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Abstract Enhanced indexation (EI) is the problem of selecting a portfolio that should
produce excess return with respect to a given benchmark index. In this work, we
propose a linear bi-objective optimization approach to EI that maximizes average
excess return and minimizes underperformance over a learning period. Our model
can be efficiently solved to optimality by means of standard linear programming
techniques. On the theoretical side, we investigate conditions that guarantee or forbid
the existence of a portfolio strictly outperforming the index. On the practical side,
we support our model with extensive empirical analysis on publicly available real-
world financial datasets, including comparison with previous studies, performance and
diversification analysis, and verification of some of the proposed theoretical results on
real data.
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1 Introduction

Portfolio optimization in asset management is the problem of selecting the compo-
sition of a portfolio to pursue, as far as possible, both return maximization and risk
minimization. The basic index tracking (IT) problem consists in selecting a portfolio,
possibly with a small number of assets, that best replicates (tracks) the performance
of a given index or benchmark. This problem is usually formulated as the problem of
minimizing a selected distance measure, computed over a learning period, between
the index and a tracking portfolio that uses at most m out of n available assets. Exten-
sive reviews of the literature on this problem can be found in Beasley et al. (2003)
and, more recently, in Canakgoz and Beasley (2008) and Guastaroba and Speranza
(2012). An evolution of this approach is called enhanced index tracking, or enhanced
indexation (EI), and its purpose is to outperform, and and not just track, the given
index or benchmark, see also Canakgoz and Beasley (2008) and references therein.
The portfolio obtained this way is sometimes called enhanced indexation portfolio (EI
portfolio), and its return in excess to that of the index is called excess return. Note that,
in general, no guarantee of always reaching a positive excess return can be given, so
the risk of underperforming the index always exists.

Several different approaches to the EI problem, both exact and heuristic, have been
proposed in the last decade, starting from a seminal study by Beasley et al. (2003).
However, in the literature, there does not seem to be a prevalent mathematical model.
We now describe in some detail the more recent approaches to EI, directing the reader
to the extensive overview in Canakgoz and Beasley (2008) for what concerns the
earlier contributions to the problem, consisting of: Alexander and Dimitriu (2005b, a);
Dose and Cincotti (2005); Konno and Hatagi (2005); Wu et al. (2007).

Canakgoz and Beasley (2008) propose a regression based model for EI, developing
a two-stage mixed-integer linear programming approach, so that the use of standard
and efficient solvers is possible. The first stage consists in achieving a regression slope
as close to one as possible, subject to a constraint on the regression intercept (being
interpreted as excess return). In the second stage, they minimize transaction costs
subject to retaining the value for the slope achieved at the first stage. Computational
results are presented for eight publicly available datasets from Beasley’s OR-Library.
Koshizuka et al. (2009) deal with EI by minimizing the mean absolute deviation
between index values plus a factor alpha and the EI portfolio values by imposing a
constraint on the correlation between the weights of the selected portfolio and those of
the benchmark. They reformulate the problem as a convex minimization problem and
test the model on the Tokyo Stock Exchange with around 1,500 assets, considering
three non-overlapping time windows where the in-sample window is 3 years and the
out-of-sample one is 1 year. They solve the model through an optimization package
(NUOPT) but no running times are reported. Roman et al. (2013) apply a second-
order stochastic dominance strategy to construct a portfolio whose return distribution
dominates the one of a benchmark, see also Fábián et al. (2011); Roman et al. (2006).
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Empirical studies are conducted on three datasets (FTSE 100, SP 500, and Nikkei
225) using weekly returns. The authors consider the possibility of rebalancing the
portfolio composition each week, for a total of ten weeks, which represents the back-
testing sample. They adopt a row generation approach for solving the problem and,
for each problem instance, computational times are very encouraging. An alternative
approach based on Stochastic Dominance, but aiming at approximately achieving a
stronger version of Stochastic Dominance, is presented by Bruni et al. (2012), who
also obtain very promising empirical and computational results on the eight publicly
available datasets from Beasley’s OR-Library. Meade and Beasley (2011) investigate
a momentum strategy via the maximization of a modified Sortino ratio objective func-
tion: they assume that performance observed in the recent past will continue into
the near future. The model is heuristically solved by means of a genetic algorithm.
They use S&P Global 1200 and its subsets (Europe, UK, Japan, Australia, Canada,
etc.) with their respective market indexes, finding evidence of significant momentum
profits. Li et al. (2011) develop a non-linear bi-objective optimization model for EI,
where the excess return is maximized and the downside standard deviation (relative
to the benchmark index) is minimized. They use as decision variables the number
of units of stock, thus requiring the use of integer variables. The model is solved by
an evolutionary algorithm on a subset of the datasets used in Canakgoz and Beasley
(2008), but no computational times are reported. Thomaidis (2012) proposes a soft
computing approach to EI with prefixed investment goals (on the excess return and on
the probability that the Enhanced Indexation portfolio underperforms the benchmark)
and with risk constraints. The model also includes a cardinality constraint and buy-in
thresholds, and it is formulated as a mixed-integer nonlinear programming problem
which is solved using simulated annealing, genetic algorithms, and particle swarm
optimization. Experimental results are presented for the Dow Jones Industrial Aver-
age index with 30 securities, again without reporting computational times. Guastaroba
and Speranza (2012) also use a heuristic approach (called Kernel Search) for solving
mixed-integer linear programming models for IT and EI that also include cardinality,
buy-in, and transaction costs constraints. They evaluate the efficiency and accuracy of
their heuristic comparing it with a standard exact solver. Furthermore, they perform
experiments on the eight publicly available datasets from Beasley’s OR-Library but
they provide examples of the out-of-sample performance only on two datasets.

We observe that most existing studies on the EI problem present some limitations.
First of all, EI bi-objective models (or their scalarizations) based on minimizing track-
ing error and maximizing excess return contain a contradiction in their purposes. On
one hand, the first goal penalizes both positive and negative deviations from the index
while, on the other hand, one seeks to maximize the mean of positive deviations. This
contradiction derives from the use of a symmetric distance measure, which in this
case is not suitable for controlling the distance between the returns of the portfolio
and those of the benchmark, and can be avoided using an asymmetric distance mea-
sure. Furthermore, most of the proposed models are computationally demanding, so
that they cannot be practically solved to optimality for medium or large size problems,
especially if cardinality or other real-word constraints are introduced. Therefore, they
are solved only approximately by means of heuristics. Finally, several authors do not
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give detailed computational results or use datasets not publicly available, thus making
computational comparison impossible.

To overcome the above limitations, we propose an innovative approach to EI based
on linear bi-objective optimization. More precisely, we maximize the average excess
return of the selected portfolios with respect to an index, while minimizing a down-
side risk measure representing the maximum underperformance with respect to the
same index. As customary, we solve the bi-objective problem by converting one (the
second) objective into a constraint with a parametric right-hand side. We thus obtain
an efficiently solvable parametric Linear Programming model that we test on publicly
available datasets. Alternatively, the bi-objective model can be solved by specialized
multi-objective linear programming algorithms.

The remainder of the paper is organized as follows: in Sect. 2, we present our
parametric LP for the EI problem. We also establish conditions for the existence of a
portfolio strictly outperforming the benchmark when the number of assets is greater
than the number of time periods. We then show that, when the number of time periods
is greater than the number of assets, a classical No Arbitrage condition guarantees
that there is no portfolio strictly outperforming the index, and that the only portfolio
weakly outperforming the index is the one realizing the index itself. In Sect. 3, we
describe the results of an extensive empirical analysis of the behavior of the proposed
model. We apply our model to eight major stock markets across the world, using
datasets publicly available in Beasley (1990) and already used in some similar studies,
and we compare the performance of our portfolios with published results. The same
analysis is conducted on two new databases, focusing on more recent periods, that
we make publicly available for comparisons and further studies. We also perform a
diversification analysis, and an empirical verification of some of the theoretical results
on the No Arbitrage condition. Conclusions and further research projects are presented
in Sect. 4.

2 A linear risk-return model

Enhanced indexation (EI) models are usually built and validated using the price values
of all the assets belonging to a given market and of the corresponding benchmark index
over a time interval. To simulate practical usage, a part of this interval is regarded as
the past, and so it is known, and the rest is regarded as the future, supposed unknown
at the time of portfolio selection. The past (called in-sample window) is used for
selecting the EI portfolio, while the future (called out-of-sample window) can only be
used for testing the performance of the selected portfolio. Let the in-sample window
be constituted by T + 1 time periods 0, 1, 2, . . . , T . We use the following notation:
pit is the price of the i th asset at time t , with t = 0, . . . , T ;
bt is the benchmark index value at time t , with t = 0, . . . , T ;

r I
t = bt − bt−1

bt−1
is the benchmark index return at time t , with t = 1, . . . , T ;

rit = pit − pi(t−1)

pi(t−1)

is the i th asset return at time t , with t = 1, . . . , T ;

x is the vector whose components xi are the fractions of a given capital invested in
asset i in the EI portfolio we are selecting.
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Adopting linear returns, we have that

Rt (x) =
∑n

i=1
xirit is the portfolio return at time t , with t = 1, . . . , T ;

δt (x) = Rt (x)−r I
t is the excess return, or overperformance, of the selected portfolio

w.r.t. the benchmark index at time t , with t = 1, . . . , T . Note that −δt (x) is the
underperformance of the selected portfolio w.r.t. the benchmark index at time t .

Following a classical paradigm, we would like to maximize return and, at the same
time, minimize risk. Thus, we propose a linear bi-objective risk-return model where
the objectives are

(a) the maximization of the (average) excess return of the selected portfolio w.r.t. the

benchmark index: max
x

1

T

∑T

t=1

(∑n

i=1
xirit − r I

t

)
= max

x

1

T

∑T

t=1
δt (x);

(b) the minimization of the downside risk defined as the maximum underperformance
w.r.t. the same index: min

x
max

t
−δt (x).

Note that a negative [resp. positive] value of objective (b) corresponds to a positive
[resp. negative] excess return. All efficient solutions of this bi-objective problem can
be found by solving a family of single objective problems depending on a parameter
K (here called risk level) that specifies the maximum allowed risk (in the sense of
underperformance). Therefore, we need to solve the following problem for all values
of K between two extreme risk levels Kmin and Kmax, that will be determined later in
this Section.

φ(K ) = max
x

1

T

T∑

t=1

δt (x)

s.t. −δt (x) ≤ K t = 1, . . . , T
n∑

i=1

xi = 1

xi ≥ 0 i = 1, . . . , n

(1)

2.1 No Arbitrage and the minimum risk portfolio

Solving model (1) for (small) positive values of K allows to construct portfolios that
might have (small) underperformances in the in-sample window.

On the other hand, solving the same model for negative values of K yields only
portfolios that strictly overperform the index in all the in-sample periods. However,
requesting too small values for K may produce infeasibilty in the constraints of (1).
The minimum feasible value of the risk level K in model (1) can be found by solving
the problem:

Kmin = min
x,K

K

s.t. −δt (x) ≤ K t = 1, . . . , T
n∑

i=1

xi = 1

xi ≥ 0 i = 1, . . . , n

(2)
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The optimal solution to this problem yields the minimum risk portfolio. Note that
the optimal value Kmin of problem (2) is non-positive if the EI portfolio never under-
performs the index. It can be easily guessed that this is not always possible. However,
we can devise conditions under which the optimal portfolio selected in (2) is guaran-
teed to strictly overperform the index in all the in-sample periods, as proved in the
following Theorem 1 (see also Sect. 3.5).

Let RI = (r I
1 , . . . , r I

T ) be the vector of the index returns and let Ri = (ri1, . . . , riT )

denote the vector of returns of asset i , for i = 1, . . . , n. We say that the index returns
are realizable by a portfolio when there exists an x̂ with

∑
i x̂i = 1 such that RI =∑

i x̂i Ri . We also say that the index returns are realizable by a complete portfolio when
there exists an x̃ with

∑
i x̃i = 1 such that x̃1 > 0, . . . , x̃n > 0 and RI = ∑

i x̃i Ri .
We recall that points v1, . . . , vm in R

T are said to be affinely independent if
λ1, . . . , λm ∈ R,

∑m
i=1 λi = 0, and

∑m
i=1 λiv

i = 0 imply λ1 = λ2 = · · · = λm = 0.
This is equivalent to requiring that the convex hull of these points is a polytope of
dimension m − 1. Note that m ≤ T + 1 randomly chosen points in R

T are affinely
independent with probability 1. We also recall that the open mapping theorem states
that the images of open sets through a surjective linear mapping are open.

Theorem 1 Assume that T < n, that among the vectors R1, . . . , Rn of the assets
returns there are T + 1 affinely independent vectors, and that the index returns RI =
(r I

1 , . . . , r I
T ) are realizable by a complete portfolio. Then, there exists a portfolio that

strictly overperforms the index in all the in-sample periods, i.e., δt (x) = Rt (x)−r I
t >

0 for t = 1, . . . , T .

Proof Let � = {x ∈ R
n : ∑n

i=1 xi = 1, xi ≥ 0, i = 1 . . . , n} be the standard
simplex in R

n and let F : � → R
T be the linear mapping defined by F(x) =∑n

i=1 xi Ri . By assumption, we have that RI = F(x̃) = ∑
i x̃i Ri for some x̃ in

the interior of �. By the open mapping theorem, we then deduce that RI belongs
to the interior of F(�), which is the bounded polyhedron obtained as the convex
hull of the points R1, . . . , Rn . Since among these points there are T + 1 affinely
independent vectors, we have that F(�) is a full-dimensional polyhedron, so that the
ball B(RI , ε) = {y ∈ R

T :‖ RI − y ‖≤ ε} is contained in F(�) for some ε > 0.
Thus, in particular, the point RI

ε = (r I
1 +ε, . . . , r I

T +ε) belongs to F(�), so that there
exists (x ′

1, . . . , x ′
n) ∈ � with F(x ′

1, . . . , x ′
n) = RI

ε . In other words, the entries of RI
ε

are the returns of the feasible portfolio determined by the investments (x ′
1, . . . , x ′

n).
This portfolio clearly outperforms the index in all the in-sample periods.

We recall that an arbitrage is a transaction that involves no negative cash flow at
any probabilistic or temporal state and a positive cash flow in at least one state; in
simple terms, it is the possibility of a risk-free profit at zero cost. It is well known that
arbitrage opportunities, when arising, do not usually exist for long, due to the markets’
natural evolution. Therefore, absence of arbitrage is a common assumption in financial
markets and is a basic assumption in asset pricing theory in the context of scenario
trees, see, e.g., Duffie (2010); Geyer et al. (2010); Klaassen (1998). In the framework
of portfolio optimization, a similar No Arbitrage (NA) condition, see, e.g., Prisman
(1986), requires that there exists no long-short portfolio y = (y1, . . . , yn), where yi

denotes the amount of asset i purchased (if yi > 0) or shorted (if yi < 0), that gives a
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positive profit at time 0, i.e., satisfies
∑n

i=1 yi pi0 < 0, and yields nonnegative returns
for all periods, i.e., satisfies

∑n
i=1 yirit ≥ 0, for all t = 1, . . . , T . A stronger version

of the No Arbitrage condition requires in addition that every self-financing portfolio
(i.e., such that

∑n
i=1 yi pi0 = 0) that yields nonnegative returns for all periods must

actually yield zero returns in all periods, i.e.,
∑n

i=1 yirit = 0, for all t = 1, . . . , T .
We note that a risk-less asset with risk-free rate ρ can be easily included in the market
by setting rit = ρ for all t = 1, . . . , T .

We now show that, under some technical assumptions, typically verified in practice
by the matrix R of returns (i.e., the matrix whose columns are the vectors Ri , i =
1, . . . , n), the strong No Arbitrage condition implies that the only portfolio that weakly
outperforms the index in all the in-sample periods is the one realizing the index.

Theorem 2 Assume that the returns matrix R has full column rank, that the index
returns RI = (r I

1 , . . . , r I
T ) are realizable by a portfolio, and that the strong No Arbi-

trage condition holds. Then, the only portfolio that weakly outperforms the index in
all the in-sample periods is the one realizing the index.

Proof Let x̃ ∈ � be a portfolio realizing the index, i.e., such that RI = ∑
i x̃i Ri

and assume that there exists a portfolio x ∈ � that outperforms the index in all
the in-sample periods, i.e., such that

∑
i xi Ri ≥ RI or, equivalently, R(x − x̃) =∑

i (xi − x̃i )Ri ≥ 0. Observe that the (long-short) portfolio y = x − x̃ is self-
financing since

∑n
i=1 xi − ∑n

i=1 x̃i = 1 − 1 = 0. Then, by the strong No Arbitrage
condition, we must have R(x − x̃) = 0 which implies x = x̃ by the assumption of
linear independence of the columns of R.

Note that the assumption that the index returns RI = (r I
1 , . . . , r I

T ) are realizable
by a portfolio is trivially verified if we assume, as it is often the case, that the index
itself is an available asset in the market.

An immediate consequence of Theorems 1 and 2 is that arbitrage must be possible
under the assumptions of Theorem 1. So, for instance, in order to assume a No Arbi-
trage condition one should assume that T ≥ n. Furthermore, one can observe that,
before knowing the actual in-sample values, under very mild probabilistic assump-
tions, obtaining a negative value for Kmin becomes quite unlikely when increasing the
number T of observations. Indeed, if we assume that any portfolio x has a positive
probability ε of underperforming the index in any period t , then the probability of
finding a portfolio that overperforms the index in all past observations is given by
(1 − ε)T , which rapidly converges to zero as T increases. It is also straightforward
to observe that the value of Kmin is nondecreasing with respect to T , since increasing
the in-sample window can never decrease the worst underperformance Kmin. Some
computational experiments, described in the next section, show that for the datasets
considered there seems to be a threshold T � 1.7n below which Kmin < 0. As a
conclusion, both theory and empirical evidence show that when the number of assets
in a market is much smaller than the number of observation periods, it is very unlikely
to find a portfolio strictly overperforming the index in all observation periods.
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2.1.1 The maximum excess return portfolio

The other extreme case in our bi-objective model consists in maximizing excess return
regardless of the underperformance risk. Finding the portfolio having the maximum
excess return is formulated as:

δmax = max
x

1

T

T∑

t=1

δt (x)

s.t.
n∑

i=1

xi = 1

xi ≥ 0 i = 1, . . . , n

(3)

Let I ∗ be the set of all indices i∗ of the assets with maximum average return, i.e.,
such that

∑T
t=1 ri∗t ≥ ∑T

t=1 rit for all i . Then, it is straightforward to show that the set
of all solutions to problem (3) coincides with the set of all portfolios containing only
assets with indices in I ∗. Note that the solution of problem (3), while providing the
maximum excess return, also bears the maximum risk among the efficient portfolios.
Hence the maximum value Kmax of the downside risk of the portfolios on the efficient
frontier of our bi-objective model is given by

Kmax = min
i∗∈I ∗ max

1≤t≤T
(RI

t − ri∗t ),

while δmax = 1
T

∑T
t=1(ri∗t − RI

t ) is the value of the maximum average excess return
with respect to the benchmark.

2.2 Properties of the efficient frontier

Recall that our model is intrinsically bi-objective, in the sense that we always pursue
return maximization while controlling risk. Therefore, our EI problem does not have
one or few isolated optimal solutions, but an entire set of efficient (Pareto-optimal)
solutions, that we are guaranteed to find when solving to optimality our linear model
(1) for the different values of the risk level K . More precisely, for every value of K
between Kmin and Kmax, the optimal solution to (1) provides a portfolio on the risk-
return efficient frontier with optimal average excess return φ(K ), while for K < Kmin
problem (1) is infeasible, and for K > Kmax the optimal solution coincides with the
one for K = Kmax.

The risk-return efficient frontier is thus obtained as the graph of the function φ(K )

on the interval [Kmin, Kmax]. Some theoretical properties of the function φ(K ) are
easily derived from known results in parametric linear programming.

Theorem 3 The function φ(K ) is piecewise linear, concave and increasing on the
interval [Kmin, Kmax].

For a proof in the general case see, e.g., Murty (1983). From this result, or from
similar results in multi-objective linear programming (Löhne 2011; Ruszczynski and
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Vanderbei 2003), it follows that the whole efficient frontier of our bi-objective EI
model is completely determined by the breakpoints of the piecewise linear function
φ(K ), which are also called extreme efficient points of the bi-objective problem.

3 Empirical analysis

In this section, we test our model on some new and on some well-known publicly
available datasets. We first adopt a single period approach (SP), i.e., we consider a
single in-sample window and a single subsequent out-of-sample window; then, we
use a rolling time window approach (RTW), i.e., we shift the in-sample window (and
consequently the out-of-sample window) all over the time length of each dataset.

With the SP approach, we perform a partial comparison of our model with two recent
EI techniques that use the same datasets: Canakgoz and Beasley (2008) and Guastaroba
and Speranza (2012). However, the three models considered are quite different, so
there is no direct correspondence between the parameters used. Nevertheless, such a
comparison is performed by putting, as far as possible, these models into the same
working conditions so as to provide a reasonable idea of their performances.

We observe that in the real world, the markets are in continuous evolution. Hence,
it is desirable to rebalance the portfolio from time to time to take new information
into account. An RTW approach allows this rebalancing, thus capturing non-stationary
market conditions and is, therefore, better suited for practical application. For these
reasons, extensive results on all datasets are reported with this approach.

Furthermore, we empirically test the theoretical properties discussed in Sect. 2, and
we analyze the diversification of the obtained portfolios.

3.1 Data sets

We support the view of Canakgoz and Beasley (2008) that researchers should try to
compare their models on a sufficiently large number of datasets, which should also
be (or should be made) publicly available. This would greatly simplify the evalua-
tion of the quality of the proposed models. For this reason, we conduct an extensive
analysis on the eight real-world datasets (Beasley 1990), used in other studies on port-
folio management, that are available at http://people.brunel.ac.uk/~mastjjb/jeb/orlib/
indtrackinfo.html.

Those datasets consist of weakly price data from March 1992 to September 1997
(i.e., 291 historical realizations). In addition to that, we considered two recent datasets,
one obtained from Yahoo Finance and consisting of weekly price data from January
2007 to May 2013; the other one from Thomson Reuters Datastream service and
consisting of weekly price data from July 2005 to June 2014. We have made them
publicly available on the web site http://host.uniroma3.it/docenti/cesarone/DataSets.
htm

– Hang Seng (Hong Kong), file indtrack1, containing 31 assets;
– DAX 100 (Germany), file indtrack2, containing 85 assets;
– FTSE 100 (UK), file indtrack3, containing 89 assets;
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– S & P 100 (USA), file indtrack4, containing 98 assets;
– Nikkei 225 (Japan), file indtrack5, containing 225 assets;
– S & P 500 (USA), file indtrack6, containing 457 assets;
– Russell 2000 (USA), file indtrack7, containing 1318 assets;
– Russell 3000 (USA), file indtrack8, containing 2151 assets.
– FTSE 100 b (UK), containing 63 assets.
– Eurostoxx 50 (EU), containing 50 assets.

All the return rates have been computed as relative variations of the quotation prices
(Pt − Pt−1)/Pt−1.

3.2 Single period performance evaluation

For the above data sets, we compute the portfolio that gives the best excess return
for a given risk level in the in-sample window, and we then analyze (in terms of
excess return) the performance of the chosen portfolio in the out-of-sample periods.
Sample intervals are set to allow comparison with Canakgoz and Beasley (2008) and
Guastaroba and Speranza (2012).

Table 1 contains the first comparison. ‘Best C&B’ reports the best yearly (out-of-
sample) percentage Average Excess Return (AER) obtained from Table 5 of Canakgoz
and Beasley (2008), and the number of assets in the corresponding portfolio. ‘Fixed
cardinality’ reports the same information for portfolios obtained by solving model
(1) on the in-sample window [1, 145] and with out-of-sample window [146, 290], as
in Canakgoz and Beasley (2008), and by choosing the risk level K that produces a
portfolio composed by the same number of assets of Canakgoz and Beasley (2008)
(making portfolios as comparable as possible). ‘Bounded cardinality’ reports again
the best AER obtained using model (1) on the same sample intervals, but this time
choosing portfolios composed by a number of assets ranging between 5 and 10.

Observe that our portfolios provide higher AER than ‘Best C&B’ in half of the
cases when they include the same number of assets, and in 6 out of 8 cases when we
choose fewer assets. To evaluate the magnitude of the AER differences between the
considered approaches, we also compute the average over all datasets of the AER (even
though it has no direct financial interpretation). We observe that our EI portfolios, in
particular those with few assets, have a better behavior.

Table 1 also presents average computational times for solving a single portfolio
selection problem. Times are in seconds, rounded to the second decimal. Since times
are the same in the cases of ‘Fixed cardinality’ and ‘Bounded cardinality’, only one
time column is reported in the table. Times reported for the ‘C&B’ approach are taken
from Canakgoz and Beasley (2008), so a direct time comparison is not possible because
the procedures ran on different machines. However, they are provided to demonstrate
the clear practical tractability of the proposed linear programming model.

On the other hand, Guastaroba and Speranza (2012) do not report a table, but two
graphs showing out-of-sample portfolio returns on the FTSE 100 and on the S&P 100
for the portfolios obtained with their EI approach. More precisely, the graphs show the
cumulative returns of the portfolios, which correspond to the values of wealth after τ

periods (Rachev et al. 2004), given by
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Table 1 Average excess return (AER) comparison with portfolios from Canakgoz and Beasley (2008)

Our Portfolios with:

Best C&B Fixed cardinality Bounded cardinality

Selected Selected Selected
assets AER Time Assets AER assets AER Time

Hang Seng 10 −2.43 0.05 10 −2.51 10 −2.51 0.01

DAX 100 10 11.88 0.07 10 15.88 5 16.40 0.01

FTSE 100 10 5.01 0.07 10 10.39 5 12.59 0.01

S&P 100 10 2.30 0.05 10 11.30 5 19.39 0.01

Nikkei 10 7.81 0.15 10 4.00 7 5.62 0.01

S&P 500 40 14.78 0.35 40 11.30 8 21.84 0.01

Russell 2000 70 12.19 3.13 70 16.92 5 52.63 0.03

Russell 3000 90 22.62 6.77 90 18.59 5 69.98 0.06

Average 9.27 10.73 24.49

Wτ = Wτ−1(1 + Rτ (x)) τ = 1, . . . , 52

with initial wealth W0 = 1. Thus, we present the outcome of our model for those two
datasets in the same format.

Figures 1 and 2 are obtained by solving model (1) on the in-sample window [1, 104]
and with out-of-sample window [105, 156], as in Guastaroba and Speranza (2012).
No useful indication is given there for the choice of our risk level K . In the absence
of this, we assume portfolios in Guastaroba and Speranza (2012) to be quite low-risk
portfolios because they closely track the index and are obtained by imposing narrow
constraints on the amount of each asset (0.01 ≤ xi ≤ 0.1 if the i th asset is selected
in the portfolio). We, therefore, show results corresponding to our minimum risk EI
portfolios compared to the performance of the market index in the same period. The
graphs show a slight overperformance of the EI portfolios with respect to the market
index similar to that described in Guastaroba and Speranza (2012). Furthermore, in
Fig. 3, we report a similar experiment (same sample windows and risk level) on
the largest dataset (Russel 3000). We also observe that a good cumulative excess
return is achieved in all the out-of-sample periods. We remark, however, that the best
performances obtained by our model generally correspond to higher risk levels, as
reported in the following subsection.

3.3 Solving the original Bi-objective model

As known, bi-objective problems usually do not have a single optimal solution, but
rather a set of non-dominated Pareto-optimal solutions constituting the so-called effi-
cient frontier. The choice among those solutions, each of which provides a portfolio in
our case, is in practice delegated to the preference of the decision maker. Depending
on the level of risk aversion, a value of K can be specified in model (1) and thus
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Fig. 1 Out-of-sample performance for FTSE100 (SP approach)

Fig. 2 Out-of-sample performance for S&P100 (SP approach)

one obtains the corresponding portfolio on the efficient frontier. By considering the
in-sample window [1, 145] for each dataset of Beasley’s OR-Library, we have com-
puted the efficient frontier, that in our case is composed by a piecewise concave line
having a large number of breakpoints (corresponding to extreme efficient solutions),
as reported in the following Table 2. However, we should point out that the results are
rather sensitive to the numerical precision adopted.

Figure 4 reports a graphical analysis of the solutions to the original bi-objective
problems using two different approaches: the Benson multiobjective linear program-
ming algorithm (Benson 1998) implemented in Bensolve (Hamel et al. 2014; Löhne
2011), for which the breakpoints of the efficient frontier are the blue circles, and a pro-
cedure based on parametric linear programming, also described in Ruszczynski and

123



A linear risk-return model for enhanced indexation

Fig. 3 Out-of-sample performance for Russel 3000 (SP approach)

Table 2 Breakpoints of the
efficient frontier

Assets Breakpoints

Hang Seng 31 107

DAX 100 85 268

FTSE 100 89 273

S&P100 98 328

Nikkei 225 480

S&P500 457 444

Russell 2000 1318 771

Russell 3000 2151 797

Vanderbei (2003), which very efficiently finds the same breakpoints, up to numerical
precision, represented in the figure as red dots. In Fig. 4, we also plotted a dashed black
line representing the approximate efficient frontier obtained by repeatedly solving the
scalarized LP (1) for a fixed number of equally spaced values of the RHS K between
Kmin and Kmax, thus requiring a controllable computational effort. We note that all
the methods provide a good approximation of the efficient frontier. However, the first
two methods also yield an implicit representation of the whole efficient frontier as the
unique piecewise linear concave function passing through the extreme efficient points
found.

3.4 Rolling time window evaluation

We now allow for the possibility of changing (rebalancing) the portfolio composition
during the holding period. Clearly, frequent rebalances would be useful from the
optimization point of view, but would also be practically infeasible because of the
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Fig. 4 Breakpoints of the efficient frontier for Hang Seng 31

implied transaction costs. Thus, although we do not explicitly take them into account
in our model, we have chosen a holding period that represents a compromise between
the two requirements above.

We obtain EI portfolios by solving model (1) for different values of the risk level
K on in-sample windows of 200 periods repeatedly shifted all over the dataset. More
precisely, for each of those in-sample windows, we evaluate the portfolio performance
in the following 4 weeks (out-of-sample window), during which no rebalances are
allowed. After this, we shift the mentioned in-sample window by 4 weeks to cover
the out-of-sample period, we recompute the optimal portfolio w.r.t. the new in-sample
window and repeat. We thus obtain 22 different EI portfolios. For instance, the first
in-sample window is [1, 200] and the corresponding out-of-sample window is [201,
204], the second in-sample window is [5, 204] and the corresponding out-of-sample
window is [205, 208], and so forth.

As noted in the previous section, the choice of the risk level depends on the risk
aversion of the decision maker. Since it is unrealistic to analyze the performances of
the efficient portfolios corresponding to a large number of risk levels, we consider only
two typical decision makers: the completely risk adverse investor and a moderately risk
adverse one. Therefore, we consider the following corresponding lowest and moderate
risk level values:

K1 = Kmin K2 = Kmin + 1/4(Kmax − Kmin).

First, in Table 3, we report the average out-of-sample returns of the EI portfolios
compared to the corresponding average returns of the market index. Best results for
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Table 3 Out-of-sample average returns of the EI portfolios and of the market index

Assets K1(×10−2) K2(×10−2) Market (×10−2)

Hang Seng 31 0.469 0.613 0.456

DAX 100 85 0.567 0.852 0.631

FTSE 100 89 0.368 0.486 0.357

S&P 100 98 0.501 0.700 0.510

Nikkei 225 −0.049 −0.130 −0.042

S&P 500 457 −0.210 −0.893 −0.316

Russell 2000 1, 318 0.175 0.567 −0.004

Russell 3000 2, 151 −0.069 0.602 −0.297

FTSE 100 b 63 0.282 0.121 0.144

Eurostoxx 50 50 0.229 0.433 0.153

Bold values indicate best results

Table 4 Out-of-sample Sharpe ratio values of the EI portfolios and of the market index

Assets K1 K2 Market

Hang Seng 31 0.178 0.186 0.170

DAX 100 85 0.314 0.273 0.302

FTSE 100 89 0.236 0.221 0.222

S&P 100 98 0.250 0.226 0.247

Nikkei 225 – – –

S&P 500 457 – – –

Russell 2000 1, 318 0.049 0.106 –

Russell 3000 2, 151 – 0.106 –

FTSE 100 b 63 0.094 0.026 0.057

Eurostoxx 50 50 0.080 0.138 0.052

Bold values indicate best results

each dataset are marked in bold. Observe that the best of the two EI portfolios outper-
forms the market index in 9 out of 10 cases, and each of the two strategies K1 and K2
provides portfolios that outperform the market index in 7 out of 10 cases.

Then, in Tables 4 and 5, we report the outcomes of two standard performance
measures: the Sharpe Ratio (Sharpe 1966, 1994) and the Rachev Ratio (Rachev et al.
2004). The Sharpe Ratio is the ratio between the expected return of a portfolio x and
its standard deviation, namely Ps = E[R(x)]/σ(R(x)). However, when the expected
return is negative this index has no meaning, so we report “-”. The Rachev Ratio is
defined as the ratio between the average of the best β% returns of a portfolio and
that of the worst α% returns. Parameters α and β have been set equal to 10. Sharpe
and Rachev ratios were also selected because these synthetic indexes are somehow
complementary: while the former is more focused to describe the central part of
the portfolio return distribution, the latter stresses its behavior on the tails. Other
commonly used performance indices, such as the Sortino ratio (Sortino and Satchell

123



R. Bruni et al.

Table 5 Out-of-sample Rachev ratio values of the EI portfolios and of the market index

Assets K1 K2 Market

Hang Seng 31 1.082 1.280 1.041

DAX 100 85 1.408 1.268 1.171

FTSE 100 89 1.233 1.065 1.264

S&P 100 98 1.492 1.539 1.510

Nikkei 225 0.932 0.847 0.938

S&P 500 457 1.023 0.910 0.920

Russell 2000 1, 318 0.919 1.096 0.902

Russell 3000 2, 151 1.055 0.933 0.889

FTSE 100 b 63 1.070 0.855 0.933

Eurostoxx 50 50 1.098 1.075 1.054

Bold values indicate best results

2001) etc., have been also computed and their results (not shown here but available
upon request) turned out to be similar to the reported ones.

Table 4 reports the Sharpe ratio values for the EI portfolios and for the market index.
Best results for each datasets are marked in bold. In this case, results obtained by the
EI portfolios are always better than the benchmark. Table 5 reports the Rachev Ratio
values for the EI portfolios and for the market index. Best results for each datasets are
marked in bold. In 8 out of 10 cases, the EI portfolios outperform the market index.

In addition to the above performance evaluation, we also analyze the capability of
tracking the market index for the EI portfolios found with our model. This is done by
evaluating, for each dataset, the correlation and the average difference between the
out-of-sample returns of the portfolios and of the market index, as reported in Table 6.
The generally high-correlation values and the very low-average differences show that
the EI portfolios are able to replicate the index trend while they try to overperform it.
Note that the downside deviations w.r.t. the market index are usually smaller than the
upside ones, as it is indeed our purpose, and as required by model (1).

To better understand the behavior of our model, we compute the yearly compounded
out-of-sample return C Rτ (after τ periods) of the 22 EI portfolios in the following
way:

C Rτ =
[

τ∏

t=1

(1 + Rt (x))

] 52
τ

− 1 τ = 1, . . . , 88

where Rt (x) is the t th value of the 88 weekly out-of-sample returns (4 values for
each of the 22 out-of-sample windows) of the EI portfolios. The following analysis
is performed considering 3 different risk levels: the minimum and moderate levels
K1 and K2, defined as above, and a medium level K3 = Kmin + 1/2(Kmax − Kmin).

As an example, we provide the box plots of results for the FTSE 100 (Fig. 5a) and
for the Russell 3000 (Fig. 5b) datasets. In the figures, each box represents the yearly
compounded return distribution; the central mark is the median and the edges are
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Table 6 Out-of-sample index tracking capability

K1 K2

Assets Correlation (%) Ave. diff. Correlation (%) Ave. diff.

Hang Seng 31 99.6 0.00013 82.6 0.00157

DAX 100 85 75.6 −0.00064 36.4 0.00221

FTSE 100 89 98.9 0.00011 77.8 0.00129

S&P100 98 99.5 −0.00009 76.8 0.00190

Nikkei 225 99.6 −0.00091 70.3 −0.00172

S&P500 457 98.3 0.00106 79.1 −0.00577

Russell 2000 1, 318 95.4 0.00179 69.5 0.00571

Russell 3000 2, 151 97.0 0.00228 68.4 0.00899

FTSE 100 b 63 81.9 0.00138 62.7 −0.00023

Eurostoxx 50 50 99.0 0.00076 79.5 0.00280

Fig. 5 Box plot of yearly compounded return

the 25th and the 75th percentiles, the whiskers correspond to approximately ±2.7
times the standard deviation, and the outliers are represented individually. The yearly
compounded return distribution of the EI portfolios with minimum risk level tends to
be similar to that of the market index, while for higher risk levels the EI portfolios
seem preferable. Note that this happens also for the FTSE 100, where the market index
was preferable according to the Rachev Ratio.

3.5 Analysis of minimum risk portfolios

To analyze the theoretical results presented in Sect. 2, and the corresponding assump-
tions, we compute the minimum risk level (or maximum allowed underperformance)
Kmin for the well-known Beasley’s datasets described above. We then examine the
sign of Kmin with respect to the value of the ratios between the number T of in-sample
observations and the number n of assets. Specifically, n = {31, 85, 89, 98, 255, 457,
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1318, 2151}, while T ranges from 10 to 290, which is the maximum number of avail-
able observations. Table 7 reports the values of Kmin considering the market index as
a benchmark. We observe that:

1. Kmin is negative when T is smaller, comparable or not much larger than n (approx-
imately T < 1.7n);

2. Kmin is positive for larger values of T w.r.t. n (the bottom left corner).

The first point agrees with the results of Sect. 2, because it shows that, under the
assumptions of Theorem 1, for T < n a minimum risk portfolio strictly outperforming
the market index always exists (i.e., arbitrage is possible). On the other hand, for
T sufficiently greater than n the returns matrix R is expected to have full column
rank. In this case, under the strong No Arbitrage condition, no portfolio that strictly
outperforms the index can exist, and if the market index is a realizable portfolio, then
it is the optimal portfolio. If, on the contrary, the market index is not realizable, the
optimal portfolio necessarily underperfoms the index. Point 2 above shows that the
latter case holds here.

We now repeat the experiment using the equally-weighted (or uniform) portfolio as
benchmark, namely RI

t = ∑n
i=1 rit/n, which is a feasible solution of model (1) and

hence a realizable portfolio. Table 8 reports the values of Kmin obtained in this case.
In all instances, if T < 1.7n then Kmin < 0. On the other hand, when T is sufficiently
large with respect to n (i.e., approximately T > 1.7n), Kmin becomes zero. This
outcome is fully consistent with the results of Sect. 2, at least for the datasets where
this can be tested (only the first four datasets satisfy T > 1.7n).

3.6 Diversification analysis and cardinality constraints

The diversification of a portfolio is a fundamental property in portfolio management.
Diversification should be guaranteed by a good risk-return model, especially for low-
risk strategies. For example, in the original Markowitz model (Markowitz 1959),
diversification is obtained through variance minimization. On the other hand, another
important requirement, specifically in the case of IT and of EI problems, is that of
finding a portfolio that uses only a limited number of assets, see, e.g., Cesarone et al.
(2013, 2014). This is usually obtained by imposing cardinality constraints that typ-
ically require the use of integer variables, thus greatly increasing the computational
complexity of the model.

Figure 6a and c show the number of assets having xi > 0 in the EI portfolios
obtained solving model (1) with different percentages of the maximum risk level,
computed as

K̃ = (K − Kmin)/(Kmax − Kmin).

Note that the minimum risk level Kmin and the maximum risk level Kmax correspond
to K̃ values of 0 and 100 %, respectively. The sample datasets considered here are
DAX 100 and S&P 500. However, the results are very similar for all other instances.
Figure 6b and d also report, for the same datasets, a diversification analysis obtained
by computing the Herfindahl Index
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Fig. 6 Diversification analysis

H(x) =
(

n∑

i=1

x2
i

)−1

,

which is considered a common measure of diversification, see,e.g., Adam et al. (2008).
We point out that these two diversification analyses are practically equivalent.

We observe that the EI portfolios obtained with our model are very diversified
for small risk values, while the number of assets included in the optimal portfolios
becomes rapidly small for slightly larger risk values. This avoids the use of com-
plicating cardinality constraints for constructing the efficient frontiers. However, our
model easily allows the introduction of additional real-world constrains. Indeed, the
constrained version of model (1) with cardinality constraints and buy-in thresholds
can be reformulated as a mixed integer linear program by adding n binary variables
yi :
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Fig. 7 Examples of cardinality
constrained efficient frontiers

max
x,y

1

T

T∑

t=1

δt (x)

s.t. −δt (x) ≤ K t = 1, . . . , T
n∑

i=1

xi = 1

�i yi ≤ xi ≤ ui yi i = 1, . . . , n
n∑

i=1

yi ≤ m

xi ≥ 0 i = 1, . . . , n
yi ∈ {0, 1} i = 1, . . . , n

(4)

For moderate sizes of n, this problem can be solved to optimality by general purpose
mixed integer linear programming (MILP) solvers like CPLEX.

Nevertheless, for larger problems, specialized and possibly approximate methods
are required. As an example, in Fig. 7, we report the efficient frontiers for the Hang
Seng (31 assets) and DAX 100 (85 assets) datasets for 100 equally spaced values of
K in [Kmin, Kmax]. This is done both in the unconstrained case and in the cardinal-
ity constrained case with at most ten assets (m = 10). As expected from previous
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Fig. 8 Distributions of the number of selected assets (RTW approach)

diversification analysis, the two efficient frontiers coincide for all but the smallest risk
levels.

Models (1) and (4) have been coded in MATLAB 7.11.0 and executed on a PC with
Intel Core i3 CPU M330 2.13 G Hz with 4 Gb RAM under MS Windows 7, using the
exact solver CPLEX 11.0, which is called from MATLAB with the TOMLAB/CPLEX
toolbox (Holmstrom et al. 2007). When solving model (4) for computing the efficient
frontiers, computational times are 45 secs for Hang Seng and 958 secs for DAX 100 (see
Fig. 7). When solving model (1), on the other hand, the corresponding computations
require less than 1 s.

Finally, we analyze the number of selected assets in the RTW approach on different
in-sample windows, and again for three risk levels K1, K2, K3. We observe that the
number of selected assets is fairly stable in all in-sample windows, as reported in
Fig. 8a and in Fig. 8b that show the box plots of the distribution of those number of
assets for the datasets S&P 100 and Russel 3000. This analysis confirms that imposing
cardinality constraints in our model is necessary only for the smallest risk levels.

4 Conclusions

We proposed a new and efficiently solvable risk-return approach to the Enhanced
Indexation problem. In spite of its simplicity, our model is able to find portfolios
that exhibit out-of-sample performances that seem comparable or even superior, to
those reported in previous works on the same problem. We chose to avoid cluttering
the presentation of our model with complicating real-world constraints and also to
highlight some theoretical connections between a No Arbitrage condition and the
existence of a portfolio outperforming the index. However, the linearity of our model
easily allows for the addition of further constraints coming from real-world practice,
such as the cardinality constraints and buy-in thresholds mentioned in Sect. 3, or the
turn-over or UCITS constraints described in Scozzari et al. (2013). Also, to overcome
possible bias due to some inaccuracies contained in several financial datasets, a data
cleaning step would be profitable, as described in Bruni (2005). A detailed analysis
of the effect of such extensions on our model is left for future research.
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