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1. Introduction

In this work we develop portfolio optimization methods for Enhanced Indexa-
tion (EI) based on various types of Stochastic Dominance (SD) criteria, and we
compare their empirical performances. References on EI can be found in, e.g.,
Canakgoz and Beasley (2008); Guastaroba and Speranza (2012); Bruni et al.
(2015). SD approaches to EI exhibit particular advantages and have an intu-
itive meaning in terms of Expected Utility Theory (see, e.g., Levy 1992, 2006).
Furthermore, several relations between SD approaches and mean-risk optimiza-
tion have been identified in the literature (see, e.g., Gotoh and Konno (2000)
and references therein).

In most cases the optimization models for EI based on stochastic dominance
have a large number of constraints, since a large number of conditions are needed
to ensure SD. However, they can often be solved in reasonable time by taking
advantage of polyhedral techniques developed in the field of Combinatorial Op-
timization. Ruszczyński and Vanderbei (2003) propose mean-risk models that
are solvable by linear programming and generate portfolios whose returns are
nondominated according to Second-order Stochastic Dominance (SSD). One of
the first enhanced indexation models based on SD is also in Kuosmanen (2004).
He derives and implements the first programs dealing with the exact First-order
Stochastic Dominance (FSD) and SSD rules. Later, Luedtke (2008) describes
compact linear programming formulations where the objective is to maximize
the portfolio expected return with SSD constraints over the benchmark. An ef-
ficient practical approach to EI for large markets has been proposed by Fábián
et al. (2011) and by Roman et al. (2013), who directly apply a SSD strategy to
construct a portfolio whose return distribution dominates the one of a bench-
mark. More recently, Hodder et al. (2015) successfully apply the exact SSD
methods of Kuosmanen (2004) and of Kopa and Post (2015), while Iñaki and
Longarela (2015) provides a description of the set of all SSD-efficient portfolios
by means of a family of mixed-integer linear constraints. Third-order Stochastic
Dominance has also been recently applied to EI by Post and Kopa (2016).

As shown by Leshno and Levy (2002), relaxations of SD may provide ad-
vantages over exact SD in several economical contexts. Hence, they propose an
approximate SD rule, called Almost Stochastic Dominance, and they identify
the corresponding classes of utility functions for the case of first and second
order stochastic dominance. An oversight in their work has been corrected in
Tzeng et al. (2013), and further generalizations and characterizations have been
provided in Levy et al. (2010); Tzeng et al. (2013); Post and Kopa (2013);
Guo et al. (2013); Denuit et al. (2014), and Tsetlin et al. (2015). However, no
applications of Almost Stochastic Dominance to portfolio selection seem to be
available. This might be due to the difficulty of implementing Almost Stochastic
Dominance rules in this setting, but also to the abundance of portfolios that
typically dominate the benchmark already with standard SD rules.

Lizyayev and Ruszczynski (2012) have introduced a different relaxation of
SD, which we call here Lizyayev-Ruszczynski Almost Stochastic Dominance (LR-
ASD). In this case, the authors focus on computationally tractable conditions,
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and describe the optimization models for the practical implementation of first
and second-order rules. They also describe potential applications of the LR-
ASD rules to portfolio selection. However, they do not provide empirical results
on real datasets, but only on some illustrative examples. Furthermore, also
in this case one could question the advantage of a relaxed SD rule over the
standard one which already guarantees an abundance of portfolios dominating
the benchmark.

In contrast to the previous cases, under classical no-arbitrage assumptions,
the existence of a portfolio dominating the benchmark is ruled out when using
the standard Zero order (also called statewise) stochastic dominance. Thus,
some kind of relaxed Zero order stochastic dominance is needed to find a port-
folio dominating the benchmark. A preliminary study in this direction has been
presented in Bruni et al. (2012), obtaining promising empirical and computa-
tional results on some real-world datasets.

We compare here several new and known variants of exact and approximate
SD models for portfolio selection, and we analyze in detail their practical per-
formances by means of an extensive comparative evaluation. Specifically, in
Section 2 we briefly describe the main exact and approximate SD rules, and we
define the Zero-order ε-Stochastic Dominance (ZεSD) rule, which implies both
the Almost Stochastic Dominance rule introduced by Leshno and Levy (2002)
and the one introduced by Lizyayev and Ruszczynski (2012). In Section 3 we
present a cumulative version (CZεSD) of ZεSD and we apply it to the EI prob-
lem. The EI model based on CZεSD requires that the cumulative performance
of the selected portfolio on all subsets of past observations outperforms that of
the index up to an ε tolerance. This gives rise to a very large LP model which
can however be reformulated in a compact manner and solved efficiently. Such
reformulation also provides an interesting financial interpretation of the CZεSD
approach to EI in terms of expected shortfall. In Section 4 we present empirical
results on some major real world markets showing the practical effectiveness of
several SD based approaches for portfolio selection and in particular of the one
based on CZεSD.

To sum up, the main contributions of this work are the definition of new types
of approximate stochastic dominance rules, their relations with the existing ones,
and their application and interpretation in portfolio selection problems.

2. Exact and Approximate Stochastic Dominance Relations

According to Expected Utility Theory (see, e.g., von Neumann and Morgenstern
1944), a random variable is preferred to another if it presents a larger value
of the expected utility. However, this approach depends on the specification
of a utility function, which is a fairly subjective matter. On the other hand,
Stochastic Dominance (SD), which is strictly related to Expected Utility Theory,
is able to provide a (partial) order in the space of random variables avoiding the
specification of a particular utility function, and for this reason it is particularly
attractive to approach portfolio selection problems.
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We now briefly recall the most common Stochastic Dominance order re-
lations. Let A and B be two random variables, with distribution functions
FA(α) = Pr(A ≤ α) and FB(α) = Pr(B ≤ α) for α ∈ R.

Definition 1. Zero-order Stochastic Dominance (ZSD):
A is preferred to B w.r.t. ZSD if

FA−B(0) = Pr(A−B ≤ 0) = 0. (1)

In terms of the realizations at and bt of A and B at time t, this means that
at ≥ bt almost everywhere.

Definition 2. First-order Stochastic Dominance (FSD):
A is preferred to B w.r.t. FSD if

FA(α) ≤ FB(α) ∀α ∈ R. (2)

Definition 3. Second-order Stochastic Dominance (SSD):
A is preferred to B w.r.t. SSD if∫ α

−∞
FA(τ)dτ ≤

∫ α

−∞
FB(τ)dτ ∀α ∈ R. (3)

Note that, for the sake of simplicity, in the above definitions we omit the fre-
quently added requirement for the strict inequality in at least one case. SD
relations of any order v can be defined. When increasing the order, the cor-
responding condition becomes less restrictive: the v-th order SD implies the
(v + 1)-th order SD, while the opposite is not necessarily true (see, e.g., Levy
2006).

The ZSD relation represents behavior of a decision maker who prefers a
random variable over another only when the first gives better outcomes than
the second in (almost) all states of the world. On the other hand, higher order
SD relations are less demanding and can be linked to Expected Utility Theory in
terms of different classes of utility functions. Indeed, A is preferred to B w.r.t.
FSD if and only if E[u(A)] ≥ E[u(B)] for all non-decreasing utility functions u;
A is preferred to B w.r.t. SSD if and only if the same holds for all non-decreasing
and concave utility functions (see, e.g., Levy 1992).

As showed, e.g., in Leshno and Levy (2002), there are cases where the above
SD relations are not able to order the returns of two investments, even though
most decision makers would prefer one investment over the other. Therefore,
some relaxations of the above exact SD relations have been proposed in the
literature with the aim of increasing their ability to establish preferences among
investments. We first describe the one proposed by Leshno and Levy (2002) with
the name of Almost Stochastic Dominance. This relationship can be specified
for any order v ≥ 1. With our notation, the one corresponding to the first order
is:
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Definition 4. Leshno-Levy Almost First-order Stochastic Dominance
(LL-AFSD):
Given a tolerance η > 0, A is preferred to B w.r.t. LL-AFSD if∫

S1

(FA(τ)− FB(τ))dτ ≤ η

∫ α′′

α′
|FA(τ)− FB(τ)|dτ, (4)

where [α′, α′′] is the combined range of outcomes of A and B, and
S1 ={τ ∈ [α′, α′′] : FA(τ) > FB(τ)}.

The underlying idea is to allow an area of possible violation of the classical
SD, the so-called actual violation area, containing preferences of investors that
can be considered economically irrelevant, as explained in detail in Leshno and
Levy (2002). This corresponds to the exclusion of “extreme” utility functions
and allows to fit in the theory situations where most of the investors would
prefer investment A over investment B, but neither investment dominates the
other with the usual FSD or SSD rules.

Another recent relaxation of Stochastic Dominance, still defined for any
order v ≥ 1, is proposed by Lizyayev and Ruszczynski (2012), who also provide
the optimization models corresponding to First- and Second-order SD relations.
However, the First-order relation requires, in this case, a large number of binary
variables, so we focus on the more applicable Second-order condition.

Definition 5. Lizyayev-Ruszczynski Almost Second-order Stochastic
Dominance (LR-ASSD):
Given a tolerance ϑ > 0, A is preferred to B w.r.t. LR-ASSD if∫ α

−∞
(FA(τ)− FB(τ)) dτ ≤ ϑ ∀α ∈ [α′, α′′], (5)

where [α′, α′′] is the combined range of outcomes of A and B.

Note that SD relations of order higher than zero can lead to counterintuitive
results, since increasing the order corresponds to neglecting some information.
For example, even when A dominates B w.r.t. FSD, the difference Pr(B > A)−
Pr(A > B) can be arbitrarily close to 1 (Castagnoli 1983). On the other hand,
the above difference is clearly not grater than 0 when A dominates B w.r.t. the
Zero-order SD rule, which takes into account the full information of the random
variables realizations. Therefore, if possible, in Enhanced Indexation one should
aim for a portfolio whose in-sample return is preferred to the benchmark return
w.r.t. ZSD. However, this condition cannot be fulfilled in practice, because
otherwise arbitrage opportunities would exist (see, e.g., Meucci (2005); Bruni et
al. (2013)). Hence, if we make the classical assumption of absence of arbitrage
and we avoid higher order SD rules for the reasons mentioned above, then we
should search for a portfolio dominating the benchmark w.r.t. some kind of
relaxed ZSD. Thus, we propose the following new approximate SD relation.
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Definition 6. Zero-order ε-Stochastic Dominance (ZεSD):
Given a tolerance ε > 0, A is preferred to B w.r.t. ZεSD if

FA+ε−B(0) = Pr(A+ ε−B ≤ 0) = 0. (6)

In terms of the realizations at and bt at time t, this means that at + ε ≥ bt
almost everywhere. Even though our interest is in the zero order, this type of
relation could be extended to higher orders.

Note that, in the case of approximate SD, large values of the tolerance (i.e.,
η, ϑ or ε, here generically denoted by λ) would cause indifference, in the sense
that a variable A dominates B and, at the same time, B dominates A. However,
let us denote by

λ(A,B) = inf{λ : A is preferred to B with tolerance λ}

w.r.t. the approximate SD under analysis. Now, if λ(A,B) > λ(B,A), one
will prefer B to A, and vice versa if λ(A,B) < λ(B,A). This allows to order
all pairs of random variables but those for which we have the unlikely equality
λ(A,B) = λ(B,A).

We now relate the ZεSD condition to other approximate first and second
order stochastic dominance rules. More specifically, straightforward arguments
can be used to show that ZεSD implies both LL-AFSD and LR-ASSD with
appropriate tolerances.

Remark 7 (ZεSD vs. LL-AFSD). Let A and B be two random variables
with absolutely continuous distribution functions FA and FB, respectively. If
A is preferred to B w.r.t. ZεSD, then A is preferred to B w.r.t. LL-AFSD with

tolerance η =
(∫ α′′

α′ |FA(τ)− FB(τ)|dτ
)−1

ε.

Note that the tolerance η in LL-AFSD is an upper bound on the ratio of the
area of violation of FSD (where FA is above FB) and the total area enclosed
between FA and FB . When A is preferred to B according to ZεSD, the area of
violation of FSD is bounded by ε, so that LL-AFSD follows for all η not smaller
than the ratio between ε and the total area enclosed between FA and FB .
As a consequence of Remark 7 and of the results in Leshno and Levy (2002), if
A is preferred to B according to ZεSD, then E[u(A)] ≥ E[u(B)] for all utility
functions u in the set U∗1 (η) described in Leshno and Levy (2002) for η =(∫ α′′

α′ |FA(τ)− FB(τ)|dτ
)−1

ε.

Remark 8 (ZεSD vs. LR-ASSD). Let A and B be two random variables
with absolutely continuous distribution functions FA and FB, respectively. If A
is preferred to B w.r.t. ZεSD, then A is preferred to B w.r.t. LR-ASSD with
tolerance ϑ = ε.

As a consequence of Remark 8 and of the results in Lizyayev and Ruszczynski
(2012), if A is preferred to B according to ZεSD, then E[u(A)] + ε ≥ E[u(B)]
for any nondecreasing concave utility function u with first derivative u′ ≤ 1.
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3. Approximate Stochastic Dominance for EI

EI models are built using the price values of n assets and of the benchmark
index I over a time interval. We use the following notation:

rIt is the benchmark index return at time t = 1, . . . ,m;

rit is the return of asset i at time t for i = 1, . . . , n and t = 1, . . . ,m;

x is the EI portfolio we are selecting. Its components xi are the fractions of the
given capital invested in asset i for that portfolio.

Rt(x) =

n∑
i=1

xirit is the portfolio return at time t = 1, . . . ,m;

δt(x) = Rt(x)− rIt is the excess return, or overperformance, of the selected port-
folio w.r.t. the benchmark index at time t = 1, . . . ,m.

A portfolio x having δt(x) < 0 underperforms the benchmark index at time t,
while a portfolio with δt(x) > 0 overperforms it.

Portfolio returns Rt(x) and benchmark returns rIt can be considered as the
realizations, for each time t, of two random variables, called Portfolio Return
(PR) and Benchmark Return (BR), respectively. The historical excess return
δt(x) may be considered as the equally likely t-th realization of the difference
between the discrete random variables PR and BR. Let T denote the set of
in-sample time periods. By Definition 6, PR is preferred to BR w.r.t. ZεSD if

δt(x) ≥ −ε ∀t ∈ T.

This means that the excess return δt(x) can be negative for some of the in-
sample time periods (i.e., an underperformance w.r.t. the benchmark), but in
any case it cannot be smaller than −ε (the underperformance is limited). In
other words, requiring ZεSD over the benchmark provides, in each period, a
bound on the possible loss w.r.t. the benchmark. However, even though the
loss in each period is small, the cumulative loss in all periods could still be large,
if many losses occur.

To bound such cumulative losses, we introduce a cumulative version of Zero-
order ε-Stochastic Dominance which: (i) implies the ordinary ZεSD; (ii) has an
interesting financial interpretation in terms of expected shortfall (see Section
3.1); (iii) seems to provide good out-of-sample performance (see Section 4.2).

Definition 9. Cumulative Zero-order ε-Stochastic Dominance (CZεSD):
Given a tolerance ε > 0, A is preferred to B w.r.t. CZεSD if∑

t∈S
at + ε ≥

∑
t∈S

bt ∀S ⊆ T, (7)

where at and bt are the realizations of A and B for all t in T .
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Thus, in the EI case, we have that PR is preferred to BR w.r.t. CZεSD if∑
t∈S

δt(x) ≥ −ε ∀S ⊆ T. (8)

Condition (8) means that δt(x) can be negative for some subsets of the in-sample
window (i.e., a cumulative underperformance w.r.t. the benchmark), but in any
case the value of the above sum cannot be smaller than −ε (the cumulative
underperformance is limited).

Clearly, if ε is fixed a priori, a portfolio dominating the index might not
exist. However, we can search for the smallest value of ε for which such a
portfolio exists, as described in the following section. It is easy to see that
CZεSD implies ZεSD: a limited cumulative underperformance implies that the
underperformance for any time period is also limited. However, when ε tends
to zero, both rules collapse to ZSD, which is theoretically prevented by the no-
arbitrage argument. We also remark that, for a given value of ε, it may happen
that portfolio P1 dominates portfolio P2 and, at the same time, portfolio P2

dominates portfolio P1 w.r.t. (C)ZεSD. However, as observed after Definition
6 in Section 2, this problem is typically removed by minimizing ε, which is the
aim of the following section.

3.1. Optimization Models for CZεSD

Among all portfolios that are preferred to the benchmark index with respect
to the CZεSD criterion, we are interested in the one(s) having the smallest
value for ε. This can be obtained by solving an optimization problem. The
above stochastic dominance conditions can be formulated as constraints that
we call limiting constraints. As usual, we also require the budget constraint
(
∑n
i=1 xi = 1), the no short-selling condition (xi ≥ 0 ∀i), and we allow for

the possibility of a set C of other linear constraints, such as the request that
the portfolio expected return is greater than or equal to a target return level.
We thus obtain the following Linear Programming problem that minimizes the
greatest underperformance ε by maximizing −ε:

max −ε
s.t.

∑
t∈S

δt(x) ≥ −ε ∀S ⊆ T

n∑
i=1

xi = 1

x ∈ C
x ∈ Rn+
ε ∈ R.

(9)

Note that the number of limiting constraints is exponential in m: one for every
subset S of T . Since typical values for m may range between 100 and 500,
the number of constraints may be huge. Nevertheless, we observe that, using
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the equivalence of optimization and separation established in Grötschel et al.
(1993), Problem (9) can be theoretically solved in polynomial time since, for
any x ∈ Rn+, we can efficiently solve the following separation problem: find a set
of time periods V ⊆ T such that∑

t∈V
δt(x) < −ε, (10)

or conclude that no such set exists. In this case, the separation problem can be
solved by simply checking if the set {t ∈ T : δt(x

?) < 0} satisfies (10) or not, so
(9) is solvable for instance by a constraint generation approach.

However, even better, we now show that Problem (9) can be efficiently
solved, both in theory and in practice, by reformulating it as a Linear Pro-
gram with a polynomial number of constraints, which also has an interesting
financial interpretation. Indeed, Problem (9) can be written as

max
x∈Rn

+

min
S⊆T

δS(x)

s.t.

n∑
i=1

xi = 1

x ∈ C

(11)

where δS(x) =
∑
t∈S δt(x) for S ⊆ T . Note that

min
S⊆T

δS(x) =
∑
t∈T

min{0, δt(x)} = −
∑
t∈T

max{0,−δt(x)}.

Since
max
x∈Rn

+

min
S⊆T

δS(x) = − min
x∈Rn

+

∑
t∈T

max{0,−δt(x)},

the CZεSD model is equivalent to minimizing the expected shortfall of the port-
folio below the benchmark. Furthermore, we can linearize Problem (11) with
auxiliary variables yt, for t ∈ T , in a classical manner

min
∑
t∈T

yt

s.t.
yt + δt(x) ≥ 0 t ∈ T
n∑
i=1

xi = 1

x ∈ C
x ∈ Rn+, y ∈ R|T |+

(12)

Note that Problem (12) has only n + |T | variables and |T | + 1 constraints in
addition to those defining C, and can thus be solved very efficiently in practice
even for large markets and extensive in-sample periods.
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4. Empirical Analysis

This section presents an extensive empirical analysis of some models that, among
the various SD-based approaches proposed in the literature for portfolio selec-
tion, appear the most promising and practically realizable ones. In addition, we
also consider the pure Mean-Variance (MV) approach (Markowitz 1959), usu-
ally regarded as the benchmark model for asset allocation. We thus compare
the six portfolio selection models listed below.

• CZεSD: the portfolio having CZεSD w.r.t. the market index, obtained
by solving (12) as described in Section 3.1;

• RMZ-SSD: the portfolio having SSD w.r.t. the market index, obtained
by implementing cutting planes techniques as explained in Roman et al.
(2013);

• LR-ASSD: the portfolio having LR-ASSD w.r.t. the market index, ob-
tained by implementing model (12) of Lizyayev and Ruszczynski (2012)
specialized to the case of portfolio selection, i.e., assuming equal probabil-
ities πi = 1/m for i = 1, . . . ,m and vector x ≥ 0 such that

∑
k xk = 1;

• L-SSD: the portfolio having L-SSD w.r.t. the market index, obtained by
implementing model (cSSD1) of page 1438 of Luedtke (2008);

• KP-SSD: the portfolio having SSD w.r.t. the market index, obtained
by implementing model (10) of Kopa and Post (2015), where the weight
vector is fixed as in (6) of Hodder et al. (2015) with γ = 3. The authors
called the resulting portfolio KP2011Power3. This has generally better
out-of-sample performance than the model in Kuosmanen (2004) or other
variants in Kopa and Post (2015) (named KP2011Min, KP2011Av);

• MeanVar: the reference Mean-Variance portfolio, as introduced in
Markowitz (1959).

4.1. Data Sets

We test all the above strategies on several real-world datasets belonging to
major stock markets across the world. We first provide detailed results on the
following:

1. DJIA (Dow Jones Industrial Average, USA), containing 28 assets and
1363 observations (February 1990 - April 2016);

2. NASDAQ 100 (National Association of Securities Dealers Automated
Quotation, USA), containing 82 assets and 596 observations (November
2004 - April 2016);

3. FTSE 100 (Financial Times Stock Exchange, UK), containing 83 assets
and 717 observations (July 2002 - April 2016);

4. SP500 (Standard & Poor’s, USA), containing 442 assets and 595 obser-
vations (November 2004 - April 2016).
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5. FF49 (Fama & French 49 Industry portfolios, USA), containing 49 port-
folios considered as assets (using the subsample where all the returns of
the 49 industries are available, namely from July 1969 to July 2015);

The first 4 datasets consist of weekly linear returns computed on daily prices
data, adjusted for dividends and stock splits, obtained from Thomson Reuters
Datastream. We included stocks with at least ten years of observations. Fur-
thermore, when necessary, the assets prices are filtered to check and to correct
inaccurate data. We use the market index as benchmark. The corresponding
weekly returns time series for assets and indexes are publicly available in Bruni
et al. (2016) for research purposes.

The last dataset was obtained from
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
In this case, we converted daily into weekly returns, thus having 2325 observa-
tions, and we used as benchmark index the Equally-Weighted portfolio.

In our analysis, we adopt a Rolling Time Window (RTW) scheme of evalua-
tion: we allow for the possibility of rebalancing the portfolio composition during
the holding period, at fixed intervals. A key point of the RTW scheme concerns
the calibration of the in-sample and of the out-of-sample periods. On the basis
of the findings of Jegadeesh and Titman (2001) and of a preliminary empirical
analysis, we chose to adopt a period of 52 weeks for the in-sample window and
of 12 weeks for the out-of-sample window, with rebalancing allowed every 12
weeks.

4.2. Performance Measures and Results

In Portfolio Optimization, the out-of-sample performance of a portfolio is gener-
ally evaluated by using a number of performance measures. For our analysis we
choose the following five performance measures typically adopted in the litera-
ture (see, e.g., Rachev et al. 2008; DeMiguel et al. 2009, and references therein).
We denote by Rout the out-of-sample portfolio return, by RoutI the index return
in the out-of-sample period, and by rf a constant risk free rate of return that
we set equal to 0.

• Sharpe Ratio (Sharpe 1966, 1994) is defined as the ratio between the
average of Rout − rf and its standard deviation, namely:

E[Rout − rf ]

σ(Rout)
.

The larger is its value, the better is the portfolio performance particularly
w.r.t. the central part of the portfolio return distribution.

• Sortino Ratio (Sortino and Satchell 2001), defined as the ratio between
the average of Rout − rf and its downside deviation, namely:

E[Rout − rf ]

σ(min{Rout − rf , 0})
.

The larger is its value, the better is the portfolio performance.
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• Rachev Ratio (Rachev et al. 2004), defined as the ratio between the
average of the best β% values of Rout − rf (with the opposite sign) and
that of the worst α% values of Rout − rf . More precisely, the Rachev
Ratio is based on the notion of Conditional Value-at-Risk at a specified
confidence level α, CVaRα (see, e.g., Rockafellar and Uryasev 2000), and
has the following formulation:

CVaRβ(rf −Rout)
CVaRα(Rout − rf )

.

The larger is its value, the better is the portfolio performance particularly
w.r.t. the tails of the portfolio return distribution. Parameters α and β
have been set at 5%.

• Information Ratio (Goodwin 1998), defined as the expected value of
the difference between the out-of-sample portfolio return and that of the
benchmark index divided by the standard deviation of such difference,
namely:

E[Rout −RoutI ]

σ(Rout −RoutI )
.

The larger is its value, the better is the portfolio performance. This mea-
sure is particularly used by practitioners because it is a kind of “signal-
to-noise ratio” for a portfolio manager.

• Turnover, defined as the average on all rebalances of the sum of the
absolute values of the trades among the n available assets, namely:

1

Nreb

Nreb∑
j=1

n∑
i=1

|xj,i − xj−1,i|,

where Nreb is the number of rebalances and xj,i is the weight of asset i for
the j-th rebalance (see DeMiguel et al. 2009). This measure is often used
to approximately capture transaction costs and takes into account only
the amount of trading generated by the model at each rebalance without
considering the changes due to variations in asset prices.

• Jensen’s Alpha (Jensen 1968), defined as the intercept of the line given
by the linear regression of Rout − rf on RoutI − rf , namely:

α = (E[Rout]− rf )− β(E[RoutI ]− rf ),

where β = Cov(Rout, RoutI )/σ2(RoutI ) is the regression coefficient repre-
senting the systematic risk of the selected portfolio w.r.t. the market.

• Average Return, defined as the average out-of-sample return E[Rout] of
a portfolio.
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Table 1: Out-of-sample results for DJIA

DJIA

Approach Sharpe Sortino Rachev Info R. Turnover Jensen’s Aver. Return

CZεSD 0.09 0.14 1.10 0.09 0.63 0.0006 0.0023

RMZ-SSD 0.07 0.10 0.98 0.00 0.91 0.0004 0.0017

LR-ASSD 0.08 0.11 1.10 0.02 1.12 0.0005 0.0020

L-SSD 0.08 0.11 1.01 0.01 0.98 0.0004 0.0017

KP-SSD 0.12 0.17 1.02 0.08 1.07 0.0023 0.0036

MeanVar 0.09 0.12 0.99 0.01 0.71 0.0006 0.0018

Index 0.07 0.09 1.02 - - - 0.0016

Table 2: Out-of-sample results for NASDAQ100

NASDAQ100

Approach Sharpe Sortino Rachev Info R. Turnover Jensen’s Aver. Return

CZεSD 0.12 0.17 1.03 0.14 1.21 0.0016 0.0040

RMZ-SSD 0.10 0.14 0.94 0.02 1.19 0.0011 0.0028

LR-ASSD 0.09 0.13 1.00 0.02 1.31 0.0009 0.0026

L-SSD 0.13 0.20 1.08 0.07 1.37 0.0017 0.0034

KP-SSD 0.12 0.16 1.02 0.09 1.26 0.0033 0.0055

MeanVar 0.11 0.17 1.08 0.02 0.92 0.0012 0.0027

Index 0.08 0.10 1.02 - - - 0.0023

Table 3: Out-of-sample results for FTSE100

FTSE100

Approach Sharpe Sortino Rachev Info R. Turnover Jensen’s Aver. Return

CZεSD 0.09 0.12 0.93 0.18 1.23 0.0014 0.0023

RMZ-SSD 0.15 0.20 0.99 0.15 1.02 0.0026 0.0032

LR-ASSD 0.07 0.10 0.95 0.05 1.36 0.0011 0.0018

L-SSD 0.13 0.17 1.01 0.14 1.41 0.0022 0.0028

KP-SSD 0.14 0.20 1.13 0.14 1.13 0.0042 0.0050

MeanVar 0.13 0.17 1.00 0.13 0.94 0.0021 0.0027

Index 0.04 0.05 0.91 - - - 0.0009
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Table 4: Out-of-sample results for SP500

SP500

Approach Sharpe Sortino Rachev Info R. Turnover Jensen’s Aver. Return

CZεSD 0.08 0.11 0.97 0.10 1.70 0.0012 0.0026

RMZ-SSD 0.09 0.12 0.93 0.04 1.30 0.0012 0.0021

LR-ASSD 0.09 0.12 1.12 0.07 1.67 0.0009 0.0019

L-SSD 0.08 0.10 0.98 0.03 1.54 0.0003 0.0013

KP-SSD 0.08 0.11 1.01 0.06 1.42 0.0022 0.0036

MeanVar 0.09 0.11 0.98 0.03 1.12 0.0009 0.0018

Index 0.05 0.06 1.03 - - - 0.0013

Table 5: Out-of-sample results for FF49

FF49

Approach Sharpe Sortino Rachev Info R. Turnover Jensen’s Aver. Return

CZεSD 0.20 0.25 1.04 0.15 1.08 0.0007 0.0050

RMZ-SSD 0.22 0.29 1.13 0.02 0.93 0.0015 0.0045

LR-ASSD 0.14 0.18 1.04 -0.12 1.21 -0.0004 0.0030

L-SSD 0.22 0.28 1.07 -0.01 1.14 0.0012 0.0042

KP-SSD 0.20 0.26 1.05 0.08 1.07 0.0023 0.0060

MeanVar 0.23 0.28 1.08 -0.02 0.74 0.0013 0.0041

Index 0.17 0.21 1.03 - - - 0.0043

All the procedures have been implemented in MATLAB 8.0 and executed on a
workstation with Intel Core2 Duo CPU (T7500, 2.2 GHz, 4Gb RAM) under MS
Windows Vista. The linear and quadratic programming problems have been
solved using the TOMLAB/CPLEX toolbox (Holmstrom et al. 2012). Running
times for CZεSD, which requires only the solution of one medium size LP, is
always within one second. The other approaches consist in solving larger LPs or
several LPs, and their solution typically requires some minutes. Hence, from a
computational point of view, CZεSD is clearly preferable for large markets and
wide in-sample windows.

For each dataset and for each portfolio strategy we provide the out-of-sample
performance results in Tables 1-5, where the best results are marked in bold.
All the portfolios generated in our experiments are available in Bruni et al.
(2016). First, we note that the described models based on SD appear suitable
for EI, since the obtained portfolios typically outperform the market index. Fur-
thermore, we observe that for the Sharpe and Sortino ratios there is no clear
dominance among the different models, but rather a pool of approaches pro-
viding good performances (CZεSD, RMZ-SSD, KP-SSD, MeanVar). Evidently,
none of them is able to completely outperform the others when focusing on
the central part of the portfolio return distribution. A similar situation arises
for the Rachev ratio, referring to the tails of the return distribution, but the
composition of the pool is different (LR-ASSD, L-SSD, KP-SSD). On the other

14



hand, for the Information Ratio, a noteworthy performance measure among
practitioners, CZεSD is clearly better than all other approaches. Thus, it seems
that CZεSD, i.e., the minimization of the expected shortfall of the portfolio
below the benchmark, is able to provide more persistent and less volatile excess
returns than the other methods, although some other approaches show better
properties for the tails of the return distributions. We stress that good results
for the Information Ratio are not only fulfilling the theoretical aims of EI but
are generally considered highly desirable in real applications. We then observe
that the MeanVar model has the best result in terms of the portfolio turnover,
while the KP-SSD has the best result for Jensen’s Alpha. Finally, it appears
that the best average returns are provided by KP-SSD, immediately followed
by CZεSD.

To provide further evidence of the robustness of our approach, we report
aggregate results for the same performance measures on 16 publicly available
datasets. In addition to the previous 5 datasets, we consider the 8 datasets from
Beasley’s OR-Library (Hang Seng 31, DAX 100, FTSE 100, S&P 100, Nikkei
225, S&P 500, Russell 2000, Russell 3000, available from
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/indtrackinfo.html) and
3 datasets that have been used in Cesarone et al. (2013, 2015) (EuroStoxx 50,
MIBTEL 230, NASDAQ 2200, available from
http://host.uniroma3.it/docenti/cesarone/DataSets.html).

For each of these 16 dataset, we compute the ranking of the models for each of
the above performance measures. Then, for each model, we compute the median
of those values across all datasets, as shown in Table 6. This should give an
evaluation of the typical performance of each model according to each different
performance measure. We also report, in the same table, an indicator of the
“overall performance” of each model, computed as the median of all its medians
(hence smaller values are better). According to this indicator, the CZεSD,
RMZ-SSD and KP-SSD models provide the best out-of-sample performance.
Of course this overall performance is a simplification, but it is intended to give
a concise (even though approximate) answer to the very basic question “how
effective is each model?”.

Table 6: Summary of results on 16 datasets

Approach Sharpe Sortino Rachev Info R. Turnover Jensen’s Aver. Return Overall Perf.
CZεSD 2 3 5 1 4 3 2 3

RMZ-SSD 3 2 4 3 2 3 3 3
LR-ASSD 6 5 4 5 6 5 5 5

L-SSD 4 4 5 5 5 5 5 5
KP-SSD 4 3 3 3 3 1 1 3

MeanVar 3 3 4 4 1 4 5 4
Index 7 7 7 - - - 7 7

To improve the practical performance of the selected portfolios, we briefly de-
scribe some additional features that can be integrated in SD-based models with-

15



out computational overload. A first variant can be applied in the CZεSD and
RMZ-SSD models, and consists in introducing linear constraints requiring that
the in-sample expected return µ(T ) = 1

|T |
∑
t∈T Rt(x) is not smaller than a

threshold proportional to the expected return µEW (T ) of the Equally-Weighted
(EW) portfolio, i.e., the portfolio where the capital is equally distributed among
all assets. This is an easily computable portfolio that in average practical cases
exhibits fair performances.The second variant tries to complement SD strate-
gies with the low-variance advantages given by the Mean-Variance approach.
This is realized by restricting the various SD models to use only those assets
included in the Mean-Variance portfolio by means of simple linear constraints.
The investigation of these lines of research will be the object of future work.

5. Conclusions

Stochastic dominance approaches to the Enhanced Indexation problem seem to
be very attractive from a theoretical viewpoint. However, some issues need to be
addressed for their practical application. First, exact stochastic dominance may
often fail to order a given pair of random variables. Second, the lowest order
exact stochastic dominance relations conflict with the classical no-arbitrage con-
ditions in financial markets. Finally, the stochastic dominance models proposed
in the literature are often too large to be solved in real-world markets. In this
work we deal with all these issues and propose a new approximate stochastic
dominance rule. This rule admits a financial interpretation in terms of expected
shortfall, which also leads to a linear programming formulation that can be ef-
ficiently solved. A comprehensive empirical analysis shows the good practical
performance of the proposed model.
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