and put qji :¼ qji=2 for each aji such
that: i) a number of training records � n1 lie on one side of

a
j
i , and ii) a number of training records � n2 (of the opposite
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class) lie on the other side of aj
i . We use n1 ¼ 5 and n2 ¼ 50.

We also penalize the binary attributes over a field fi from
which other binary attributes have already been selected.
Clearly, this can be applied only during a sequential solu-
tion (see Section 4) of the support set selection problem.
More precisely, each time an attribute from fi is selected,

we put qji :¼ qji=2 for every still unselected attributes of fi.
Finally, for fields having a considerable overlapping
between the two classes, cut-points cannot be generated
when inverting the class, because almost every region of the
field contains both classes. On the contrary, they are gener-
ated when inverting the class predominance, i.e., when pass-
ing from a region with positive predominance to one with
negative predominance and vice versa. By using the fraction

of negative records in the training jS�j
jSj , a region has positive

predominance when its percentage of negative records is

� g jS�j
jSj %. Value gwas set at 70.

4 REFORMULATIONS OF THE SUPPORT SET

SELECTION PROBLEM

When the quality value of each attribute have been com-
puted, the exactly separating support set selection problem
can be modeled as follows. We would like to minimize a
weighted sum (and not only the number) of selected attrib-
utes, where the weights are the reciprocal 1=qji of the quality

qji , while selecting at least an attribute for each of the above

defined sets Iðrþb ; r�b Þ. Note that 1=qji can be viewed as a

measure of the uselessness of aji . By using the binary varia-

bles xj
i already introduced in Section 2, the following

weighted set covering problem should be solved, using the

non-negative weights 1=qji

min
x

Xm
i¼1

Xni
j¼1

1

qji
xj
i

s:t:
X

ði;jÞ2Iðrþ
b
;r�
b
Þ
xj
i � 1 8Iðsþb ; s�b Þ; sþ 2 Sþ; s� 2 S�

xj
i 2 f0; 1g:

8>>>>>><
>>>>>>:

(2)

This formulation takes now into account the individual
qualities of the attributes. One may observe that this would
discard attributes that have a poor isolated effect but may
have important effect when combined with other attributes
during the pattern generation step. However, a selection is
necessary for the computational viability of the entire proce-
dure, and the proposed approach aims at discarding the
attributes that appear more suitable to be discarded.

Moreover, such weighted set covering formulation (2)
has strong computational advantages on the non-weighted
one (1). Although still NP-hard [27], solution algorithms
become considerably faster when the model variables
receive different weight coefficients in the objective func-
tion. Depending on the size of the model and on available
computational time, such weighted set covering problem
may be either solved to optimality or by searching for an
approximate solution. In the former case, it is guaranteed
that the pattern generation step is performed by using a set
of attributes U which is a minimal set for which no positive

and negative records have the same binary encoding. In the
latter case, if the approximate solution is feasible but non-
optimal, it is not guaranteed that U is minimal, i.e. it may
exist also a proper subset U 0 � U such that no positive and
negative records have the same binary encoding. This could
have the effect of increasing the computational burden of
the pattern generation step, but not of worsening the classi-
fication accuracy. If, on the contrary, the approximate solu-
tion is (slightly) infeasible, U is such that (few) positive and
negative records have the same binary encoding. This could
have the effect of accelerating the pattern generation step,
but of decreasing the classification accuracy.

In the cases when the above model still remains compu-
tationally demanding, e.g. for large datasets, or when there
are very tight time requirements, e.g. real time applications,
the support set selection problem can be modeled differ-
ently. We could evaluate the computational burden added
to the whole classification procedure by retaining each sin-
gle attribute aji , and call it its size sji . When no specific evalu-
ations can be done, those sizes could be set all at 1.
Moreover, we can establish a maximum affordable compu-
tational burden b, for instance on the basis of the time avail-
able for performing the classification, or of the available
computing hardware, etc. Note that such requirement may
be independent from the minimum size of an exactly sepa-
rating support set: the available resources are limited, and,
if they allow obtaining an exactly separating support set,
the better, but this cannot be imposed. By using the same

binary variables xj
i , the support set selection problem can

now be modeled as binary knapsack problem:

max
x

Xm
i¼1

Xni
j¼1

qji x
j
i

s:t:
Xm
i¼1

Xni
j¼1

sji x
j
i � b

xj
i 2 f0; 1g:

8>>>>>><
>>>>>>:

(3)

Solving the above model is again NP-hard [27], so it may in
general be as hard as (2). However, in the case when all
sizes sji are 1, it becomes polynomially solvable by just sort-

ing the qji values and by taking the best b of them. Note that,
in this case, attributes can be selected sequentially, and the
weights be modified after each single attribute selection, in
order to incorporate penalty techniques such as the one
described in the end of previous Section. The above selec-
tions are performed independently on positive and negative
attribute, so as to find the set Uþ of selected positive attrib-
utes and the set U� of selected negative ones. In the general
case of k classes, k selections problems are to be solved.

5 PATTERN GENERATION AND USE

A pattern P is a logic function of attributes aji , typically a

conjunction of literals, which are binary attributes aji 2 U or

negated binary attributes :aji . Given a binarized record rb,

that is a set of binary values fbjig, each literal of a generic
pattern P receives a value, and so P itself receives a value,
denoted by P ðrÞ 2 f0; 1g (see also Section 2). We say that a
pattern P covers a record r if P ðrÞ ¼ 1, and that pattern P is
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activated by r. In the standard LAD procedure, a positive pat-
tern Pþ has to cover at least one positive record rþ but no
negative ones, and a negative pattern P� is defined symmet-
rically. This, however, can lead to improper pattern genera-
tion in the case of noisy or otherwise difficult datasets. In
our procedure, patterns are built in a bottom-up fashion, as
described below. For obtaining a positive pattern, we gener-
ate every possible logic conjunction grouping up to p liter-
als, using one after another all literals obtainable from Uþ.
When a conjunction �P verifies the following coverage
conditions:

� �P covers at least hc positive records of S
� �P covers at most he negative records of S,

we save �P as a pattern and never repeat �P as part of other
conjunctions. A negative pattern is generated symmetri-
cally. This simple generalization of the original covering
condition can generate patterns being more robust, since
patterns not covering any element of the opposite class may
be rare in the mentioned cases. In the general case of k clas-
ses, patterns for each class are needed, and the second cov-
erage condition counts the records belonging to all the other
classes. Thresholds hc and he may be tuned on the specific
dataset, with hc proportional to data density and he propor-
tional to the noise contained in the data. However, reason-
able values for hc are 1 or 2, and, in general, 2he � hc.

In order to produce a complete classifier, each test record
should be covered by at least one pattern. However, gener-
ating bottom-up patterns could leave uncovered some
regions of the data space. Therefore, an additional pattern
generation step is required, in a top-down fashion: patterns
describing single training records covering the still uncov-
ered regions of the data space are taken, and then simpli-
fied, by iteratively removing literals from them in all
possible ways, until they satisfy other two coverage thresh-
olds hca and hea. Their meaning is respectively analogous to
hc and he, but the requirements should in general be more
relaxed.

Now, unclassified records can be classified by examining
which patterns cover them. Clearly, a record activating only
positive patterns should be classified as positive, and vice
versa. A positive pattern is indeed a (partial) compact
description of positive records. However, in most of the
cases, unclassified records activate both positive and nega-
tive patterns. Some kind of “voting” criterion is needed.
LAD methodology uses a weighted sum of the activated
patterns, also called discriminant D. The weight given to
pattern Ph in this sum is denoted by wh, with h 2 H. The
discriminant must be compared to a classification threshold d

for classifying record r:

X
h2H

whPhðrÞ ¼ DðrÞ > d , r 2 Rþ

X
h2H

whPhðsÞ ¼ DðrÞ � d , r 2 R�:

Using patterns can also be seen as Boosting [18], [19]:
learning weak classifiers (the patterns) and combining
them by means of weights in order to obtain a strong clas-
sifier. Evaluating the mentioned weights, i.e. the “power”
of each pattern in the classification process, can be done

using different criteria. A first criterion can be based on
the coverage values of each pattern, as in the original
LAD [23]. For instance (squared pattern coverage): if uh is
the number of positive records covered by a positive pat-

tern Ph, its weight is set to wh ¼ u2
h, and symmetrically for

a negative one. However, in the case of patterns covering
overlapping sets of records, criteria based on coverage
could be misleading.

A more ambitious criterion is assigning weights and clas-
sification threshold in order to minimize classification
errors. Since the only classification errors that can be
detected at this stage are those on the training set, we try to
minimize them. We assume, in absence of further informa-
tion, that this would produce a similar effect on the test set,
being such data of the same nature of the training set. For
doing so, denote by cðrÞ the value 1 if r is a positive record,
0 otherwise (the real classification). Clearly, cðsÞ is known
for each training record s 2 S. On the other hand, applying
the learned classifier on the training set S produces a pre-
dicted classification for each s 2 S. By comparing real and
predicted classification of a training record s 2 S, we obtain
es 2 f0; 1g, that we call classification error for the training
record s

es ¼ 1 if DðsþÞ � d or Dðs�Þ > d

0 otherwise:

�

Values es clearly depend on all elements of the procedure:
cut-point selection, pattern generation, pattern weights,
classification threshold, so they are not easily expressible.
However, when knowing whether each pattern Ph, with
h 2 H, covers or not each record s 2 S, the above es are sim-
ple functions of pattern weights fwhg and classification
threshold d. Therefore, given the set of generated pattern
fPhg, we compute the coverages PhðsÞ 2 f0; 1g for any h in
the set H of all patterns and s 2 S, obtaining a jHj � jSj
matrix PS having binary elements dhs:

PS ¼ ½dhs	 with dhs ¼ PhðsÞ:
The same can be done for each pattern Ph, with h 2 H and
each test record t 2 T , obtaining a jHj � jT j matrix PT hav-
ing binary elements dht:

PT ¼ ½dht	 with dht ¼ PhðtÞ:
On the other hand, for each test record t 2 T , we only know
(at this stage) the classification ct given by the learned classi-
fier, again a function of fwhg and d

ct ¼ 1 if
P

h2H whPhðtÞ > d

0 if
P

h2H whPhðtÞ � d:

�

Moreover, we want to learn from the training set the class
distribution, that is the fraction of positive jSþj

jSj (or of nega-

tive jS�j
jSj ) records contained in the training set (clearly,

given one of the two, the other is also fixed). We therefore
introduce a value, called tolerance and denoted by g, mea-
suring the “difference” from the class distribution of the
training set and that of the test set. Hence, in our optimi-
zation model, we have a bi-objective: minimizing the
number of errors on the training set and minimizing the
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tolerance g. By introducing a scalarization parameter
G > 0, our objective becomes:

min
e;c;w;d;g

X
s2S

es þGg:

A reasonable choice for G is jSj=10, so that the second term
of the objective cannot override the first one (whose theoret-
ical maximum is jSj, but with typical values between 0:01jSj
and 0:4jSj). We now describe the constraints. We need to
impose that the classification error es is 1 for each record
s 2 S such that the classification that s would receive using
fwhg and d does not match its real class cðsÞ:

X
h2H

whdhs � d � MðcðsÞ þ esÞ 8s 2 S (4)

X
h2H

whdhs � d > �Mð1� cðsÞ þ esÞ 8s 2 S: (5)

M is a positive constant greater than any possible value
of the first member (see also [37]). The mathematical
behavior of those constraints is the following. WhenP

h2H whdhs � d > 0, record s is predicted positive. In this

case, the second member of (4) must be � than a positive
number, so it must be positive, while the second member
of (5) must be < than the same positive number, so it
can be either 0 or negative: if cðsÞ ¼ 0 (= the prediction
is an error), es is forced to be 1 by the (4), while it is free
for the (5); if cðsÞ ¼ 1 (= the prediction is not an error),
es is free for both constraints.

On the other hand, when
P

h2H whdhs � d � 0, record s is
predicted negative. In this case, the second member of (4)
must be � than a number � 0, so it can be either 0 or posi-
tive, while the second member of (5) must be < than the
same number, so it must be negative: if cðsÞ ¼ 1 (= the pre-
diction is an error), es is forced to be 1 by the (5), while it is
free for the (4); if cðsÞ ¼ 0 (= the prediction is not an error),
es is free for both constraints. Note that, when es is free for
both constraints, the minimization of the objective will
make it 0. In order to have a closed feasible region, (5) is
converted into � by introducing a small � > 0

X
h2H

whdhs � d � �Mð1� cðsÞ þ esÞ þ � 8s 2 S:

In order to evaluate the class distribution that fwhg and d

would produce in T , we need to compute the predicted clas-
sification of its records. We therefore need constraints con-
necting values fwhg and d to the class ct that would be
predicted for each record t 2 T . The machinery is similar to
that of the above analyzed constraints, but note that we do
not use at all the real class of the test records, that must obvi-
ously remain unknown during the classification process:

X
h2H

whdht � d � Mct 8t 2 T (6)

X
h2H

whdht � d > �Mð1� ctÞ 8t 2 T: (7)

Constraint (7) is converted into � by using a small � > 0X
h2H

whdht � d � �Mð1� ctÞ þ � 8t 2 T:

Finally, we need constraints imposing that fwhg and d

reproduce in T the class distribution of S, so jTþj should be

as similar as possible to jSþj � jT jjSj, and connecting the differ-

ence to the introduced g:

X
t2T

ct �
X
s2S

cðsÞ � jT jjSj þ jT jg þ r (8)

X
t2T

ct �
X
s2S

cðsÞ � jT jjSj � jT jg � r: (9)

Note that, when we need to classify just one or a few
records, obtaining the same class distribution of S could be
impossible. For example, if we need to classify two records,

and the fraction of positive jSþj
jSj is 0.2, targeting at that class

distribution is clearly useless. Hence, (8-9) should have no
effect when T is very small. This is obtained by using value
r, that, when set for instance at 3, relaxes constraints (8-9) of
3 units. For large jT j this relaxation is negligible (so we do
not consider it in the tests of Section 6), while for small jT j
the problem gradually reduces to minimizing only the clas-
sification error on S.

The overall mixed integer linear model for finding opti-
mal pattern weights wh and classification threshold d is now
the following:

min
e;c;w;d;g

X
s2S

es þGgX
h2H

whdhs � d � MðcðsÞ þ esÞ 8s 2 SX
h2H

whdhs � d � �Mð1� cðsÞ þ esÞ þ � 8s 2 SX
h2H

whdht � d � Mct 8t 2 TX
h2H

whdht � d � �Mð1� ctÞ þ � 8t 2 T

X
t2T

ct �
P

s2S cðsÞ �
jT j
jSj þ jT jg þ r

X
t2T

ct �
P

s2S cðsÞ �
jT j
jSj � jT jg � r

�W � wh � W 8h 2 H

es 2 f0; 1g 8s 2 S
ct 2 f0; 1g 8t 2 T
wh 2 R 8h 2 H
d 2 R

g 2 Rþ:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(10)

Weights are bounded by a value W , in order to avoid giv-
ing excessive importance to any single pattern, since that
could cause overfitting. We briefly remark that, in the
case of k classes, there is a set Hc of patterns for each c-th
class; they still need weights wh and threshold d such that
r can be assigned to class c when

P
h2Hc whPhðrÞ > d, and

this could still be obtained with an extension of model
(10). Clearly, the final class assigned to r would in that
case be the one having the largest value of the above sum.
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6 IMPLEMENTATION AND COMPUTATIONAL

RESULTS

Tests are carried out on an Intel Pentium 4 PC with 3 GHz
processor and 3.24 Gb RAM. The proposed procedure has
been implemented in C++ using MS Visual Studio 2008.
The quality values qji are numerically approximated by
using C functions described in [38]. The support set selec-

tion problem, when modeled as knapsack (3) with all sji ¼ 1,
is solved by simply ordering by quality values the binary
attributes. When modeled differently, as in (1) or (2), is
solved by means of IBM Cplex [39], a state-of-the-art imple-
mentation of branch-and-cut (e.g. [27], [28]). The same
solver is used to solve problem (10), possibly relaxing
numerical precision. Data sets used in the experiments are
“Ionosphere”, “Spambase”, “Pima Indians Diabetes”,
“Statlog Heart”, “Mushroom”, “Adult”, “Madelon” and
“MiniBooNE”, publicly available from the UCI Repository
of machine learning problems [32]. They were chosen in
order to have a test bed containing different types of data-
sets (with many or few records, many or few fields, easy or
difficult, etc.), so as to analyze the classifiers in different
conditions.

Ionosphere has 351 instances, each with 34 fields: 32 are
real-valued and 2 are binary. Real-valued fields were con-
sidered with normal distribution, one binary field was con-
sidered binomial, the other is always 0. They are data
collected by a radar system in Goose Bay, Labrador. The tar-
gets were free electrons in the ionosphere. Good radar
returns are those showing evidence of some type of struc-
ture in the ionosphere.

Spambase has 4,601 instances, each with 57 fields: 55 are
real-valued and 2 are integer; however they are the frequen-
cies of particular words or characters in an email, so all 57
were considered having normal distribution. Records of
this dataset correspond to received emails, and the class
denotes whether the e-mail was considered spam or not.

Pima Indians Diabetes has 768 instances, each with
eight fields: two are real-valued and six are integer. How-
ever, since three integer fields have a number of possible
values high enough, five were considered normal and
three were considered binomial. Fields are medical infor-
mations about females patients of Pima Indian heritage
living near Phoenix, Arizona, the class is whether the
patient shows signs of diabetes.

Statlog Heart has 270 instances, each with 13 fields:
seven are real-valued and six are categorical or binary.
The first seven were considered having normal distribu-
tion. The last six could not be considered having binomial
distribution, so they were treated as those with normal
distribution but generating cut-points when inverting the
class predominance due to the few number of possible
values (see Section 3). Fields are several medical informa-
tions about patients, the class is whether the patient has
or not a heart disease.

Mushroom has 8,124 instances, each with 22 fields, all
categorical with very few possible values (no more than 12,
some just 2), so they were treated as those with binomial
distribution but generating cut-points when inverting the
class predominance (see Section 3). The records describe
mushrooms in terms of physical characteristics, from the

Audobon Society Field Guide, and the classification is poi-
sonous or edible.

Adult has 48,842 instances, each with 14 fields: six are
real-valued and were considered having normal distribu-
tion, the other eight are categorical and were treated as
fields with unknown distribution. They are a set of reason-
ably clean person records extracted from the 1994 US Cen-
sus database. The class is whether that person earns more
than 50,000 USD per year or not.

Madelon has 4,400 instances, each with 500 fields, and
is a difficult artificial dataset. All fields are numerical and
were considered with normal distribution. It contains
data points grouped in 32 clusters placed on the vertices
of a five dimensional hypercube and randomly labeled 0
or 1. Fifteen linear combinations of those fields were
added to form a set of 20 (redundant) informative fields.
Moreover, 480 distractor fields were added, having no
predictive power, and the order of fields and records was
randomized.

MiniBooNE is a very large dataset with 130,065 instances,
each with 50 fields. All fields are numerical and were con-
sidered with normal distribution. The data are obtained
from the MiniBooNE experiment to distinguish electron
neutrinos (signal) from muon neutrinos (background).
These data-sets have been classified using the following
procedures:

� The proposed one, called Statistical and Logical
Analysis of Data (SLAD), that determines the binar-
ization by solving the knapsack version (3) of the
Support set selection problem, then generates pat-
terns, determines pattern weights and classification
threshold by solving (10), and classifies by compar-
ing discriminant and threshold.

� The standard Logical Analysis of Data procedure,
obtained from the former by not assigning values to
binary attributes and solving an unweighted set cov-
ering problem (1) for the Support set selection, and
using pattern weights wh based on squared pattern
coverage (see Section 5) and classification threshold
d ¼ 0.

� A simplified version of SLAD, called Reduced Logi-
cal Analysis of Data (RLAD), solving the knapsack
version (3) of the Support set selection problem and
simply using the binary attributes to perform the
classification. In other words, each pattern is made
of only one literal, and it determines pattern weights
and classification threshold by solving (10).

� The publicly available LIBSVM 3.17 (Library for
support vector machines [33]), a very good C++
implementation of the support vector machines
methodology [5], [9], developed by Chih-Chung
Chang and Chih-Jen Lin, possibly working on
dataset previously scaled to a restricted range by
means of svm-scale [33] (a preprocessing for
improving accuracy).

� The publicly available UniverSVM 1.22 (support vec-
tor machines with large scale transduction[34], [40]),
an updated C++ implementation of Transductive
support vector machines [10], developed by Fabian
Sinz and Matteo Roffilli.
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� The publicly available Label Propagation procedure
[14], [15] implemented in Python within the very
good Machine Learning package scikit-learn [35],
developed by Fabian Pedregosa et al., currently
included in Scientific Python distributions.

A small number of records (5 and 10 percent of each data-set,
except for MiniBooNE, that is so large that we used 2 and 5
percent) were randomly extracted from each data-set, and
used as training set. After this, the rest of the data-set was ran-
domly split in two equal parts, which constituted validation
set and test set. For each dataset and training percentage, the
training set extractions were performed 10 times, so that the
same number of validation and test sets were obtained. Tests
are conducted on a best-against-best basis: we selected, for
each dataset and training percentage, the parameters of each
classifier that give the best classification accuracy on the vali-
dation sets using cross validation. In particular, the choice for
SVM methods (LIBSVM and UniverSVM) used the grid
search described in [41], and the choice for LP was done in a
similar exhaustive fashion. For SLAD and RLAD, some of
the parameters are obtained by solving model (10). For the
rest, patterns are generated by grouping up to p literals, with
p 2 f2; 3; 4; 5g. Literals are obtained from a support set of at
most b elements, using hc ¼ 2, he ¼ 1, hca ¼ 1, and hea ¼ 0.
Parameter b controls the computational burden of the proce-
dure: initially set at one tenth of the number of all possible
binary attributes, it is then progressively decreased if the
computational requirements of the procedure were excessive.
Parametr W is just a very large value to avoid that the weight
of a pattern could approach infinity. Parameters not indicated
in the tables were fixed at the values mentioned when they
have been introduced.

In Tables 2, 3, 4, 5, 6, 7, 8, and 9 we report the accuracy
(Accur.) on the test sets, computed as the percentage of cor-
rect predictions w.r.t. the total number of predictions. All

results are averaged on the 10 trials. We also report the nor-
malized mutual information (NMI), that is an information-
based measure that has been recently proposed for evaluat-
ing the correlation between the prediction of a classifier and
the real classification [42]. Note that, while the maximum
value for NMI is 1, this measure decreases very rapidly
when classification errors are present: for example, a classi-
fier producing 80 true positive, 10 true negative and 10 false
negative has 90% accuracy but only 0.57 NMI. We then
report computational times in seconds required by the

TABLE 2
Ionosphere (351 Records, 34 Fields)

Algorithm Training 5% (18/351)

Accur. NMI Time Parameters

LAD 76.58% 0.21 0.60 std, hc ¼ 1; he ¼ 0
RLAD 85.10% 0.40 0.04 b ¼ 35
SLAD 85.14% 0.40 0.04 b ¼ 10; p ¼ 3

G ¼ 1:8;W ¼ 104

LIBSVM 82.66% 0.36 0.58 -s 0 -t 2 -g 0.25
-c 1.6818 -e 0.001

UniverSVM 80.90% 0.35 0.70 -s 0 -t 2 -g 0.25
-c 1.6818 -e 0.001

LabelProp 79.80% 0.27 0.92 gamma 1.5 m_iter 30

Algorithm Training 10% (36/351)

Accur. NMI Time Parameters

LAD 71.13 % 0.12 0.75 std, hc ¼ 1; he ¼ 0
RLAD 89.10 % 0.50 0.10 b ¼ 46
SLAD 89.49 % 0.52 0.18 b ¼ 11; p ¼ 3

G ¼ 3:6;W ¼ 104

LIBSVM 88.48 % 0.52 0.63 -s 0 -t 2 -g 0.1486
-c 1 -e 0.001

UniverSVM 87.91% 0.51 0.76 -s 0 -t 2 -g 0.1486
-c 1 -e 0.001

LabelProp 84.20% 0.36 1.04 gamma 0.8 m_iter 10

TABLE 3
Spambase (4601 Records, 57 Fields)

Algorithm Training 5% (230/4,601)

Accur. NMI Time Parameters

LAD 83.10% 0.39 2.14 std, hc ¼ 1; he ¼ 0
RLAD 61.90% 0.08 0.18 b ¼ 240
SLAD 90.76% 0.54 0.92 b ¼ 100; p ¼ 3

G ¼ 23;W ¼ 104

LIBSVM 81.83% 0.32 1.05 -s 0 -t 2 -g 0.5
-c 8.0 -e 0.001

UniverSVM 87.06% 0.42 6.90 -s 0 -t 2 -g 0.5
-c 8.0 -e 0.001

LabelProp 70.78% 0.09 1.64 gamma 0.01 m_iter 10

Algorithm Training 10% (460/4,601)

Accur. NMI Time Parameters

LAD 84.32 % 0.39 2.21 std, hc ¼ 1; he ¼ 0
RLAD 62.12 % 0.09 0.50 b ¼ 370
SLAD 91.15 % 0.56 1.61 b ¼ 200; p ¼ 3

G ¼ 46;W ¼ 104

LIBSVM 85.80 % 0.41 1.36 -s 0 -t 2 -g 0.5
-c 8.0 -e 0.001

UniverSVM 88.20% 0.47 7.38 -s 0 -t 2 -g 0.5
-c 8.0 -e 0.001

LabelProp 73.10% 0.12 2.09 gamma 0.05 m_iter 10

TABLE 4
Pima Indians Diabetes (768 Rec., 8 Fields)

Algorithm Training 5% (38/768)

Accur. NMI Time Parameters

LAD 68.48% 0.06 0.88 std, hc ¼ 1; he ¼ 0
RLAD 66.10% 0.06 0.03 b ¼ 60
SLAD 72.87% 0.12 0.40 b ¼ 60; p ¼ 3

G ¼ 3:8;W ¼ 104

LIBSVM 70.41% 0.09 0.80 -s 0 -t 2 -g 0.000173
-c 4096 -e 0.001

UniverSVM 70.39% 0.10 0.85 -s 0 -t 2 -g 0.000173
-c 4096 -e 0.001

LabelProp 65.20% 0.01 1.00 gamma 8.5, m_iter 5

Algorithm Training 10% (76/768)

Accur. NMI Time Parameters

LAD 72.80 % 0.10 1.15 std, hc ¼ 1; he ¼ 0
RLAD 65.90 % 0.05 0.06 b ¼ 64
SLAD 75.54 % 0.15 0.62 b ¼ 64; p ¼ 3

G ¼ 7:6;W ¼ 104

LIBSVM 72.74 % 0.15 2.84 -s 0 -t 2 -g 0.25
-c 11.31 -e 0.001

UniverSVM 72.40% 0.13 1.90 -s 0 -t 2 -g 0.25
-c 11.31 -e 0.001

LabelProp 67.25% 0.06 1.28 gamma 0.25, m_iter 10
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whole classification procedure running with the parameters
used to obtain those best results, and the values of such
parameters (with ‘std’ meaning standard values).

As a general outcome, our experiments show that the
effort invested in evaluating the quality of the different
binary attributes returns a superior classification accuracy
with respect to the standard LAD procedure. In the totality
of the analyzed cases, indeed, SLAD is more accurate than
LAD. That additional effort clearly required an additional
computational time, but that was almost negligible, and

moreover, in the solution of the support set selection prob-
lem, weighted set covering problems can generally be
solved in times which are much shorter than those needed
for the corresponding non-weighted ones, so the balance is
in favor of performing the above quality evaluation. Fur-
thermore, the solution of the support set selection problem
as binary knapsack (3) using the above quality evaluation
and all sji ¼ 1 is even faster and produces a very good classi-
fication accuracy. The computational demand of SLAD is
controlled by parameters b and p, so the scalability appears

TABLE 5
Statlog Heart (270 Records, 13 Fields)

Algorithm Training 5% (14/270)

Accur. NMI Time Parameters

LAD 63.40% 0.06 0.78 std, hc ¼ 1; he ¼ 0
RLAD 64.25% 0.08 0.02 b ¼ 54
SLAD 78.21% 0.25 0.02 b ¼ 14; p ¼ 4

G ¼ 1:4;W ¼ 104

LIBSVM 77.58% 0.25 0.20 -s 0 -t 2 -g 0.00035
-c 512 -e 0.001

UniverSVM 77.43% 0.25 0.28 -s 0 -t 2 -g 0.00035
-c 512 -e 0.001

LabelProp 60.53% 0.04 1.07 gamma 0.15, m_iter 100

Algorithm Training 10% (27/270)

Accur. NMI Time Parameters

LAD 67.80 % 0.11 0.78 std, hc ¼ 1; he ¼ 0
RLAD 73.31 % 0.18 0.04 b ¼ 64
SLAD 81.11 % 0.31 0.04 b ¼ 22; p ¼ 4

G ¼ 2:7;W ¼ 104

LIBSVM 77.52% 0.25 0.34 -s 0 -t 2 -g 0.125
-c 512 -e 0.001

UniverSVM 77.13% 0.24 0.41 -s 0 -t 2 -g 0.125
-c 512 -e 0.001

LabelProp 60.88% 0.04 1.32 gamma 0.15, m_iter 100

TABLE 6
Mushroom (8,124 Records, 22 Fields)

Algorithm Training 5% (406/8,124)

Accur. NMI Time Parameters

LAD 95.77% 0.79 2.67 std, hc ¼ 1; he ¼ 0
RLAD 87.63% 0.48 0.32 b ¼ 176
SLAD 97.79% 0.83 0.83 b ¼ 20; p ¼ 4

G ¼ 40;W ¼ 104

LIBSVM 92.71% 0.57 1.12 -s 0 -t 2 -g 0.03125
-c 8.0 -e 0.001

UniverSVM 97.90% 0.86 5.62 -s 0 -t 2 -g 0.03125
-c 8.0 -e 0.001

LabelProp 98.60% 0.88 2.15 gamma 0.5, m_iter 5

Algorithm Training 10% (812/8,124)

Accur. NMI Time Parameters

LAD 96.11 % 0.79 3.85 std, hc ¼ 1; he ¼ 0
RLAD 85.08 % 0.39 0.45 b ¼ 200
SLAD 99.72 % 0.98 0.83 b ¼ 25; p ¼ 4

G ¼ 81;W ¼ 104

LIBSVM 99.60% 0.96 1.25 -s 0 -t 2 -g 0.03125
-c 8.0 -e 0.001

UniverSVM 99.66% 0.97 7.43 -s 0 -t 2 -g 0.03125
-c 8.0 -e 0.001

LabelProp 98.85% 0.92 3.24 gamma 0.5, m_iter 5

TABLE 7
Adult (48,842 Records, 14 Fields)

Algorithm Training 5% (2,442/48,842)

Accur. NMI Time Parameters

LAD 76.32% 0.03 35.10 std, hc ¼ 1; he ¼ 0
RLAD 77.40% 0.04 0.78 b ¼ 150
SLAD 82.07% 0.17 7.10 b ¼ 80; p¼3

G¼244;W ¼ 105

LIBSVM 83.56% 0.20 10.02 -s 0 -t 2 -g 0.125
-c 8.0 -e 0.001

UniverSVM 82.90% 0.20 610.80 -s 0 -t 2 -g 0.125
-c 8.0 -e 0.001

LabelProp 76.14% 0.01 24.50 gamma 9.0, m_iter 10

Algorithm Training 10% (4,884/48,842)

Accur. NMI Time Parameters

LAD 75.72 % 0.03 75.30 std, hc ¼ 1; he ¼ 0
RLAD 74.84 % 0.02 0.95 b ¼ 200
SLAD 83.68 % 0.19 8.64 b¼100; p¼3

G¼488;W¼105

LIBSVM 84.28% 0.22 12.58 -s 0 -t 2 -g 0.125
-c 8.0 -e 0.001

UniverSVM 83.90% 0.22 895.50 -s 0 -t 2 -g 0.125
-c 8.0 -e 0.001

LabelProp 76.12% 0.01 26.02 gamma 9.0, m_iter 10

TABLE 8
Madelon (4,400 Records, 500 Fields)

Algorithm Training 5% (220/4,400)

Accur. NMI Time Parameters

LAD 56.05% 0.02 2.36 std, hc ¼ 1; he ¼ 0
RLAD 60.36% 0.03 1.13 b ¼ 24
SLAD 60.96% 0.04 1.28 b ¼ 24; p¼5

G¼22;W ¼ 104

LIBSVM 57.72% 0.02 1.64 -s 0 -t 2 -g 0.10511
-c 1.0 -e 0.001

UniverSVM 57.11% 0.03 24.33 -s 0 -t 2 -g 0.10511
-c 1.0 -e 0.001

LabelProp 54.14% 0.01 1.38 gamma 0.5, m_iter 10

Algorithm Training 10% (440/4,400)

Accur. NMI Time Parameters

LAD 57.55 % 0.02 5.97 std, hc ¼ 1; he ¼ 0
RLAD 62.02 % 0.04 1.34 b ¼ 36
SLAD 62.20 % 0.04 1.98 b¼36; p¼5

G¼44;W¼104

LIBSVM 58.55% 0.03 2.44 -s 0 -t 2 -g 0.10511
-c 1.0 -e 0.001

UniverSVM 60.04% 0.04 26.60 -s 0 -t 2 -g 0.10511
-c 1.0 -e 0.001

LabelProp 54.90% 0.01 2.32 gamma 0.5, m_iter 10
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satisfactory, as shown by the times required for the large
datasets. Comparison with LIBSVM, which is currently
deemed to be among the best classifiers, show the effective-
ness of the proposed approach. Indeed, SLAD obtains a
classification accuracy that is always comparable and some-
times better than that of LIBSVM. Comparison with Uni-
verSVM shows that learning the parameters by means of
model (10) can be a competitive option. Indeed, in the cases
when TSVM demonstrate an advantage over classical SVM,
the accuracy of SLAD is comparable to that of TSVM, while
computational times of SLAD scale better on the large data-
sets. Comparison with LabelProp, finally, gives a similar
result: when LP exhibits the advantages of a semi-super-
vised approach, the accuracy of SLAD is always compara-
ble. Moreover, the simple classifier RLAD is considerable
faster and scales better than the others, because no time con-
suming problems must be solved in the different steps of
this procedure. Its accuracy is clearly inferior, but it is some-
times comparable. Hence, it can be used when a timely (or
even a real-time) classification is needed, or when very large
datasets should be treated.

7 CONCLUSION

To classify in short times with a good degree of accuracy on
the basis of small training sets is required in a variety of
practical applications. Unfortunately, obtaining these three
desirable features together can be very difficult. We con-
sider here the framework of the logical analysis of data, and
propose several enhancements to this methodology based
on statistical considerations on the data. In particular, we
use more information extracted from the training set to
guide the support set selection step, and propose two refor-
mulations of such a problem having several advantages.
Moreover, we consider the problem of selecting the best

parameters for the procedure (pattern weights and classifi-
cation threshold), and formulate it as an optimization prob-
lem. The proposed methodology, called Statistical and
Logical Analysis of Data, is tested on a test bed of publicly
available datasets from the UCI repository, and compared
to: standard LAD methodology; support vector machines
(also in the form of Transductive SVM); label propagation
technique. Experiments show that the presented enhance-
ments are able to sensibly increase the classification accu-
racy and reduce computation times with respect to
standard LADmethodology. The comparison with the other
classifiers proves that SLAD has very good accuracy and
timing results using very small training sets, and that it
scales well on the large datasets. Moreover, a simplified ver-
sion of SLAD, called Reduced Logical Analysis of Data, is
proposed. All steps of this latter procedure can be solved in
very short times, allowing a sensible speed-up of the whole
classification procedure.

APPENDIX A

MAIN NOTATION

R record scheme
r record instance, or simply record
rþ; r� positive or negative record
Rb binarized record scheme
rb binarized record instance, or simply binar. record
fi fields of the record scheme R, with i ¼ 1; . . . ;m
vi values of the record instance r, with i ¼ 1; . . . ;m
aji binary attributes of the binarized record scheme Rb, with
i ¼ 1; . . . ;m and j ¼ 1; . . . ; ni

bji binary values of the binarized record rb, with i ¼ 1; . . . ;m
and j ¼ 1; . . . ; ni

a
j
i cut-point over field fi, i ¼ 1; . . . ;m, j ¼ 1; . . . ; ni

class þ ðaj
iÞ, class � ðaj

iÞ classified as positive or negative by a
j
i :

stays on the positive (or negative) side of aj
i

qji quality of cut-point aj
i , i ¼ 1; . . . ;m, j ¼ 1; . . . ; ni

n ¼ P
i ni total number of cut-points

U support set
Uþ, U� positive or negative part of the support set
S training set
Sþ; S� set of positive or negative records of S
sþ; s� positive or negative training record
C set of predefined classes
cðsÞ real class of record s 2 S
cs predicted class of record s 2 S

T test set
Tþ; T� set of positive or negative records of T
tþ; t� positive or negative test record
Ph pattern, with h 2 H

H set of pattern indices
wh weight of pattern Ph

Pþ; P� positive or negative pattern
Hþ; H� set of positive or negative patterns
PhðrÞ value of pattern Ph on record r
hc minimum correct coverage for patterns
he maximum erroneous coverage for patterns
DðrÞ discriminant

P
h2H whPhðrÞ for record r

d classification threshold
dhs ¼ PhðsÞ value of pattern Ph on record s 2 S

TABLE 9
MiniBooNE (130,065 Records, 50 Fields)

Algorithm Training 2% (2,601/130,065)

Accur. NMI Time Parameters

LAD 76.84% 0.16 175.5 std, hc ¼ 1; he ¼ 0
RLAD 72.07% 0.10 28.2 b ¼ 890
SLAD 83.75% 0.28 120.0 b ¼ 210; p¼3

G¼260;W ¼ 104

LIBSVM 82.19% 0.22 118.0 -s 0 -t 2 -g 0.125
-c 1.0 -e 0.001

UniverSVM 82.88% 0.23 6,760.0 -s 0 -t 2 -g 0.125
-c 1.0 -e 0.001

LabelProp - - - out of memory

Algorithm Training 5% (6,503/130,065)

Accur. NMI Time Parameters

LAD 76.17 % 0.15 212.0 std, hc ¼ 1; he ¼ 0
RLAD 76.65 % 0.14 55.8 b ¼ 4200
SLAD 82.24 % 0.24 194.5 b¼420; p¼3

G¼650;W¼104

LIBSVM 83.55% 0.28 162.0 -s 0 -t 2 -g 0.125
-c 1.0 -e 0.001

UniverSVM 83.40% 0.28 8,900.0 -s 0 -t 2 -g 0.125
-c 1.0 -e 0.001

LabelProp - - - out of memory
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PS matrix ½dhs	with h 2 H and s 2 S
dht ¼ PhðtÞ value of pattern Ph on record t 2 T

PT matrix ½dht	with h 2 H and t 2 T
g class distribution tolerance
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