
Identifying e-Commerce in Enterprises by means

of Text Mining and Classification algorithms

Gianpiero Bianchi1, Renato Bruni2∗, Francesco Scalfati1

1) Istat, Direzione centrale per la metodologia e disegno dei processi

statistici (DCME), Via Depretis 77, Roma, 00184 Italy

E-mail: {gianbia,scalfati}@istat.it
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Abstract
Monitoring specific features of the enterprises, for example the adoption of e-commerce,
is an important and basic task for several economic activities. This type of information
is usually obtained by means of surveys, which are costly due to the amount of personnel
involved in the task. An automatic detection of this information would allow consistent
savings. This can actually be performed by relying on computer engineering, since in
general this information is publicly available on-line through the corporate websites. This
work describes how to convert the detection of e-commerce into a supervised classification
problem, where each record is obtained from the automatic analysis of one corporate web-
site, and the class is the presence or the absence of e-commerce facilities. The automatic
generation of similar data records requires the use of several Text Mining phases; in par-
ticular we compare six strategies based on the selection of best words and best n-grams.
After this, we classify the obtained dataset by means of four classification algorithms: Sup-
port Vector Machines; Random Forest; Statistical and Logical Analysis of Data; Logistic
Classifier. This turns out to be a difficult case of classification problem. However, after a
careful design and set-up of the whole procedure, the results on a practical case of Italian
enterprises are encouraging.

Keywords: Classification; Big Data; Machine Learning; Data Engineering;
Data Mining

1 Introduction

A common basis for several data engineering tasks is the collection of information regarding
specific features of enterprises or similar entities. This information is usually obtained by means
of surveys, which are costly due to the amount of personnel required for the practical realization
of the task, especially personnel from all the respondent organizations. On the other hand, an
automatic detection of the features of interest, if possible, would allow consistent savings. One
important case is monitoring the adoption of e-commerce in enterprises. This information
is necessary, for example, in several economic, social or statistical analysis. An automatic
detection of the presence of e-commerce can be done, since in general this information is publicly
available on-line through the corporate websites. However, to extract this information with some
degree of reliability, several processing steps are required.
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Given a set of data records grouped in two or more classes (i.e., labeled), the task of
classification consists of learning from these labeled data a criterion to assign the class to new
unlabeled data. The set of labeled data is called training set; another set of labeled data
used to evaluate the results of a classification algorithm by comparing the predicted and the
actual classes is called test set. Classification is a fundamental Data Mining aspect, and many
different classification algorithms have been proposed in the literature. See for references, e.g.,
[16, 19]. The above described detection task can be seen as a classification problem, where each
data record refers to the website of a single enterprise, and its class is presence or absence of
e-commerce.

Obtaining such data records from the corporate websites is a Text Mining operation. Text
Mining is the branch of Data Mining concerning the process of deriving high-quality information
from text, see also [13].This area underwent noteworthy improvements in recent years (see, e.g.,
[22, 14]), with a number of concurrent factors contributing to its progress, first of all the
continuous expansion of the Internet and the demand for effective search strategies.

However, the above described problem turns out to be a very difficult case of the classifi-
cation problem, for several reasons. First, it has a very large dimension, because each record
has thousands of fields. Secondly, the data records should be automatically generated from the
content of each single website. This is a complex selection process that requires the use of dif-
ferent Text Mining phases. Thirdly, the problem is inherently difficult, since the data produced
in this manner are inevitably noisy and not completely homogeneous. Web sites are of course
not standardized, part of the information of a website is provided to the human users by means
of the graphics rather than the text, etc. Therefore, to obtain a satisfactory accuracy in the
classification phase, a quite articulated procedure has to be developed. Previous attempts in
solving the same problem are described in [2, 3, 10].

In this work, we describe our strategy for classifying a list of 2,794 websites of Italian
enterprises in order to automatically detect whether each website offers e-commerce facilities
or not. We proceed as follows. Given the list of the websites of the above enterprises, we
extract all the text from those websites by means of an automatic scraping procedure, and
we use this text to prepare the data records. Such records should contain only the relevant
part of each single website, that is in practice a selection of its words possibly integrated with
additional information that could be automatically retrieved. Additional information may be:
the presence of credit card or currency logos, the presence of login forms for the users, and
in general any non-textual information that would be judged relevant to the analysis. These
records are then used to write the document-term matrix, that is a matrix reporting, for each
record, the frequency of each of the words in the above mentioned selection.

Data records and document-term matrix are obtained by applying several Text Mining
procedures. In particular, we identified six different effective ways to process the dataset: using
only the best words, with or without lemmatization; using only the best n-grams; using both
the best n-grams and the best words, with or without the lemmatization; using the best n-grams
and then a word embedding procedure. Hence, we obtain six different versions of the dataset,
which are finally classified by using four state-of-the-art classification algorithms: Support
Vector Machines; Decision Trees; Statistical and Logical Analysis of Data; Logistic classifier.
These were selected through preliminary experiments in which such classifiers appeared the
most adequate for similar problems.

The main content of this work is therefore the description of innovative mining techniques
to convert the problem of the detection of e-commerce into a data classification problem, and
a comparison of the practical results of these techniques. The work is organized as follows.
Section 2 presents the different Text Mining procedures used. Section 3 describes the selected
classification algorithms. Section 4 reports the practical results of the described approach and
their analysis. Finally, Section 5 draw conclusions.
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2 The Text Mining Phase

We initially extract the text from each single website, by using the web scraping procedure
described in Subsection 2.1. This procedure reads the accessible pages of the website and saves
to a single text file all the text (and possibly the additional information mentioned in Section 1)
that could be retrieved. We receive in input the list of the corporate websites. The list used in
our experiments had 2,794 entries, chosen randomly among the Italian enterprises with at least
10 persons employed, hence we obtained 2,794 very large text files. After this, each text file
receives the class label, that is whether the corresponding website actually offers e-commerce
facilities or not. We denote by D the dataset obtained, each element of D being a text file
labeled with the class. To perform the classification task, we initially select within D a training
set S composed of 50% of the elements of D. The remaining part of D constitute the test set T .
Hence, the elements of T actually have the class label, but that label is kept hidden during the
whole process until the classification of T has been performed, and it is only used afterwards,
to evaluate the accuracy of the classification produced.

By working on the elements of S, we operate a number of selection steps, in order to obtain
records containing, as much as possible, only information that is relevant for the classification,
and not very large and unstandardized collections of text. These records are used to write the
document-terms matrix. We have identified four basic manners to perform such selection steps,
that are listed below. We describe them in detail in the following Subsections 2.2, 2.3, 2.4, 2.5,
and we compare their performances in Section 4.

1. Best words with lemmatization.

2. Best words without lemmatization (but with a dictionary).

3. Best n-grams (with or without a dictionary).

4. Best n-grams followed by word embedding.

Some of the above techniques are obviously in mutual exclusion, while others can be combined.
In particular, we use also the combination of 1 and 3 and the combination of 2 and 3. These
combinations will constitute the fifth and sixth alternatives in Section 4. We observe that,
generally speaking, the combinations often produce improvements in the results. However,
these combinations also increase the computational burden of the resulting procedure, as it
becomes the sum of those given by the two component basic techniques, while the improvements
are much more limited. In the following subsections we describe in detail all the operations
mentioned here.

2.1 Web Scraping

The web scraping procedure is implemented in java; it works by reading the homepage and all
the sub-pages directly accessible from it. It subsequently discards the text of the sub-pages not
containing any word from a pre-compiled list I of words of interest for e-commerce (e.g., price,
cart, pay, buy, etc.). Indeed, when none of these words appear in a subpage, that page is likely
not concerning e-commerce. The scraping procedure also discards all non-alphabetic strings of
characters, while it handles all html and javascript code. Note that we do not read the pages
not directly linked to the homepage, because they would add a consistent number of words that
are however scarcely informative, and thus would mainly constitute additional noise.

On the other hand, for the accepted pages, this procedure performs also Optical Character
Recognition (OCR) on all types of images, in order to read also the words provided as images,
which are often written with such a special emphasis because they are particularly relevant.
Furthermore, this procedure takes the screen-shot of the homepage and performs OCR on that,
too. Indeed, many websites try to catch the eye on the key sentences of the homepage by
adopting unusual writing techniques. OCR is achieved by using the Tesseract Open Source
OCR Engine, initially developed by Hewlett Packard Research before 1995 and subsequently
by Google Research since 2006 [26].
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Finally, we complement the text extracted so far with the additional information mentioned
in Section 1. In our case, we encode with special words the presence in a webpage of the
following features: (1) a login form for the users registered to that website; (2) a credit card
logo (visa, mastercard, etc.); (3) a currency logo (euro, dollar, etc.). This information may
be further enriched by means of systematic interrogations of search engines. An important
example is the text provided by a search engine as an automatic summarization of each search
result.

The result of the above operations is a very large text file for each website. Now, each of
such text files receives the class label, that is positive if the corresponding website actually offers
e-commerce facilities, and negative otherwise. The class is obtained from the dataset used in
[2], and it may contain a small degree of noise in the class label (misclassification errors). Note
also that the obtained dataset D is quite imbalanced: positive records are not more than one
fourth of the total. These two aspects contribute to make the classification difficult. However,
they have been kept on purpose, since the real cases of the considered problem generally share
these features.

2.2 Best Words with Lemmatization

We process all the elements in S with the software TreeTagger. This tool performs part-of-
speech recognition (POS tagging) and lemmatization in several languages. It was initially
described in [25] and it was subsequently developed by several contributors. Hence, every word
contained in these training files is identified as a particular part of speech (e.g., a noun, a verb,
etc.) and it is lemmatized, that is, the inflectional ending of the word is removed in order to
return the word to its basic lemma. This allows to group together the different inflected forms
of a word (e.g., plurals of nouns, tenses of verbs, etc.) so they can be analyzed as a single item.

This process is applied to any word, at first with the version of TreeTagger developed for the
Italian language. If the word is an Italian word, this process returns the lemma corresponding
to the word. If the word is not an Italian one, the above process returns that the word is un-
known. In this case, the process described above is applied again with the version of TreeTagger
developed for the English language. If the word is still unknown, this means that that word
belongs to a different language, or that it may have been produced by some error; in any case,
that word is discarded. Indeed, many websites of our list are in Italian language only, and we
expect that the Italian and the English versions of the multi-language websites are enough for
performing our classification task.

Finally, we use this “normalized” training files to extract the best words, i.e. the most
characterizing words for our detection task. We do this by using a procedure implemented in
Python that uses functions available from the Natural Language Toolkit (NLTK) 3.0 (see also
[4, 23]). Such a procedure initially removes the stop-words (articles, prepositions, etc.), and
then computes, for any remaining word w, a score s(w) = χ2

+(w) + χ2
−(w), where χ2

+ is called
positive score and χ2

− negative score. These scores are based on the well known “chi-square
test”, and the basic idea is to give a measure of the dependence between the presence of w and
the class of a file. The positive score is defined as follows:

χ2
+ =

p(p11p22 − p12p21)2

(p11 + p12)(p21 + p22)(p11 + p21)(p12 + p22)
,

where p11 is the number of occurrences of w in positive files; p12 is the total number of occur-
rences of w; p21 is the number of all distinct words occurring in positive files; p22 is the total
number of all distinct words; and p = p11 + p12 + p21 + p22.

The negative score is defined similarly, except that p11 becomes the number of occurrences
of w in negative files and p21 the number of all distinct words occurring in negative files. Recall
that positive files are those generated from websites offering e-commerce facilities; negative
files are those generated from websites not offering them. After this, all words are sorted by
decreasing score values, and the first ones are called best words. In particular, we extract
the first 1,000 of them, which constitute the set W1 of the 1,000 most characterizing words,
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reduced to their underlying lemmas, in Italian or English language, selected on the basis of their
conditional frequencies. The value 1,000 was selected as a good compromise between accuracy
and speed in our experiments. If we select more than 1,000 words, the procedure becomes
slower with very modest improvements in accuracy (allegedly, almost all the words that are
really “characterizing” already appear within the first 1,000 positions). On the other hand, if
we select less than 1,000 words, the procedure loses an accuracy not sufficiently compensated
by the improvements in speed.

2.3 Best Words without Lemmatization

In this case, we perform the same operations described in the above Subsection, but without
the lemmatization step. Instead of that, we simply filter all the text by using dictionaries:
we accept only the words appearing in a (reasonably complete) list of all Italian and English
words, containing also all the possible inflectional forms. These dictionaries were obtained from
the mentioned software TreeTagger. In this manner, we extract the set W2 of the 1,000 most
characterizing words, selected on the basis of their conditional frequencies, in Italian or English
language but without detecting the underlying lemmas. Therefore, different inflections of the
same lemma will be considered different words. However, this technique has the advantage of
being much faster and lighter that the former one, from the computational point of view.

2.4 Best N-grams

N-grams are sequences of n adjacent words which are typically used together. An example is
“credit card”, which is a bi-gram, i.e., has n = 2. To extract the n-grams, we may optionally
filter all the words of the text files by using dictionaries. This means accepting only the words
appearing in the above mentioned list of all Italian and English words, including also all the
possible inflectional forms. Using dictionaries would remove words in languages different from
Italian or English, or words erroneously read by the scraping procedure. On the other hand,
not using dictionaries would allow to consider also special strings or acronyms that are not real
words but are commonly used. From the computational point of view, the first choice leads
to a reduced set of candidate n-grams, which consumes less memory, while the second choice
consumes more memory but it is faster. After evaluating the advantages of each choice, we
adopted the first one for our experiments.

In the case of n-grams, lemmatization is not performed, since substituting words with their
basic lemmas may result in losing the identity of many n-grams, which are generally built with
specific inflectional forms.

After this, we prepare a list R of the relevant words. We define relevant the words that meet
the following three criteria: 1) they appears frequently enough (we require that they appear
in at least 1% of the text files belonging to one class); 2) they are not stop-words (articles,
prepositions, etc.); 3) they respect some conditions on the length (basically we avoid words
that are too short or too long, by penalizing words shorter than 3 letters or longer than 12
letters).

Subsequently, we apply the ngrams procedure, again from the Natural Language Toolkit
(NLTK) 3.0, to identify the n-grams that contain at least one of the words of R. After this,
we use another procedure to compute, for any such n-gram z, a score s(z) = χ2

+(z) + χ2
−(z),

where χ2
+ is called positive score and χ2

− negative score. These scores are again based on the
well known “chi-square test”, and the basic idea is to give some measure of the dependence
between the presence of the words constituting z and the class of a file. Assuming that z is a
bi-gram, the positive score is defined as follows:

χ2
+ =

q(q11q22 − q12q21)2

(q11 + q12)(q21 + q22)(q11 + q21)(q12 + q22)
,

where q11 is the number of positive files containing all the words constituting z; q12 is the
number of positive files containing only the first word of z; q21 is the number of positive files
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containing only the second word of z; q22 is the number of positive files not containing any of
the words constituting z; and q = q11 + q12 + q21 + q22. The negative score is defined similarly,
except that all the above values are computed for negative files. In case z has n ≥ 3, the above
formula is consequently expanded. We extract n-grams using all the values of n from 2 to 5.
In case an n-gram with n words is fully contained in a larger n-gram with (n+ 1), . . . , 5 words,
we remove the larger n-gram. We do this because we assume that the presence of the shorter
n-gram is more significant than that of the larger one. We observe that, in our experiment, this
practically leads to using almost only bi-grams, with consequent computational advantages.

All n-grams are sorted by decreasing values of the score s, and the first ones are called best
n-grams. In particular, we take the first 1,000 of them, thus obtaining the set Z of the 1,000
most characterizing n-grams containing at least one relevant word of the set R. Again, the value
1,000 was selected as a good compromise between accuracy and speed in our experiments. If we
select more than 1,000 n-grams, the procedure becomes slower with almost no improvements
in accuracy (allegedly, almost all the n-grams that are really “characterizing” already appear
within the first 1,000 positions). If we select less than 1,000 n-grams, the procedure loses an
accuracy not sufficiently compensated by the improvements in speed.

2.5 Best N-grams followed by Word Embedding

In addition to the operations described in the above subsection, after the identification of the
best n-grams, we apply a word embedding procedure. To this aim, we use the open source
procedure doc2vec, available from the Python library GenSim [27].This procedure implements
a strategy for the unsupervised learning of continuous representations for large blocks of text,
such as sentences, paragraphs or entire documents. We initially reduce each single text file to
its intersection with the words of the set Z, obtaining the sets of records SZ , TZ . Note that
they actually constitute an automatic summarization of the texts.

We then use doc2vec to convert each record r ∈ SZ , TZ into a vector v of k integer numbers
that should represent r at a higher abstraction level. This is obtained by representing each
word of Z as a point (i.e., a tuple of numerical coordinates) in a vector space, by evaluating
the distances among these points, and by subsequently clustering these points into k =∼ |Z|/5
clusters by a k-means algorithm (see, e.g., [16]). The distance between two words is computed
as the probability of finding them in the same context (that is, a sequence of words of prede-
termined length). Then, the vector v associated with the generic record r is composed of the
cardinalities of the k intersections between: the set of all the words in r and the set of the
words of each of the k clusters. Eventually, all these vector representations {vh} of the records
constitute a set V . These vectors {vh} can be used as records themselves, and can undergo the
classification step described in the next section.

2.6 The Data Records Produced

So far, we have described the selection of the sets W1,W2, Z, V . We also define the sets
A1 = W1 ∪ Z and A2 = W2 ∪ Z, composed of the single words and n-grams that should be
more relevant for the considered classification task. Now, given a generic record r, either in the
training set S or in the test set T , we define rW1 as the intersection between r and W1, that
is, we keep in rW1 only the words belonging also to set W1. We similarly define rW2, rZ , rA1,
rA2. Moreover, if we use the word embedding procedure and we substitute records with their
vector representations V , we denote the generic vector by rV . Hence, we have six different and
alternative versions of each record: rW1, rW2, rZ , rV , rA1, rA2.

We denote by SW1, SW2, SZ , SV , SA1, SA2 the result of the above text mining operations on
all the elements of the training set S, and by TW1, TW2, TZ , TV , TA1, TA2 the result of the same
operations on all the elements of the test set T .
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3 The Classification Procedures

Many different classification approaches have been proposed in the literature, based on differ-
ent paradigms and data models. There is not a single approach capable to outperform all the
others on every instance of the problem. However, given a specific category of problems, it is
generally possible to identify which approaches provide the best performances for that category.
We applied different classifiers by using scikit-learn [24], that is a very good machine learning
package currently included into scientific Phyton distributions. In our case, the best results
in the preliminary tests have been obtained with: Support Vector Machines; Decision Trees;
Logistic classifiers. We also obtained comparable results with another technique called Statisti-
cal and Logical Analysis of Data, currently not included in scikit-learn. Therefore, we selected
these four classifiers for our full experiments. They are briefly described below. The fields
of each record corresponding to the words/n-grams constitute the set of input or independent
variables; the class constitutes the target or dependent variable. For each of these classifiers,
we search for the parameters providing the best accuracy performances by using a simple grid
search approach. Note that a more careful parameter selection could lead to further modest
improvements in these performances; however this is not the focus of this work.

Support Vector Machines (SVMs) are supervised learning models that build a deterministic
binary linear classifier. This technique is based on finding a separating hyperplane that maxi-
mizes the margin between the extreme training data of opposite classes. New examples are then
mapped into that same space and predicted to belong to a class, on the basis of which side of
the hyperplane they fall on. In addition to performing linear classification, SVMs can efficiently
perform a non-linear classification using what is called the kernel trick, by implicitly mapping
their inputs to a higher dimensional space, see also [11, 28]. We use the Python implementation
of this classifier that is available in the scikit-learn package by means of the function SVC().

Decision trees are a supervised learning model that maps observations about the input
variables to conclusions about the target variable. The goal is to create a decision tree that
predicts the value of the target variable based on combinations of the values of the input
variables. Each internal node is associated with a decision concerning the value of an input
variable that best splits the training set. Different algorithms can be used to determine the
input variables associated with the internal nodes, see also [20]. Several decision trees can be
combined as an ensemble classifier, obtained the so-called Random Forest approach. Random
forests are generally more robust and can achieve better performances than the single decision
trees. For this reason, we use such a version of the decision tree methodology in our experiments.
We use the Python implementation of this classifier that is available in the scikit-learn package
by means of the function RandomForestClassifier().

Statistical and Logical Analysis of Data (SLAD) is a classification methodology based on
Boolean logic and discrete optimization [7]. It constitutes a recent version of the classical
approach of Logical Analysis of Data (LAD) [5] incorporating scoring criteria proposed in
[6]. To apply this approach, all values must be converted into binary form by means of a
discretization process called binarization. The domain of each field is partitioned in a finite
number of subdomains that are encoded using binary attributes. Since the number of obtained
binary attributes is often very large, a selection step is performed. After this, the selected binary
attributes are used to build the patterns. A pattern is a conjunction of binary attributes, also
called conditions, characterizing one class. Each pattern receives a weight, that is a measure
of its importance for the classification. Finally, each unlabeled record is classified on the basis
of the weighted sum of the patterns covering that record. We use the C++ implementation of
this classifier that was used in the work [7].

Logistic regression is a regression model where the target variable is categorical; hence, it can
be used to perform classification. This approach measures the relationship between the target
variable and one or more independent variables by estimating the probabilities using a logistic
function, which is the cumulative logistic distribution, see also [15]. Logistic regression can be
seen as a special case of the generalized linear model and thus analogous to linear regression.
We use the Python implementation of this classifier that is available in the scikit-learn package
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by means of the function LogisticRegression().

4 Experimental Results

We apply the described procedure to a list of 2,794 corporate websites. Each record has a class
value, although this information may be noisy. A record is positive if the corresponding website
offers e-commerce facilities, and it is negative otherwise. The dataset is very imbalanced, since
roughly 20% of the entries are positive. The resulting classification problem is very difficult.
Indeed, it is very easy to reach an 80% of accuracy by simply predicting all records as negative.
However, this result would be completely useless from the practical point of view. Obtaining
the correct identification of the positive records constitutes the main target in this type of
applications, and this identification is particularly challenging.

To perform the classification task, in each dataset we select a training set S of 1,397 records,
that is 50% of the total dataset. To tackle the issue of imbalance in the training set (see also
[17, 18]), we operate as follows. First, we perform a partial resampling by randomly undersam-
pling the majority class and oversampling the minority class (by replication), until obtaining
a dataset of the same size but containing roughly 40% positive entries. Then, we adjust the
misclassification costs (computed during the training phase) by using weights inversely propor-
tional to the class frequencies in the resampled training set. Finally, we focus on performance
measures possessing low sensitivity to data imbalance.

We perform experiments using the six versions of the dataset described at the end of Section
2 and the four classifiers described in Section 3. In the following tables, SVM denotes Support
Vector Machines; RF denotes Random Forest; SLAD denotes Statistical and Logical Analysis
of Data; LC denotes Logistic Classifier.

After training the classifiers on the training sets SW1, SW2, SZ , SV , SA1, SA2, performing 5-
fold cross-validation, we obtain the sets of the predictive modelsMW1,MW2,MZ ,MV ,MA1,MA2.
Then, we use them to predict the class for the records in the corresponding test sets TW1, TW2,
TZ , TV , TA1, TA2. The number of terms actually included in each predictive model is clearly
quite variable, depending on the type of dataset, the classification algorithm, etc. However, we
could estimate for this number a range going approximatively from 10% to 50% of the total in
the majority of the cases. Finally, by knowing the real class of the records in the above test sets,
we compute the confusion matrix and we use its elements (true positives TP , false negatives
FN , true negatives TN , false positives FP ) to evaluate the following performance measures:

• Accuracy a, defined as the percentage of correct predictions over all predictions:

a =
100(TP + TN)

TP + FN + TN + FP
.

• Precision p, also called the positive predictive value, defined as the percentage of true

positive records in all positive predictions: p =
100 TP

TP + FP
.

• Sensitivity s, also called the true positive rate, defined as the percentage of correct positive

predictions in all real positive records: s =
100 TP

TP + FN
.

• F1-score, which is the harmonic mean of precision and sensitivity:

F1 =
200 TP

2TP + FP + FN
.

Note that, for the detection of e-commerce, F1-score appears to be the most relevant perfor-
mance measure, since it fully evaluates the correct identification of the positive records, that
is the most important and difficult task, and because it has low sensitivity to data imbalance.
Due to its broad usage, we also report the classification accuracy, tough we should observe that
this measure typically does not provide enough insight and it is sensible to data imbalance.
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Table 1 reports the results of the four described classifiers on the records obtained using only
the best words with lemmatization (SW1, TW1); Table 2 reports the same results on the records
obtained by using only the best words without lemmatization (SW2, TW2); Table 3 reports the
same results on the records obtained by using only the best n-grams (SZ , TZ); Table 4 reports
the same results on the records obtained by using the vector representations given by the word
embedding procedure (SV , TV ); Table 5 reports the same results on the records obtained by
using the best words with lemmatization and the best n-grams (SA1, TA1); finally, Table 6
reports the same results on the records obtained using the best words without lemmatization
and the best n-grams (SA2, TA2).

Table 1: Results on SW1, TW1: best words with lemmatization.

Algorithm Accuracy Precision Sensitivity F1-score
SVM 84.97 % 68.34 % 58.03 % 62.77 %
RF 84.82 % 67.29 % 59.34 % 63.07 %

SLAD 84.70 % 64.51 % 60.24 % 62.30 %
LC 83.54 % 64.04 % 56.07 % 59.79 %

Table 2: Results on SW2, TW2: best words without lemmatization.

Algorithm Accuracy Precision Sensitivity F1-score
SVM 85.11 % 65.33 % 63.59 % 64.45 %
RF 84.47 % 68.75 % 61.31 % 63.82 %

SLAD 84.45 % 64.15 % 59.03 % 62.54 %
LC 83.54 % 64.04 % 56.07 % 59.79 %

Table 3: Results on SZ , TZ : best n-grams.

Algorithm Accuracy Precision Sensitivity F1-score
SVM 85.11 % 77.09 % 45.24 % 57.02 %
RF 85.18 % 69.74 % 62.02 % 65.43 %

SLAD 85.47 % 64.67 % 61.00 % 62.68 %
LC 83.32 % 65.38 % 50.16 % 56.77 %

Table 4: Results on SV , TV : best n-grams followed by word embedding.

Algorithm Accuracy Precision Sensitivity F1-score
SVM 82.89 % 60.78 % 60.98 % 60.88 %
RF 84.75 % 66.43 % 60.98 % 63.59 %

SLAD 84.72 % 66.13 % 60.58 % 63.39 %
LC 82.61 % 61.65 % 53.77 % 58.44 %

By analyzing the above results, we observe what follows.

1. The Random Forest classifier (RF) provides the best performances in our experiments.
However, we notice that Support Vector Machines (SVM) and Statistical and Logical
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Table 5: Results on SA1, TA1: best words with lemmatization and best n-grams.

Algorithm Accuracy Precision Sensitivity F1-score
SVM 84.75 % 65.97 % 62.30 % 64.08 %
RF 85.61 % 69.26 % 62.31 % 66.04 %

SLAD 85.97 % 66.67 % 62.18 % 64.31 %
LC 83.60 % 64.29 % 56.77 % 60.89 %

Table 6: Results on SA2, TA2: best words without lemmatization and best n-grams.

Algorithm Accuracy Precision Sensitivity F1-score
SVM 84.32 % 64.14 % 63.93 % 64.04 %
RF 85.76 % 69.06 % 62.95 % 65.87 %

SLAD 84.60 % 64.11 % 60.24 % 61.30 %
LC 83.82 % 64.79 % 56.72 % 60.49 %

Analysis of Data (SLAD) are not much worse in the same experiments. In particular,
SVM techniques are generally able to give more stable results, since they are less sensible
to overfitting issues, and they also exhibit a better flexibility with respect to the other
classifiers (and for these reasons SVM are often used in practical applications, see, e.g.,
[1, 21, 12]). SLAD, on the other hand, offers the advantages of providing intelligible logic
rules for the classifications, which could be used for gaining more insight on the analyzed
phenomenon (see, e.g., [8]).

2. The use of the best n-grams alone is able to provide results that, for this particularly
difficult classification problem, are very good (Table 3). However, the joint use of best
n-grams and best words (Tables 5 and 6) allows to attain a slightly better performance.
Moreover, this last option is considerably more robust, as shown by the results of all the
four classifiers and not only those of the best one.

3. When focusing on the results of the best words (Tables 1 and 2), we can analyze the
differences between the use of lemmatization and the use of a dictionary. In our case,
using only a dictionary, without returning each word to its basic lemma, appears slightly
more convenient. This means that the presence of specific inflectional forms has a precise
significance with respect to the presence of e-commerce. Indeed, in the vast majority of
the cases of e-commerce, very specific inflectional forms of the key words are used (e.g.,
the present of the verbs buy, pay, book, etc.) On the other hand, when using also the
n-grams (Tables 5 and 6), the results become almost comparable. Apparently, many
specific inflectional forms are captured also by the n-grams, so the possible advantages of
not using lemmatization cease. In any case, lemmatization has the advantage of saving
some memory, because different words may correspond to the same lemma.

4. The use of the word embedding technique can provide slightly more robustness with
respect to the use of best n-grams alone. The improvements are not fully apparent in our
experiments, because the results of this technique usually improve when the number of
n-grams used in it becomes consistently larger than 1,000. However, this was not possible
in our experiments, due to the very large memory requirements of this technique. Testing
the use of larger sets of n-grams with this technique will be part of our future work.

The computational times and the memory usage of the procedures are quite reasonable, consid-
ering the large size of the problem. In particular, using a PC with i7 processor and 16GB RAM,
the fastest technique is the one producing SZ , TZ (only the best n-grams), which takes about
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2 hours. The use of the dictionary and the set of relevant words R avoids the generation of
several useless n-grams, saving also memory. The generation of SV , TV requires a very moderate
additional time, but a considerable additional memory. The generation of SW2, TW2 requires
slightly more time, about 3 hours, tough the memory usage is inferior. On the other hand, the
generation of SW1, TW1 by using lemmatization is a much slower process, and requires about
6 hours, tough the memory usage is still inferior because different words may correspond to
the same lemma. The combinations of best words and best n-grams clearly require the times
and the memory needed by its two components. Hence, the generation of SA2, TA2 requires
about 5 hours, while the generation of SA1, TA1 needs about 8 hours. The small enhancement
in performances is therefore paid with a considerable increase in complexity.

5 Conclusions

In several large-scaled surveys, the automatic individuation of some feature of interest can be
seen as a classification problem. Determining whether an enterprise website offers e-commerce
facilities or not is a particularly interesting case. However, to solve the problem by means of
a classification algorithm, it is necessary to convert each website into a record describing that
website in a compact and tractable manner. Such records should contain only the relevant
portion of the information of the websites, and we found that a careful selection of the infor-
mation inserted in the records is a key element for obtaining satisfactory performances in the
classification. We have presented several alternative techniques for doing this, and we have
observed that introducing too much information may be not beneficial because of the amount
of noise introduced at the same time. Another issue faced in the classification of similar data is
data imbalance. This can be addressed by recurring to resampling, weights’ adjustments in the
learning phase, and the use of performance measures with low sensitivity to data distributions.

The results of our automatic procedure may be used either for replacing surveyed data for
statistical purposes, thus saving the cost of actual surveys (especially for the respondents), or to
validate and enrich already surveyed data, for example those contained in the Business Register
of a Statistical Office, thus improving their quality and reliability. The present analysis should
support in designing a procedure to solve real-world problems of the described type, possibly
integrated by tacking into account the specific requirements of the analyzed practical case.
Future work may include the extension of the described procedure to other languages different
from Italian and English; the evaluation of other classification algorithms in this task; an
analysis of the robustness of the proposed approach [9]; the application of the detection via web
to other features different from the presence or the absence of e-commerce.
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