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a b s t r a c t 

Probabilistic Discrete Choice Models (PDCM) have been extensively used to interpret the behavior of het- 

erogeneous decision makers that face discrete alternatives. The classification approach of Logical Analysis 

of Data (LAD) uses discrete optimization to generate patterns, which are logic formulas characterizing 

the different classes. Patterns can be seen as rules explaining the phenomenon under analysis. In this 

work we discuss how LAD can be used as the first phase of the specification of PDCM. Since in this task 

the number of patterns generated may be extremely large, and many of them may be nearly equivalent, 

additional processing is necessary to obtain practically meaningful information. Hence, we propose com- 

putationally viable techniques to obtain small sets of patterns that constitute meaningful representations 

of the phenomenon and allow to discover significant associations between subsets of explanatory vari- 

ables and the output. We consider the complex socio-economic problem of the analysis of the utilization 

of the Internet in Italy, using real data gathered by the Italian National Institute of Statistics. 

© 2018 Elsevier Ltd. All rights reserved. 

1

 

s  

h  

d  

M  

d  

t  

c  

o  

d  

c  

i

 

a  

b  

i  

N  

B  

a  

A  

1  

B  

c  

b  

o  

a  

s  

o  

i  

s  

u  

b  

g

 

f  

c  

t  

b  

h

0

. Introduction 

Probabilistic Discrete Choice Models (PDCM) have been exten-

ively used for decades as a powerful method to interpret the be-

avior of heterogeneous decision makers that face differentiated,

iscrete alternatives ( Manski and McFadden, 1981; Train, 2009 ).

odern methods allow a rich and flexible specification of both the

eterministic and stochastic component of the model, and the es-

imation, possibly recurring to simulation. However, given the high

omputational burden of these procedures and the large number

f available explanatory variables, an initial extensive exploratory

ata analyses is necessary. In this work we discuss how a data

lassification technique can be used in this first phase of the spec-

fication of PDCM. 

Classification is a fundamental task in the field of data mining,

nd many approaches to solve this problem have been proposed,

ased on different paradigms and data models. Established ones

nclude: Neural Networks, Support Vector Machines, k-Nearest

eighbors, Bayesian approaches, Decision Trees, Logistic regression,

oolean approaches (see for references Hastie et al., 2002; Klosgen
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nd Zytkow, 2002 ). One effective Boolean approach is the Logical

nalysis of Data (LAD) (see, e.g., Boros et al., 2011; Boros et al.,

997; Boros et al., 20 0 0; Crama et al., 1988 ), which is based on

oolean Logic and on Discrete Optimization. LAD methodology is

losely related to decision trees ( Quinlan, 1993 ) and nearest neigh-

or ( Cover and Hart, 1967 ) methods, and constitutes an extension

f those two approaches, as shown in ( Boros et al., 2011 ). There are

lso affinities with DNF learning in Computational Learning Theory,

ee, e.g., Bshouty and Eiron (2003) which captures certain aspects

f LAD. Other connections exist with the empirical machine learn-

ng approaches based on production or implication rules, for in-

tance those based on Rough Set theory ( Pawlak, 1992 ). The joint

se of many patterns has similarities with the usage of an ensem-

le of classifiers, as it is done in boosting ( Freund, 1995 ) and bag-

ing ( Breiman, 1996 ) techniques. 

We consider data organized into records. Each record is a dif-

erent observation of the phenomenon, and it is composed of fields

ontaining the observed values . Each field has its domain , that is

he set of its possible values. A record may also have a class la-

el . In this case, the class is also called the output , while the other

elds are also called explanatory variables . To apply LAD approach,

ll values must be converted into binary form by means of a dis-

retization process called binarization . The domain of each field is

artitioned in a finite number of subdomains that are encoded
a tool for the analysis of Probabilistic Discrete Choice Behavior, 
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using binary attributes . Since the number of obtained binary at-

tributes is often very large, a selection step is performed. After

this, the selected binary attributes are used to build the patterns.

A pattern is a conjunction of binary attributes, also called con-

ditions , characterizing one class. Finally, each unlabeled record is

classified on the basis of the patterns covering that record. Pat-

terns can be seen as an interpretation of the phenomenon un-

der analysis (see, e.g., Crama and Hammer, 2011 ). Therefore, this

procedure can perform rules extraction tasks, which, in the study

of PDCM, may be even more important than the classification it-

self. Indeed, in socio-economic studies, the main goal is often

the comprehension of people’s behavior and its determinants. To

this aim, different theories and hypotheses suggested by the hu-

man analysts are tested against data. On the contrary, we pro-

pose here to start the interpretation process extracting rules from

the data by means of pattern generation techniques based on

LAD. 

When dealing with the probabilistic behavior of economic

agents, a large number of explanatory variables is available. Conse-

quently, the number of patterns generated can be extremely large,

and unfortunately most of them may have scarce practical mean-

ing. For example, they may cover only a few records, or they may

differ only in the selection within sets of highly associated ex-

planatory variables, hence, the subsets of records covered by dif-

ferent patterns largely overlap. 

We present here criteria to identify a reduced set of practically

meaningful rules within the large set of all the patterns, along with

ordering and filtering techniques for their practical implementa-

tion. These techniques are computationally viable and can also pro-

duce a set of rules which are internally orthogonal , i.e., the cover-

ages of every pair of rules have empty intersection. Patterns are

generated by using a version of the LAD methodology developed to

deal with very large datasets. It is adapted from that proposed in

Bruni and Bianchi (2015) and designed to keep the computational

burden under control. 

Therefore, the main contribution of this work is a com-

putationally viable methodology to obtain an internally consis-

tent, non-redundant and statistically accurate set of practically

meaningful explanatory rules from a set of available data in a

probabilistic discrete choice setting. Several works in the liter-

ature have similarities either in the methods or in the goals,

though none of them considers PDCM. For example, the gener-

ation of propositional logic formulas to provide a classification

is applied to biological problems in Bertolazzi et al. (2010) . An

ELECTRE-based method to identify the best decision rules gen-

erated in the training process of a generic classification algo-

rithm is proposed in Mastrogiannis et al. (2009) . Genetic algo-

rithms are used to construct logic trees that best represent em-

pirical data in Mak et al. (2006) . Techniques to obtain a cer-

tain degree of orthogonality in the sets of Boolean rules are de-

scribed in Felici and Truemper (2001) and Sanchez et al. (2002) .

The automatic individuation of the most important variables and

of their values or intervals that are critical for a classification

using Support Vector Machines is in Carrizosa et al. (2010) and

Carrizosa and Romero Morales (2013) . The problem of the selec-

tion of features has been addressed also in Bertolazzi et al. (2016) ;

Bruni (2007) ; Chou et al. (2017) ; Janssens et al. (2006) ; Sikora and

Piramuthu (2007) and Unler and Murat (2010) . 

The paper is organized as follows. Section 2 describes the bina-

rization and the generation of the patterns. Section 3 presents the

criteria to identify the small set of practically meaningful rules. In

particular, we describe ordering techniques devised to bring out

patterns which are the best compromises between accuracy and

coverage; one technique aims at providing a sufficient disjunction

of the coverages, the other at the complete disjunction of the cov-

erages. Section 4 reports the results of the described techniques
Please cite this article as: R. Bruni et al., Logical Analysis of Data as 

Computers and Operations Research (2018), https://doi.org/10.1016/j.cor
n the analysis of the individual use of the Internet, by consider-

ng data provided by the Italian National Institute of Statistics (Is-

at) and describing socio-economic status and daily habits of more

han 46,0 0 0 individuals chosen to represent the whole Italian pop-

lation. This analysis is important for the design of effective poli-

ies fostering Internet usage in Italy, in order to meet the goals

f the European Digital Agenda ( European Commission, 2014 ),

 plan established by the European Union which sets goals for

020 regarding many aspects of the digitalization in all Member

tates. 

. Binarization and pattern generation 

The structure of the data records consists of a set of fields f i ,

ith i = 1 , . . . , m . A record instance r consists of a set of values

 i , one for each field. A record r is labeled , or classified , if it is

ssigned to an element of a set of possible classes C . In many

ases, C has only two elements, denoted by + and - , and we

peak of binary classification . We will hereinafter consider this case.

 positive record instance is denoted by r + , a negative one by

 

−. A training set S of labeled records is available, with S + the

et of its positive records and S − the set of its negative ones.

hese sets constitute our source of information in learning the

lassifier. 

LAD methodology begins with binarization, which converts

ach (non-binary) field f i into a set of binary attributes a 
j 
i 
, with

j = 1 . . . n i . The total number of binary attributes is n = 

∑ m 

i =1 n i .

ote that the term “attribute” is not used here as a synonym for

field”. The values of a qualitative field f i can simply be encoded by

eans of a suitable number of binary attributes a 
j 
i 
. For each nu-

erical field f i , on the contrary, we introduce n i thresholds called

ut-points α1 
i 
, . . . , α

n i 
i 

∈ IR , and the binarization of a value v i is ob-

ained by considering whether v i lies above or below each α j 
i 
. 

 

j 
i 
= 

{
1 if v i ≥ α j 

i 

0 if v i < α j 
i 

he α j 
i 

are computed as the semi-sums of each couple of val-

es v ′ 
i 

and v ′′ 
i 

belonging to training records from opposite classes

nd adjacent on f i : α
j 
i 

= (v ′ 
i 
+ v ′′ 

i 
) / 2 . This identifies the borders be-

ween regions corresponding to opposite classes. When positive

nd negative records excessively overlap, and purely positive or

egative regions become rare, this technique can still provide the

orders between regions having opposite class predominance (see

lso Bruni and Bianchi, 2015 ). 

xample 1. Consider a small training set of 5 records representing

ersons, with fields age , in years, and education , containing the

ighest degree obtained. The latter is an ordered categorical field,

hich can be seen as numerical. 

We use the following 5 levels: 1 = elementary school or no ti-

le; 2 = middle school; 3 = high school; 4 = bachelor’s degree;

 = master’s degree or Ph.D. The classification is “has mobile In-

ernet connection” or not. 

record ID age education mobile Internet? 

S + 
s + 

1 
17 3 yes 

s + 
2 

33 5 yes 
s + 

3 
70 5 yes 

S −
s −

1 
31 2 no 

s −
2 

47 4 no 

To visualize the cut-points, we plot the records’ values by using

 framed + for the positive ones and a framed - for the negative

nes. 
a tool for the analysis of Probabilistic Discrete Choice Behavior, 
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The cut-points obtainable from this set are: α1 
age = 24 ;

2 
age = 32 ; α3 

age = 40 ; α4 
age = 58.5 ; α1 

education = 2.5 ; α2 
education = 3.5 ;

3 
education = 4.5 . 

The corresponding binary attributes are: 

a 1 age meaning age ≥ 24 ; a 2 age meaning age ≥ 32 ; a 3 age mean-

ng age ≥ 40 ; a 4 age meaning age ≥ 58.5 ; a 1 education meaning has

igh school; a 2 education meaning has bachelor’s; a 3 education meaning

as master’s or Ph.D. 

A set of binary attributes { a j 
i 
} used to binarize a dataset S is

alled support set U . We are interested in selecting a small (and

eaningful) support set. This selection is necessary for reducing

he computational complexity of the remaining part of any LAD-

ased procedure, which may otherwise become impracticable. This

ombinatorial optimization problem is modeled by using a binary

ecision variable x 
j 
i 

for each a 
j 
i 
, such that 

 

j 
i 
= 

{
1 if a j 

i 
is retained in the support set ;

0 if a j 
i 

is excluded from the support set . 

n classical LAD methodology, the problem is formulated as an un-

eighted set covering problem (see, e.g., Boros et al., 1997 ). On the

ther hand, Bruni and Bianchi (2015) proposes a technique to eval-

ate the quality q 
j 
i 

of each a 
j 
i 
, based on its power of separation.

he q 
j 
i 

are computed so that the total quality of a set of binary at-

ributes should correspond to the sum of their individual quality

alues. One can evaluate the computational burden added to the

attern generation by retaining each single attribute a 
j 
i 
, and call

t its size σ j 
i 

. When no specific evaluations can be done, all sizes

ould be set at 1. Thus, by setting a maximum affordable compu-

ational burden d (for instance on the basis of the available hard-

are, time, etc.) the support set selection problem can be modeled

s binary knapsack : 

 

 

 

 

 

max 
∑ m 

i =1 

∑ n i 
j=1 

q j 
i 

x j 
i 

s . t . 
∑ m 

i =1 

∑ n i 
j=1 

σ j 
i 

x j 
i 
≤ d 

x j 
i 
∈ { 0 , 1 } . 

(1) 

n our case, all σ j 
i 

= 1 , and this model can be solved by simply

orting the q 
j 
i 

values and taking the best d of them. The selection

s actually performed twice, for positive and negative attributes, to

nd the set U 

+ of the selected positive attributes and the set U 

−

f the selected negative ones. 

The selected support set U = U 

+ ∪ U 

− is then used to create

atterns. A pattern P is a conjunction ( ∧ ) of literals, also called con-

itions , that characterizes one class. We denote a positive pattern

y P + and a negative one by P −; when the class is not specified

e simply use P . Literals are binary attributes a 
j 
i 

∈ U or negated

inary attributes ¬ a 
j 
i 
. Given a binarized record r b , i.e., the set of

inary values { b j 
i 
} for each a 

j 
i 

∈ U, each literal of P receives the

alue b 
j 
i 
∈ { 0 , 1 } for literal a 

j 
i 

and (1 − b 
j 
i 
) ∈ { 0 , 1 } for literal ¬ a 

j 
i 
.

e have that P = 1 if all literals of P are 1, P = 0 otherwise. We

ay that a pattern P covers a record r , and that r activates P , if the

et of values r b = { b j 
i 
} makes P = 1 . We write P ( r ) to denote the
Please cite this article as: R. Bruni et al., Logical Analysis of Data as 

Computers and Operations Research (2018), https://doi.org/10.1016/j.cor
alue of pattern P applied to record r : 

 (r) = 

{
1 if P covers r;
0 if P does not cover r. 

 positive pattern P + is defined as a pattern covering at least c + 

ositive records but no more than e + negative ones. A negative

attern P − is defined as a pattern covering at least c − negative

ecords but no more than e − positive ones. We call the pair of

alues (c + , e + ) the requirements for being a positive pattern; con-

ersely, (c −, e −) are the requirements for being a negative pat-

ern. Values are such that the minimum correct coverage ( c + or

 

−) is always larger than the corresponding maximum erroneous

overage ( e + or e −). Patterns with e + = 0 or e − = 0 , namely, pat-

erns not covering any record of the opposite class, are called

ure , while patterns with e + > 0 or e − > 0 are called fuzzy . Sev-

ral works in the stream of research devoted to LAD use only pure

atterns. 

Finally, to perform the classification, weights w h are assigned

o all patterns, with w h ≥ 0 for positive patterns and w h ≤ 0 for

egative ones. Such weights represent a measure of the posi-

ive or negative valence of each pattern. Several criteria to de-

ermine the w h exist (e.g., Boros et al., 20 0 0; Bruni and Bianchi,

015 ). Now, an unlabeled record r is classified on the basis of

he activated patterns, by computing the following weighted sum,

alled discriminant �(r) = 

∑ 

h w h P h (r) , and by selecting a thresh-

ld δ: r is predicted to be positive if �( r ) > δ, and negative if

( r ) ≤ δ. 

xample 2. By continuing Example 1 , if we set c + = c − = 1 and

 

+ = e − = 0 , a positive pattern is for instance: P + 
1 

= a 3 education 
 which means “one has mobile Internet if education is mas-

er’s or Ph.D. Pattern P + 
1 

has 1 condition; it covers 2 positive

ecords (s + 
2 
, s + 

3 
) and no negative ones. Another positive pattern

s: P + 
2 

= ¬ a 3 age ∧ a 1 education , which means “one has mobile Inter-

et if age is ≤ 40 and education is at least high school. Pat-

ern P + 
2 

has 2 conditions; it covers 2 positive records (s + 
1 
, s + 

2 
)

nd no negative ones. A negative pattern is for instance: P −
1 

=
 

1 
age ∧ ¬ a 3 education , which means “one has NO mobile Internet if

ge is ≥ 24 and education is no more than bachelor’s. This pat-

ern has 2 conditions; it covers all the 2 negative records (s −
1 
, s −

2 
)

nd no positive ones. All these patterns are pure. Of course, even

or this simple example there exist many other patterns not listed

ere. 

Patterns can be generated by using combinatorial enumeration

echniques based on two types of procedures: bottom-up or top-

own. The bottom-up generation of a positive pattern proceeds by

onjoining one by one single conditions until obtaining a formula

hat respects the requirements for being a positive pattern. We

enerate bottom-up patterns by using literals in greedy order, i.e.,

y decreasing values of q 
j 
i 
, and avoiding specializations of conjunc-

ions that already are patterns. Though in principle all such com-

inations of literals could be generated, the enumeration can be

uided by setting requirements on the coverages of the patterns,

heir length, etc. The computational burden is controlled by setting

 not excessive value of d in (1) . 

. Identifying the most interesting patterns to characterize 

robabilistic Discrete Choice Behavior 

All the patterns generated by the procedure give their contri-

ution for the classification, and, roughly speaking, a large set of

atterns allows better accuracy. However, if we aim at finding ex-

lanations of socio-economic phenomena, the interpretation of a

arge set of patterns may be problematic. In this case, the set of all

he available labeled records is used as training set S , and there is
a tool for the analysis of Probabilistic Discrete Choice Behavior, 
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no need of a classification step after the generation of the patterns.

Instead, we want to set up an algorithmic procedure which should

identify the most practically meaningful patterns within the large

set P of all the patterns. 

Given a generic pattern P h , we define the following sets and

values to describe its features. The set of its conditions is Lit ( P h ).

The number of such conditions is l(P h ) = | Lit(P h ) | . In the space de-

fined by the d binary attributes of U , the Boolean hypercube IB 

d is

the set of the 2 d points having as coordinates all the possible bi-

nary strings of length d , that is, all the possible binarized records.

A ( d − l) -dimensional subcube consists of the 2 d−l points of IB 

d for

which l < d coordinates are fixed to 0 or 1. A positive pattern P + 
h 

is a particular (d − l(P + 
h 

)) -dimensional subcube such that the car-

dinalities of its intersections with S + ⊂ IB 

d and S − ⊂ IB 

d satisfy the

requirement (c + , e + ) for being a positive pattern. A specular sit-

uation holds for a negative pattern. The size s (P + 
h 

) of P + 
h 

is the

number of points 2 d−l(P + 
h 

) of the corresponding subcube. The cor-

rect coverage Cov (P + 
h 

) of P + 
h 

is the set of the records of S + covered

by P + 
h 

. The number of hits is c(P + 
h 

) = | Cov (P + 
h 

) | . Similarly, its er-

roneous coverage Er r (P + 
h 

) is the set of the records of S − covered

by P + 
h 

. The number of errors is e (P + 
h 

) = | Er r (P + 
h 

) | . Moreover, we

are considering data obtained from a sample survey. Hence, each

record r does not correspond to only one individual, but to a num-

ber μr of individuals: the multiplicity of r in the target population

of the survey, also called universe of the survey. Such multiplicities

are not the same for the different records. If we bring the values

back to the universe , by counting each record for its multiplicity,

the above defined values become: the number of hits reported to

the universe c u (P + 
h 

) = 

∑ 

r∈ Cov (P + 
h 

) μr , and the number of errors re-

ported to the universe e u (P + 
h 

) = 

∑ 

r ∈ Er r (P + 
h 

) μr . Specular definitions

hold for a negative pattern. 

Pattern features have been studied in several works belonging

to the stream of research devoted to LAD (e.g., Alexe et al., 2007;

Bonates et al., 2008; Hammer et al., 2004 ). Some preference crite-

ria have been described in Hammer et al. (2004) . For instance, sim-

plicity preference is defined as follows: a pattern P h is simplicity-

wise preferred to a pattern P k if and only if Lit ( P h ) ⊆ Lit ( P k ). Selec-

tivity preference is defined as follows: a pattern P h is selectivity-

wise preferred to a pattern P k if and only if s ( P h ) ⊆ s ( P k ). Eviden-

tial preference is defined as follows: a pattern P h is evidentially

preferred to a pattern P k if and only if Cov (P k ) ⊆ Cov (P h ) . How-

ever, the above criteria are not suitable for evaluating the abil-

ity of a pattern in identifying an homogeneous set of individu-

als and to estimate the associated probabilities of the output. In

these cases, we suppose that each labeled record in the sample

S reports the outcome of a discrete choice operated by an ob-

served decision maker, and the set of factors that have affected

that choice. The first is called the output, while the seconds are

called explanatory variables. Discrete choice methods ( Manski and

McFadden, 1981; Train, 2009 ) build models of the decision mak-

ing process that result in the estimation of the probability of

each choice (the output) given the values of m explanatory vari-

ables. The probabilistic nature of these models reflects the hetero-

geneity of the decision makers and the limits of the explanatory

variables in characterizing the choice. Theoretically, with a suffi-

ciently large sample, we could estimate the probabilities P r (+ | r )
and P r (−| r ) of the output by computing the frequencies of the out-

put classes for each combination r of all the explanatory variables.

In practice, the size of the available sample usually does not al-

low this granularity, and, even in more sophisticated estimation

procedures such as logistic regressions, the number of explana-

tory variables has to be reduced in order to avoid over-fitting and

multicollinearity. 

s
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To define a subset (i.e., a category of individuals), we fix a tu-

le of values for k < m of the m explanatory variables, and we de-

ote it by (v i 1 , . . . , v i k ) . In general, each explanatory variable has

 different im portance in determining the behavior. If the chosen

 variables gather enough importance, the frequencies of the out-

ut classes in the subset defined by (v i 1 , . . . , v i k ) would approxi-

ate the respective probabilities. Since each pattern corresponds

o the binarization of a tuple (v i 1 , . . . , v i k ) , it defines a specific cat-

gory of individuals. Given, w.l.o.g., a positive pattern P + 
h 

, the in-

ividuals in Cov (P + 
h 

) are those which, in that category of individ-

als, behave so as to have positive output, while those in Er r (P + 
h 

)

re those which, in the same category of individuals, behave oppo-

itely. Practically meaningful patterns should possess the following

roperties: 

• generality, i.e., they have large correct coverage (large value

of c ); 
• accuracy, i.e., they have small erroneous coverage (small value

of e ); 
• simplicity, i.e., they require few conditions (small value of l ). 

hus, in choosing the patterns, we have to deal with multiple cri-

eria. Given the set of the patterns of one class, we define the effi-

ient patterns. We discuss the case of positive patterns; the discus-

ion for negative ones is straightforward. 

efinition 3. Given a dataset S , a generic record r ∈ S , and the set

 

+ (r) of the positive patterns having r in their correct coverages,

 pattern P h ∈ P 

+ (r) is efficient if it does not exist another pattern

 k ∈ P 

+ (r) such that c ( P k ) ≥ c ( P h ), e ( P k ) ≤ e ( P h ), l ( P k ) ≤ l ( P h ), and at

east one inequality holds strictly. 

In other words, an efficient pattern is non-dominated among

hose in P 

+ (r) . The set of all efficient patterns is the efficient fron-

ier P 

∗+ (r) ⊆ P 

+ (r) of the above set P 

+ (r) . 

emark 4. Given a dataset S , a generic record r ∈ S , and the cor-

esponding set of efficient patterns P 

∗+ (r) , then there is a trade

ff between the accuracy (small value of e ) of a generic pattern on

ne side, and its generality (large value of c ) and simplicity (small

alue of l ) on the other side. 

A simple motivation is obtained by using Boolean arguments.

onsider a generic positive pattern P + ∈ P 

∗+ (r) composed of the

onjunction of l conditions written using a support set U with

ardinality d , thus defined on the Boolean hypercube IB 

d . Since

 

+ represents a (d − l(P + )) -dimensional subcube F ⊆IB 

d with size

 (P + ) = 2 d−l , its size s (P + ) increases when decreasing l , and vice

ersa. The records of S are distributed along the vertices of IB 

d . In

articular, S + and S − tend to be scattered along the vertices of IB 

d 

nd to constitute sets that are hardly coincident with subcubes,

ven though the d binary attributes are selected in (1) by pursu-

ng the best separation of S + and S −. Denote by F + the set of the

ositive records lying on the vertices of F , and by F − the set of

he negative records lying on the vertices of F . The cardinalities of

oth F + and F − cannot decrease when increasing s (P + ) , and ac-

ually they always increase, except in the case when the removed

ondition was irrelevant among those in P + . Now, an increase in

he cardinality of F + increases the generality, while an increase in

he cardinality of F − decreases the accuracy. With respect to the

equirements (c + , e + ) , we observe that, when the requirement c + 

s increased (we pursue generality), patterns need larger s , hence

hey tend to have smaller l and larger e , so the requirement e + 

hould also be increased. On the contrary, if the requirement e + 

s decreased (we pursue accuracy), the value of l tends to increase

nd the requirement c + should also be decreased, since it must be

mall enough with respect to s , that also decreases. 
a tool for the analysis of Probabilistic Discrete Choice Behavior, 
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As a consequence, without an explicit identification the above

fficient frontiers, we should consider both a measure of generality

nd a measure of accuracy to evaluate a generic pattern P h , and

earch for patterns providing good compromises between the two

alues. We now introduce a slightly different measure of accuracy:

he error percentage , defined as follows: 

(P + 
h 

) = 

100 e (P + 
h 

) 

c(P + 
h 

) + e (P + 
h 

) 
% . 

Note that ε(P + 
h 

) is actually the probability that an individual

elonging to the category defined by P + 
h 

has negative output. Now,

e can combine c ( P h ) and ε( P h ), in several ways. In what follows,

e will simply present our procedures by using c ( P h )/ ε( P h ). How-

ver, it should be understood that different combinations of cov-

rage and accuracy can be considered, depending on the preferred

rea in the mentioned trade-off between generality and accuracy,

nd that we can also use c u ( P ) and e u ( P ) to take into account the

nderlying universe. 

We define a first preference criterion, called evidential-

robability : a pattern P h is preferred to a pattern P k with

vidential-probability if and only if c ( P h )/ ε( P h ) > c ( P k )/ ε( P k ). This

ractically means that P h defines a large category of individuals

hat behave quite uniformly w.r.t. the phenomenon under analysis;

herefore P h is meaningful. To apply this criterion, we can sort, sep-

rately for each class, all patterns by decreasing values of c ( P )/ ε( P ),

nd take those in the initial positions of the ordering of each

lass. 

However, to obtain meaningful patterns, we also have to deal

ith another aspect. In complex phenomena, there are vari-

bles that are strongly associated (for example, level of education

nd professional position). Hence, the same aspect of the phe-

omenon can be explained by patterns alternatively using these

trongly associated variables, since such patterns would cover

ighly overlapping sets of records. In general, we would like to

void this kind of redundancy, even if the presence of such al-

ernative explanations may be interesting when they derive from

he joint effect of different groups of variables in two different

atterns, rather than from the direct association of two single

ariables. 

.1. Ordering by using incremental coverage 

A crucial weakness of the simple criterion described above is

hat the coverages of different patterns may overlap. A pattern P h 
ay have a high value for c ( P h )/ ε( P h ); however, if P h covers almost

he same records of another pattern P k preceding P h in the above

efined ordering, it becomes far less interesting. To overcome this

eakness, we define the incremental coverage Cov I (P h ) . Given an

rdering O of the patterns of one class, positive w.l.o.g., and ex-

ressing that P k precedes P h in O by P k ≺ P h , the incremental cov-

rage Cov I (P h ) is the set of the records of S + covered by P h and

ot in Cov (P k ) for all k such that P k ≺ P h . For the first pattern in

he ordering, the incremental coverage coincides with the cover-

ge. The incremental number of hits is c I (P h ) = | Cov I (P h ) | . Given

, we define similarly the incremental erroneous coverage Err I ( P h ),

he incremental number of errors e I ( P h ) and the incremental error

ercentage ε I (P h ) = 100 e I (P h ) / (c I (P h ) + e I (P h ))% . One way to com-

ute these values is to keep a matrix M of the incidences between

atterns and records: each element m hk is: 1 if r k ∈ Cov (P h ) ; -1 if

 k ∈ Err ( P h ); 0 otherwise. 

We can now define a second preference criterion, called

isjoint evidential-probability : a pattern P h is preferred to a

attern P k with disjoint evidential-probability if and only if

 

I ( P h )/ ε
I ( P h ) > c I ( P k )/ ε

I ( P k ). This means in practice that P h defines

 large category of individuals that behave uniformly, and that

re disjoint enough (even if not completely) from the categories
Please cite this article as: R. Bruni et al., Logical Analysis of Data as 
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efined by the patterns preceding P h in O. To identify mean-

ngful pattern according to this criterion, we use the following

rocedure 1 for each class separately. 

Procedure 1 : find sufficiently disjoint meaningful patterns 

1. Input The set of patterns P of one class; the pattern-records

incidence matrix M . 

2. Output An ordering O 

I of P by disjoint evidential-probability. 

1. Initialization: Order the patterns by decreasing values of

c ( P )/ ε( P ), obtaining the initial ordering O 0 . Let π := 1. 

2. Iteration t: 

a) For the patterns in the positions from π + 1 to the last one of

O t , compute c I t and ε I t corresponding to the current ordering O t 

using matrix M . 

b) From position π + 1 to the last one of O t , sort the patterns by

decreasing values of c I t /ε 
I 
t , obtaining a new ordering O t+1 . 

c) Compare O t+1 to O t and let π be the last position until which

O t and O t+1 coincide. 

d) Check if the pattern in position π + 1 already assumed that po-

sition in a previous iterations and subsequently left it. If YES,

then fix it in position π + 1 and let π := π + 1 . 

e) If O t+1 � = O t , then let t := t + 1 and repeat the Iteration . Else,

let O 

I := O t+1 and exit . 

he above Procedure 1 terminates, because the ordering will al-

ays converge. Indeed, consider the sequences O t and O t+1 ob-

ained at two generic consecutive iterations. Sequences O t and

 t+1 coincide at least in the first position, because the first pattern

n the ordering O 0 will always maintain its position when switch-

ng to incremental coverages. Now, let π be the last position of

he ordering in which O t and O t+1 coincide. Each time that the

ncremental coverages are recomputed, they cannot change for all

he positions that go from the first till the π–th. Hence, π can-

ot decrease. There is a slight chance that it could remain the

ame, when two (or more) patterns cyclically swap their positions

rom one ordering to the next. To avoid this and similar situations,

e perform step (d): whenever the pattern in position (π + 1)

yclically assumes different positions and then returns to position

(π + 1) , we fix it to that position and we proceed. Therefore, π
s forced to increase, at least after a certain number of iterations

n which it remains constant. Consequently, the ordering will con-

erge to a final one called O 

I . The procedure is computationally

iable, since it essentially recomputes incremental coverages and

orts values. 

Patterns in the first positions of O 

I represent good compromises

etween coverage, accuracy and disjointness of the coverages. The

umber of patterns to bring out can be chosen, for instance by tak-

ng them until they cover at least a certain portion of the dataset,

r until their value for c I t /ε 
I 
t is above a certain threshold (a pat-

ern with c I < e I would add more errors than correct cases, so there

ould be reasons to reject it). Experimentally, we pass from a set

f several thousands of patterns to a few hundreds that are able to

over almost the whole dataset. 

.2. Generation of orthogonal patterns 

The above described Procedure 1 heuristically aims at obtain-

ng patterns that correspond to disjoint categories of individu-

ls. However, it cannot provide a bound on the amount of dis-

unction between such sets. We say that two patterns are or-

hogonal if their coverages are disjoint, i.e., they have empty in-

ersection. The following Procedure 2 is a new ordering proce-
a tool for the analysis of Probabilistic Discrete Choice Behavior, 
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dure able to provide the pairwise orthogonality of the generated

patterns. 

Procedure 2 : find orthogonal meaningful patterns 

1. Input The set of patterns P of one class; the pattern-records

incidence matrix M . 

2. Output A set of internally orthogonal patterns P 

O build over P .

1. Initialization: Order P by decreasing values of c ( P )/ ε( P ), select

the first pattern and call it P 1 . That is also the first orthogonal

pattern P O 
1 

. 

2. Iteration t: 

a) Drop from M all columns (records) in Cov (P O t ) . If the remaining

columns are less than a threshold ν , exit . 

b) For each row of M , update the number of hits and of errors to

determine a new set of patterns P t . 

c) In P t select the pattern which maximizes c ( P )/ ε( P ) and call it

P t+1 . 

d) Compute the logic negation of the previous orthogonal pattern

P O t and generate the next orthogonal pattern P O 
t+1 

= P t+1 ∧ ¬ P O t ;

let t := t + 1 and repeat the Iteration . 

The above Procedure 2 will generate patterns until they cover at

least a certain portion of the dataset (for example, almost all).

Clearly, the length of the orthogonal patterns l(P O t ) rapidly in-

creases. However, experimentally, we only need a very small num-

ber of patterns to cover almost the entire dataset. Moreover, even

the sequence of patterns P t (those without the negation of the pre-

vious ones) will have an interesting practical significance, with the

advantage of being more easily readable. Furthermore, the condi-

tions defined by each P t , for t = 1 , . . . , τ, when τ is not greater

than 4 or 5, can be used to produce a partition of the whole

dataset by considering all the 2 τ combinations of their asser-

tions/negations. This constitutes a partition of the individuals in

categories that are relevant for the phenomenon under analysis.

The procedure is computationally viable, since it essentially up-

dates number of hits and errors, finds the maximum of a vector

and writes logical negations. The above Procedures 1 and 2 were

selected as the most representative of the many others developed

and tested. 

4. The analysis of the diffusion of the internet 

We apply the methodology presented above to analyze the dif-

fusion of the Internet among Italian population. The Italian lag

in the household Internet demand, and in particular in broad-

band services demand, has been widely analyzed by international

sources ( Eurostat, 2017 ), proposing several explanations. On the

demand side, a major barrier is the Italian population structure,

characterized by high elderly-to-youth ratios (similar only to those

of Germany, in the whole European Union). Moreover, educa-

tion levels (and consequent skills and interests) are sometimes

lower than in other European comparable countries (i.e., Germany,

France, Spain, United Kingdom), especially for the elderly peo-

ple. Finally, Italy has also a low level of labor market participa-

tion, due to the number of retired people, housewives and NEET

(Not in Education, Employment, or Training), high level of un-

employment, and a high percentage of unskilled or blue collar

workers. In Dolente et al. (2010) , contingency matrices show that

the four variables Education, Age, Working status, and Professional

level strongly influence the individual use of the Internet. However,

since digital divide is a complex and multifaceted issue, we expect

that, in different homogeneous segments of the population, differ-

ent factors are relevant, or that their effects have different inten-

sity. The building of causal statistical models of Internet usage is a
Please cite this article as: R. Bruni et al., Logical Analysis of Data as 
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rerequisite for the design of effective policies aimed at fostering

nternet connection demand in Italy, in order to meet the goals of

he European Digital Agenda ( European Commission, 2014 ), which

ets objectives for the growth of the European Union digitalization

y 2020. 

In the literature, causal analyses of these phenomena usually

dopt Logit and Probit models ( Agresti, 2007 ) of individual discrete

hoice. Examples can be found in Cerno and Pérez Amaral (2006) ;

haudhuri et al. (2005) ; Flamm and Chaudhuri (2007) and

hitacre and Rhinesmith (2016) . A first step in developing a casual

odel for Italy is performed in Dolente et al. (2010) using a logistic

egression. While the model appears satisfactory in terms of fitting

nd interpretation of the phenomenon, further exploration of data

s needed to understand whether: 

(i) Different and simpler explanations are possible for different

segments of the population. A clusterization of the cases may

improve the explanation of the endogenous variables in each

cluster; for example, in some segments of the population, the

Internet is not used because of lack of interest or skills, while

in others budget constraints prevent the adoption by interested

people. 

ii) Alternative classification rules produce equivalent aggregated

characterization of the data; for example the joint effect of

working status and professional level may be used instead of

a qualitative variable on the economic satisfaction of the indi-

vidual. 

ii) Any additional variable not included in the original logistic

model is discovered to play a role in the causal explanation of

the output. 

v) Any additional variable without strict causal effect can nev-

ertheless improve classification and explanation. This may oc-

cur when an observed behavioral variable is associated to

the endogenous variable through the effect of latent factors

affecting both, as in seemingly unrelated regression models.

Examples are the association between Internet use and the

use of credit cards or the propensity to tourism or cultural

consumption. 

.1. The dataset 

A survey provided by the Italian National Institute of Statis-

ics (Istat) collects every year a large variety of data about socio-

conomic status and daily habits of more than 46,0 0 0 individ-

als belonging to about 20,0 0 0 households, chosen to represent

he whole Italian population. The survey can be used to estimate

 number of statistical tables, significant at regional level. How-

ver, the use of microdata (i.e., the set of all the answers pro-

ided by each respondent) allows a far greater flexibility in ex-

loring individual behavior. The aspects investigated in the sur-

ey include: Socio-demographic and professional characterization

f the individual; Education; Household structure and composi-

ion; Dwelling features, issues and surrounding area; Nutrition and

ifestyle; Drugs consumption and medical conditions; ICT related

ehavior of individuals and households (as required by the harmo-

ized Eurostat surveys that support the European Digital Agenda

oal assessment and policy development); Daily commuting; Cul-

ural consumption, spare time and social participation; Household

oods ownership; Environment and recycling; Security; Satisfaction

or different aspects of life. 

We extracted a dataset composed of 39 explanatory variables

nd 34,455 records from the 2012 edition of survey, by considering

ll the variables that may represent socio-economic and cultural

eterminants related to Internet use, and the output class, which

s 1 if the individual is an Internet user (at least once a week) and

 otherwise. Note that the selected subset of possible explanatory
a tool for the analysis of Probabilistic Discrete Choice Behavior, 
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Table 1 

Summary of the results in the different tests. 

Test 1 Test 2 Test 3 Test 4 Comparison with 

pure SLAD fuzzy SLAD SLAD + Procedure 1 SLAD + Procedure 2 C 4.5 Decision Tree 

Parameters c + 10 5 10 10 n.a. 

c − 10 10 10 10 n.a. 

ε + 0% 20% 20% 40% n.a. 

ε − 0% 10% 20% 40% n.a. 

Positive patt. Total patterns selected 6650 6761 198 7 32 

With incremental coverage 1314 420 198 7 32 

Avg. incremental coverage 1.1 2.6 87 2057 618 

Max coverage 164 6544 8096 8096 8142 

Max number of conditions 10 10 6 2 11 

% records covered ( + ) 42% 96% 96% 80% 100% 

Avg. patterns covering each record 21 148 85 1 1 

Negative patt. Total patterns selected 72,682 10,856 243 7 27 

With incremental coverage 2621 1034 243 7 27 

Avg. incremental coverage 0.2 1.3 65 1872 543 

Max coverage 1673 4175 8144 7236 3945 

Max number of conditions 6 13 8 3 11 

% records covered (–) 90% 86% 96% 80% 100% 

Avg. patterns covering each record 341 114 98 1 1 

Running time of the whole test (in s) 5330 2680 970 590 60 
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ariables is much larger than the set of variables typically used in

 discrete choice model. In particular, in Dolente et al. (2010) the

odel of the phenomenon takes into account 9 variables. Indeed,

e are also interested in verifying if our approach can help in

dentifying the best subset of those variables based on accuracy,

enerality and parsimony criteria. 

.2. Empirical results 

We perform experiments using the described version of LAD,

alled SLAD (Statistical and Logical Analysis of Data) ( Bruni and

ianchi, 2015 ), with and without Procedures 1 and 2 , to evaluate

heir advantages. The binary attributes obtained from the original

ariables are 70. We also apply to the same dataset a C4.5 de-

ision tree algorithm ( Quinlan, 1993 ). Results are summarized in

able 1 . For each test, we report input parameters (see Section 3 )

nd the following output performance indicator for the patterns in

ach class: 

• the total number of patterns selected, the most relevant indica-

tor of problems of redundancy and fragmentation; 
• the number of patterns that provide a positive incremental cov-

erage; 
• the maximum cardinality of the coverage of a single pattern,

that indicates whether we obtain at least one pattern with large

generality; 
• the average cardinality of the incremental coverage, computed

on the whole set of selected patterns, that indicates the capac-

ity of the algorithm in limiting the redundancy of the generated

patterns; 
• the maximum number of conditions appearing in a single pat-

tern, useful to assess the generality and the readability of the

selected patterns; 
• the percentage of records in the sample covered by the whole

set of selected patterns, in order to provide evidence of the

suitability of the algorithm; 
• the average number of patterns that correctly cover a single

record, a useful indicator of the redundancy of the selected pat-

terns. 

n Test 1 we generate patterns as described in Section 2 , and we

llow only pure patterns. This means that we are actually ignoring

he probabilistic nature of the phenomenon, looking for subsets of
Please cite this article as: R. Bruni et al., Logical Analysis of Data as 
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he sample characterized by the same value of the output class.

e obtain a huge number of patterns, with a small maximum

nd average incremental coverage, as a consequence of Remark 4 .

ost importantly, only 7641 out of the 18,077 (about 42%) posi-

ive records in the data set are identified by at least one pattern,

hile 14,762 out of 16,378 (about 90%) negative records are identi-

ed. This suggests that it is much easier to find categories of peo-

le that do not use the Internet at all. The selected patterns, espe-

ially the negative ones, have large overlaps: each positive [nega-

ive] identified record is covered by 21 [respect. 341] patterns, on

verage. This may mostly be due to correlation between different

xplanatory variables. The results of this first test are clearly not

atisfactory: the large number of patterns, even restricting to those

hat provide an incremental coverage, makes it difficult to gain in-

ights on the phenomenon. Note that, when using the techniques

escribed in Section 2 (tests 1 and 2), the incremental coverage

f each pattern is computed ex-post, after ordering the patterns

y decreasing total coverage. When using Procedures 1 and 2 of

ection 3 (tests 3 and 4), patterns with no incremental coverage

re directly excluded by the algorithm. 

To improve the above results, in Test 2 we change some param-

ters, still using only the pattern generation of Section 2 . First, we

llow patterns selecting a given maximum percentage of records of

he opposite class. Secondly, we use asymmetric parameters, since

egative records are more homogeneous. For example, by setting

 

+ = 5 , ε + ≤ 20% , c − = 10 , ε − ≤ 10% , we obtain 6761 positive and

0,856 negative patterns. Both the maximum and the average in-

remental coverages are higher than in Test 1, for positive and

egative patterns. Moreover, there is a significant improvement in

he percentage of positive records covered. However, the resulting

et of patterns is still too large to provide useful insights of the

henomenon. These results highlight the need for procedures tai-

ored on the specificities of the probabilistic discrete choice set-

ings, and allow us to explore the trade-offs among our different

oals: 

• discrimination power between the two output classes (Inter-

net users and non-users), however considering that probabilis-

tic behavior implies that we deal with non-homogeneous sub-

sets, and that the distributions of the output classes in each

region of the space are not known in advance; 
a tool for the analysis of Probabilistic Discrete Choice Behavior, 
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Table 2 

Positive patterns produced by Test 3. 

Table 3 

Negative patterns produced by Test 3. 
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• relevance, i.e. the patterns should cover a large number of ob-

servations; 
• simplicity, i.e. the patterns should consist in a small number of

conditions; 
• non-redundancy, i.e., the pattern should have limited

( Procedure 1 ) or no overlap ( Procedure 2 ) with each other. 

Procedure 1. We perform Test 3 using the incremental coverage as

ordering criteria (see Section 3.2 ). The algorithm selects 198 pos-

itive patterns and 243 negative patterns. This is an important im-

provement with respect to the thousands of patterns obtained in

the first two tests. Moreover, in order to increase the readability of

the results and therefore the understanding of the phenomenon,

we can set some ex-post criteria and drastically reduce the num-

ber of patterns. If we select patterns with an incremental coverage

of at least 200 records, and with a maximum incremental error

of less than 45%, we obtain only 8 positive patterns, which alone

correctly identify 84% of the Internet users in the dataset, and 5

negative patterns, which alone correctly identify 75% of the non-

users. Their analysis is in Tables 2 and 3 . However, these patterns

still partially overlap. Every selected record is covered by about 3

different patterns. 

Procedure 2. In Test 4, a pattern added in the step i of the pro-

cedure selects records that were not selected in the previous i − 1

steps. Hence, each pattern is generated only if it is strictly needed

to cover a predefined minimum number of additional records.

Moreover, we can logically define the region of the space added

at the step i as the conjunction of the conditions in pattern i with

the logical negation of all the previous i − 1 patterns. In principle,

this allows us to identify the logical expressions of a partition of
Please cite this article as: R. Bruni et al., Logical Analysis of Data as 
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he set of all the selected records. In practice, the resulting expres-

ions may become cumbersome. However, the logical disjunction

f the selected patterns provides a readable expression for the set

f all the selected records in the output class. 

The results for positive patterns are in Tables 4 . The total num-

er of users covered by this set of positive patterns is 14,399

ut of 18,077, that is 80% of the sample. In particular, the first

attern shows how 8.096 users are described by the conjunction

f just two conditions: education level at least high school and

igh level of cultural consumption. The latter represents an index

hat summarizes the cultural habits of an individual in the last 12

onths, such as attending concerts, sports events, visiting muse-

ms, going to cinema, reading books etc. Moreover, the percent-

ge of non-users selected by this pattern is just 14.45%. Interest-

ngly, the second pattern covers under-35 users that are not cov-

red by the previous pattern, i.e. that do not have a high level

f education or cultural consumption. This pattern is neverthe-

ess quite large, covering 3759 users with a non-users incidence of

6.25%. 

By applying De Morgan’s Laws, it is possible to simplify the dis-

unction of the selected positive patterns, obtaining the following

xpression: 

( Age ≤ 34) ∨ ( Income source = Salaried job ) ∨ 

( AC ownership = yes ) ∨ ( Cre dit card = yes ) ∨ 

( Education = High School or University ) 

his is an important finding, showing that Internet use is influ-

nced by the young age, the income source and the level of ed-

cation. The algorithm has selected the last two variables as the

ost parsimonious proxies of the economic habits of the Italian
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Table 4 

Positive patterns produced by Test 4. 

Table 5 

Negative patterns produced by Test 4. 
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ouseholds. Air conditioning is still considered a luxury good, and

olding a credit card may be a proxy of both income and a positive

ttitude towards innovation. 

The results for negative patterns are in Tables 5 . In this case,

3,102 out of 16,378 non-users are covered by the selected pat-

erns, again 80% of the sample. The largest (7236 records) and

ost homogeneous (18% of users) pattern is made up of non-users

hat do not possess a credit card, have a lower degree of educa-

ion and are currently married. Another 3520 non-users have a

ow level of education and of cultural consumption, but do have

 credit card or are currently married. Negative patterns involve

 larger number of conditions overall (11 vs 7) and do not allow

he level of simplification of the previous class. Anyway, consid-

ring just the first four patterns, which cover most of the cases

n the partition (13,032 out of 13,102), we obtain this important

escription: 

( Age ≥ 55) ∨ ( Edu. = Middle or lower ∧ Cultural cons. = low ) ∨ 

( Cre dit card = No ) ∧ ( Holidays = No ) ∨ 

( Edu. = Middle or lower ∧ Credit card = No ∧ Marital Status = Married )

e finally compare the above results to the output of a C4.5 de-

ision tree. We note that the comparison is not straightforward,

ecause the tree algorithm gives directly by construction a parti-

ion of the dataset, so 100% of the records are covered, and each

ecord is covered by only one set of conditions: those obtained

isiting the tree from the root to the leaf containing that record.
Please cite this article as: R. Bruni et al., Logical Analysis of Data as 
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n the other hand, the sets of conditions characterizing each leaf,

hat we will here call leaf patterns, do not have predetermined

ength and may be considerably more complicated than the pat-

erns generated by Procedures 1 and 2 . The decision tree finds

7 positive and 32 negative leaf patterns, using at most 11 binary

plitting conditions based on 18 explanatory variables. By compar-

son, Procedure 2 uses 12 explanatory variables and the maximum

umber of conditions in the patterns is 3. 

The following 8 explanatory variables are in common between

he decision tree and the patterns: Age; Credit card holder; Cul-

ural consumption; Education; Geographic area; Income source;

inship with head of the HH; Labor status. One more variable is al-

ost in common, since it appears in two specular versions: Num-

er of income receivers and Number of persons without income.

he 9 variables used in the decision tree and not in the patterns

re: At least a 4-day holiday in the past year; Education of head of

he HH; Professional condition; Sector of activity; Takes courses in

nformatics; Sex; Title for the house (ownership, rent, etc.); Type

f house; Presence of fixed telephone. On the other hand, the 3

ariables used in the patterns and not in the decision tree are: Av-

rage number of cars per person; Marital status; Presence of A.C.

e observe that some of the variables selected only in the decision

ree are actually highly correlated (Professional condition; Sector of

ctivity, Takes courses in informatics), while some of the variables

elected only in the patterns constitute a very good and compact

escription of the lifestyle of the household (Average number of

ars per person; Presence of A.C.). 
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The coverage of the largest leaves and patterns ( i.e. , those

covering more records) have comparable values, and in gen-

eral the homogeneous categories of individuals obtained by the

two approaches have similar sizes. The patterns generated by

Procedure 2 differ from the leaves of the C4.5 tree, because of

course there exist differences both in the algorithms and in the

type of settings that the user can chose. However, patterns and

leaves often represent similar concepts expressed using different

variables, due to the high degree of correlation existing among

the variables. For example, by comparing the composition of the

largest leaves and patterns, we find that 73.2% of the records that

are in the largest positive leaf are also contained in the largest pos-

itive pattern, while, on the other hand, 65% of the records in the

largest negative leaf are also contained in the largest negative pat-

tern. Thus, Procedure 2 was able to produce a description that can

be considered functionally equivalent to that of the decision tree

but whose format can be somehow more controlled. 

Though it was not the main purpose of our study, because the

behavior we analyze is inherently probabilistic, we also evaluate

the accuracy obtainable by the sets of selected patterns (Tests 3

and 4) in classifying unseen data of the same nature using the

LAD classification techniques described in Section 2 , with pattern

weights w h based on coverage. The overall classification accuracy

is defined as the percentage of cases in which the predicted class

coincides with the observed class. We perform a cross validation

using the dataset of the same Istat survey about socio-economic

status and daily habits in the year 2013, which is composed of

entirely different individuals, and we obtain an accuracy of 77.0%

for the patterns of Test 3 and 75.5% for those of Test 4. Since the

same sets of patterns, if used to classify the 2012 dataset, give

an accuracy of 78.5% and 75.8% respectively, we conclude that our

procedures are able to identify rather stable probabilistic phenom-

ena whose incidence is similar in the training and test sets. When

using the smaller set of patterns (Test 4), the number of records

which are not covered by any of the selected patterns slightly in-

creases. However, the considerable improvement in the intelligibil-

ity of the patterns compensates such a small decrease in the cov-

erage. 

Furthermore, to evaluate the intrinsic difficulty of the classifica-

tion task over the same datasets, we repeat the same classification

using different classifiers. This was done by means of scikit learn

( Pedregosa, 2011 ), that is a very good machine learning package

currently included into scientific Python distributions. In our case,

the best results have been obtained with Random Forest classifier,

producing an accuracy of 77.3%. This means that, for these datasets,

the two classes are inherently overlapping, and that the patterns

selected by our procedures also possess an appreciable ability of

generalization. 

5. Conclusions 

We have presented here a new and computationally viable ap-

proach to obtain patterns that can be practically meaningful for

the analyses of Probabilistic Discrete Choice Behavior. In particular,

we have developed procedures carefully designed to satisfy the re-

quirements specific to this class of problems. These procedures are

aimed at the identification of patterns representing the best com-

promises between accuracy and coverage and at providing disjoint

coverages. We report results for the important case of the analysis

of the individual use of the Internet in Italy. Our procedures could

identify surprisingly small sets of patterns that are able to describe

this complex phenomenon. Although these automatic procedures

do not provide a proper interpretative model, the selected patterns

greatly support the identification of different categories of people

that may need different actions to be encouraged to use the In-

ternet. The described approach works only at the formal level and
Please cite this article as: R. Bruni et al., Logical Analysis of Data as 
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utomatically; thus, it can be applied to problems arising also in

ery different contexts. 
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