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Abstract—Epilepsy is a neurological disorder arising from
anomalies of the electrical activity in the brain, affecting about
65 millions individuals worldwide.
Objective: This work proposes a patient-specific approach for
short-term prediction (i.e., within few minutes) of epileptic
seizures.
Methods: We use noninvasive EEG data, since the aim is exploring
the possibility of developing a noninvasive monitoring/control
device for the prediction of seizures. Our approach is based
on finding synchronization patterns in the EEG that allow to
distinguish in real time preictal from interictal states. In practice,
we develop easily computable functions over a graph model to
capture the variations in the synchronization, and employ a
classifier for identifying the preictal state.
Results: We compare two state-of-the-art classification algorithms
and a simple and computationally inexpensive threshold-based
classifier developed ad hoc. Results on publicly available scalp
EEG database and on scalp data of the patients of the Unit
of Neurology and Neurophysiology at University of Siena show
that this simple and computationally viable processing is able
to highlight the changes in synchronization when a seizure is
approaching.
Conclusion and significance: The proposed approach, charac-
terized by low computational requirements and by the use of
noninvasive techniques, is a step toward the development of
portable and wearable devices for real-life use.

Index Terms—EEG analysis; Epilepsy; Synchronization mea-
sures; Interaction graph; Data classification.

I. INTRODUCTION

Epilepsy is a neurological disorder affecting about 65 mil-
lion individuals worldwide [1], with a very high social cost
as it results in many injuries (e.g., fractures, burns, accidents
and even death). Treatment options for epilepsy are mainly
pharmacological and, to a lesser extent, surgical. However,
antiepileptic drugs have limitations [2] and fail to control
seizures in roughly 20–30% of patients, and surgery is not
always possible. In this context, an important issue is the
possibility of predicting the occurrences of epileptic seizures
(i.e., detecting a pre-ictal or pre-seizure state), in order to take
actions to neutralize an incoming seizure or limit the injuries
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of a seizure occurrence (e.g., by warning alarms, application
of short-acting drugs, electrical stimulation).

The possibility of seizure prediction was explored for over
25 years, typically from the analysis of the electroencephalo-
gram (EEG) signals. For recent reviews on this topic, we
refer to [3], [4]. Historically, epilepsy has been interpreted
as a disorder characterized by abnormally enhanced neuronal
excitability and synchronization. Several studies investigated
the relationship between seizures and brainwave synchroniza-
tion patterns, highlighting the possibility of distinguishing:
interictal, preictal, ictal and postictal states [5], [6], [7].
Furthermore, research in the last few years has replaced the
concept of single epileptic focus with the concept of epileptic
network [8], [9], [10], suggesting that a network model of
the brain interactions (e.g., measuring the synchronization
among different brain areas) appears more appropriate for the
description of epilepsy, where the epileptiform activity in any
one part is influenced by activity in other parts.

The problem of detecting and/or predicting seizures occur-
rences can be formulated as a classification problem (see for
references, e.g., [11]), and different works from the literature
propose solution methods based on classification approaches
[5], [12], [13], [14]. Furthermore, the prediction problem
is particularly challenging since: (i) the availability of data
containing preictal and ictal states is limited; (ii) pre-seizure
and seizure morphology may vary both within the same patient
(intra-patient specificity) and across different patients (inter-
patient specificity); (iii) while in the detection problem the
onset of a seizure can be defined with small errors, in the
prediction problem, the length of the preictal state is not
univocally defined in the literature; (iv) the EEG data usually
includes artifacts and noise of different nature.

In this work, we propose a patient-specific classification
approach for the short-term prediction of epileptic seizures
by detecting synchronization patterns in EEG. The learning
steps operate on the specific patient data, so that all the
parameters of the procedure can be individually calibrated and
the overall approach is able to take into account the inter-
patient specificity (as it is also done in [13], [14], [15]). We
perform our analysis using noninvasive (scalp) EEG data. Such
data generally are noisier than those obtained with other inva-
sive (intracranial) techniques, hence the classification problem
becomes more difficult. However, our aim is exploring the
possibility of developing of a noninvasive monitoring/control
device implementing an expert system for seizure prediction.
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Hence, the choice of noninvasive techniques would allow an
easier real-time use of the proposed method also in portable
and wearable devices, possibly able to notify patients and/or
caregivers, or to take automatic actions to reduce the injuries,
the severity of seizures, or prevent them entirely [13].

The proposed approach is based on finding synchronization
patterns in the EEG that allow to distinguish preictal from
interictal states. This is obtained by using bivariate measures
of synchronization, i.e., measures involving couples of EEG
channels. A graph model is built, in which the nodes are
associated to the electrodes sites from which the EEG channels
are captured, and the edges between two nodes are weighted
with the values of one or more synchronization measures
(varying over time) of the signals associated to the two nodes.
After this, we use easily computable functions over this graph,
to capture the variations in the above synchronization. Finally,
an automatic classification aims at identifying the preictal
state. We compare two state-of-the-art classification algorithms
(support vector machines [16] and gradient boosting based on
decision trees [17]) and a threshold-based classifier developed
ad hoc. We provide extensive results on publicly available
EEG data from the “CHB-MIT Scalp EEG Database” [18],
[13] and on data of the patients of the Unit of Neurology
and Neurophysiology at University of Siena. The experimental
campaign, validated through a cross validation scheme, shows
a very good prediction capacity and a quite low false alarm
rate, on prediction horizons spanning few minutes from the
seizure onset.

The main contributions of this work are: (i) The use of
recently introduced phase-synchronization measures, namely,
Phase Lag Index (PLI) and Weighted Phase Lag Index (WPLI)
[19], [20], to analyze EEG synchronization variations during
interictal and preictal states. Although phase synchronization
is a topic already investigated for epileptic seizure prediction
in the literature (see [4] for a review), PLI and WPLI have
not yet been employed for prediction. (ii) The presenta-
tion of a graph model on which we compute simple and
computationally inexpensive indices to capture the variations
of the synchronization measures over time and space. (iii)
To improve the classification results, we propose a modified
version of a classical indicator called Moving Average Conver-
gence/Divergence (MACD) [21], commonly used to analyze
trends in financial markets, for the feature extraction task.
(iv) The introduction of a new, linear and fast threshold-based
classification approach developed ad hoc for the problem under
study, which exhibits an encouraging performance.

The article is organized as follows. Section II provides the
experimental setup and a block diagram of the whole approach.
Section III presents the graph model of the brain interactions
proposed to study the synchronization patterns. Section IV
describes the functions developed to capture the variations in
the synchronization patterns. Section V reports our experience
in using the classifiers. Section VII provides numerical results
on real data from the “CHB-MIT Scalp EEG Database” [18],
[13] and from the patients of the Unit of Neurology and
Neurophysiology at University of Siena. Conclusions follow
in Section VIII.

II. SYSTEM’S ARCHITECTURE

Epileptic seizure prediction approaches usually consist of
two main phases. In a first phase (feature extraction phase), a
number of measures and indices, generically called features,
are computed from the physiological signals (e.g., EEG sig-
nals) extracted over time. In a second phase (classification
phase), a classification procedure is applied, in order to
identify preictal and interictal states [6], [22] using the time
series of the above mentioned features. Since the aim is to
anticipate the seizures’ occurrences in order to take suitable
actions during the preictal period, while at the same time to
avoid false positive alarms (i.e., triggering an alarm outside
the preictal period), usually the ictal and postictal periods are
discarded from the classification.

Features can be extracted from EEG by using univariate
measures, i.e., involving a single EEG channel, or by using
multivariate measures, involving two or more channels. In the
literature, many prediction approaches have been based on
univariate measures [23], [24], [22], [25]. However, studies
comparing univariate and bivariate measures [26], [27], [6],
[5] highlighted the good performance in seizure prediction of
the features extracted from bivariate measures.

EEG, especially scalp EEG, is very susceptible to artifacts
and noise, producing ictal and preictal-like patterns. The
artifact issue is widely discussed in the community, and,
since there are no techniques to eliminate them without any
elimination of good information, several recent studies (see
[26], [28]) consider the raw signal, including the artifacts. This
was also done in the present work. However, the following
approaches have been used to reduce artifacts’ influence: (i)
the raw EEG signal has been filtered by a pass-band filter
on (narrow) bands experimentally determined; (ii) as already
experienced by other authors [29], [22], a differential window
is applied to the EEG, with the aim of making preictal signals
more distinguishable with respect to interictal ones.

Figure 1 reports the block diagram of the whole approach
proposed for the seizure prediction; the feature extraction
phase has 6 steps, while the classification phase has 2 steps.
All the steps are described below.

1. Filtering: FIR filter

2. Di↵erentiating: see [29]

Raw Signals

3. Hilbert Transform:
Formula (1)

4. Time Windowing

5. Synchronization
Measures Computation:
Formulas (2) and (3)

6. Feature Extraction:
Formula (4)

7. Training:
Section V

8. Prediction:
Section V

Binary Decision:
Preictal or Interictal

fe
a
tu

re
s

Feature extraction phase Classification phase

1

Fig. 1. Block diagram of the proposed approach.

Step 1. The EEG signals are filtered by means of a pass-band
FIR filter on pre-specified bands, as detailed in Section VI.
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Step 2. The time-derivative of the signals are computed as in
[29]. As shown in [29], [22], differentiating makes the basic
noise nearly flat and sharpens the regions where the signal
exhibits its peaks, which are most likely to be the regions
where seizures occur.
Step 3. The analytical signals and their phases are extracted by
the Hilbert transform (see Formula (1)) applied to each signal
obtained in the previous step.
Step 4. The signals are segmented into consecutive time-
windows, possibly overlapping, of N points each.
Step 5. Synchronization measures PLI and WPLI are computed
for each pair of signals and each time-window by Formulas
(2) and (3).
Step 6. Features’ computation. Features are extracted on each
time-window from the synchronization measures. With this
aim a graph model is used (Section III-B) and a moving
average procedure is applied (see Section IV.)
Step 7. The classification phase is technically composed of
a training and a prediction step. It is detailed in Section V.
The training step takes data records labeled with a class label
(in our case, preictal or interictal) to train the classifier. The
training step may optionally be preceded by a feature selection
step, that analyzes the set of all available features to select the
most promising ones.
Step 8. The prediction step uses the classifier learned in
the previous step to assign one of those labels to each new
unlabeled record representing the values of the features at each
given time. The output of this step is the output of the whole
process: a binary decision (preictal or interictal) that can be
used to alert the patient of the incoming crisis.

III. EEG SYNCHRONIZATION AND GRAPH
REPRESENTATION

In Section III-A, measures of signal synchronization are pre-
sented. In Section III-B, the signal synchronization measures
are embedded in a graph model of the brain interactions.

A. Measures of the signal synchronization

In this study, phase-synchronization measures of pairs of
EEG signals are employed. To compute the phase synchro-
nization, we need to know the instantaneous phase of the
two involved signals. This can be extracted by computing the
analytical signal. In fact, the analytical signal of a real time
series x(t) (such as the signal of an EEG channel) is a complex
function z(t) = x(t) + ix̂(t). Function x̂(t) can be computed
by the Hilbert Transform as follows:

x̂(t) =
1

π
PV

∫ ∞
−∞

x(τ)

t− τ
dτ (1)

where PV is the Cauchy principal value. Hence, the transform
(1) allows the construction of a complex signal z(t) = x(t) +
ix̂(t) = A(t)eiφ(t), with amplitude A(t) =

√
[x̂]2 + [x]2 and

phase φ(t) = arctan x̂(t)
x(t) .

A phase-synchronization measure of EEG signals, called
Phase Lag Index (PLI), has been introduced in [19], for the
assessment of functional connectivity in the brain. PLI is based
on the idea of discarding the phase differences that center

around 0 (mod π). This allows to study short-term changes
of increasing and decreasing synchronization [30]. In order to
discard the phase differences, an asymmetry index is defined
by calculating the likelihood that the phase difference ∆φ of
two signals will be in the interval (−π, π). Given the channel
pair h, k and a time window ∆t containing N time instants,
PLI is formally given by:

PLIh,k,∆t
=

∣∣∣∣∣ 1

N

N∑
p=1

sign(φh(p)− φk(p))

∣∣∣∣∣ , (2)

where φh(p) and φk(p) are the phases of signals at time
instant p of channels h and k, respectively, determined by the
Hilbert transformation (1). Hence, 0 ≤ PLI ≤ 1, and when
PLI = 0 there is either no coupling or a coupling with a phase
difference centered around 0 (mod π), while for PLI = 1
a perfect phase locking at a value of ∆φ different from 0
(mod π) occurs. The stronger the non zero phase locking is,
the larger the PLI will be.

In [20], an extension of the PLI has been introduced, called
Weighted Phase Lag Index (WPLI). The WPLI index takes
values in [0, 1], too, and, in terms of phase difference, can be
defined as follows:

WPLIh,k,∆t
=

∣∣∣ 1
N

∑N
p=1 sin (φh(p)− φk(p))

∣∣∣
1
N

∑N
p=1 | sin (φh(p)− φk(p))|

. (3)

In WPLI, each phase difference is weighted according to the
magnitude of the lag. As a consequence, phase differences
around zero only marginally contribute to the calculation of
the WPLI. This reduces the probability of detecting false
positive connectivity in the case of volume conducted noise
sources with near zero phase lag, and increases the sensitivity
in detecting phase synchronization.
As an example, the upper parts of Figures 2 and 3 show the
EEG data of two EEG channels over time (in seconds) of
patients Chb03 and Chb05 of the “CHB-MIT Scalp EEG
Database” [18], respectively, as an epileptic seizure is ap-
proaching (the seizures start at the vertical dotted lines). For
a better view, Figure 4 shows EEG segments of 10 seconds
centered at the starting of the seizures (the dotted vertical lines)
of the EEGs reported in Figures 2 and 3. For each patient,
the channels that better highlight the seizure onset have been
selected. Observe that the selected channels for patient Chb03
(for patient Chb05) are h = {F4−C4} and k = {T8−P8}
(are h = {T7−P7} and k = {C3−P3}), placed on the right
side (left side) of the head. The bottom parts of Figures 2 and 3
show the behavior over the same time span (in seconds) of the
EEG data of PLIh,k,∆t

(solid line) and WPLIh,k,∆t
(dotted

line) on the selected channels (as computed at Step 5 of Figure
1). PLI and WPLI are computed using a time window ∆t of 6
seconds (with an overlap of 1 sec.). Note that, PLI and WPLI
show a rising trend as the seizure is approaching.

Furthermore, Figure 5 shows the behavior over time of
WPLI for the data of patient Chb01 [18], with and without
differentiation (i.e., considering or removing Step 2 in the
block diagram of Figure 1). We consider the time period of
about 1600 seconds before and during the 5th epileptic seizure
of the patient (the first and the second vertical dotted lines in
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Fig. 2. Raw EEG, PLIh,k and WPLIh,k on channels h = {F4 − C4}
and k = {T8− P8} on the 2nd seizure of patient Chb03.
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Fig. 3. Raw EEG, PLIh,k and WPLIh,k on channels h = {T7 − P7}
and k = {C3− P3} on the last seizure of patient Chb05.

each figure mark the beginning and the end of the seizure,
respectively). WPLIh,k,∆t is computed on the two channels
h = {P3 − O1} and k = {FT9 − FT10} (using a time
window ∆t of 6 seconds with an overlap of 1 second). Note
that no apparently significant changes occur in WPLI without
the application of the differential operator. On the contrary,
when using the differentiation, WPLI increases as the starting
time of the seizure is approaching and has a peak just at the
beginning of the seizure (denoted by the first vertical dotted
line).

B. Graph model of the brain interactions

The synchronization measures introduced in Section III-A
are symmetric values wh,k, defined for each pair of channels
h and k, i.e., wh,k = wk,h. As already observed [31], [20], the

F4-C4

T8-P8

T7-P7

C3-P3

726 727 728 729 730 731 732 733 734 735 736

2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353

Fig. 4. EEG segments of 10 seconds centered at the starting of the seizures
(the dotted vertical lines) of the EEGs reported in Figures 2 and 3.

Fig. 5. WPLIh,k with h = {P3−O1} and k = {FT9− FT10} on the
5th epileptic seizure of patient Chb01, with and without differentiation.

EEG signals, i.e., the channels, extracted from the electrodes
positioned on the scalp and their connections provide a natural
network model of the brain connectivity. Such a network can
be modeled by an undirected complete weighted graph G =
(V,A), where the nodes represent channels, and an undirected
weighted edge (h, k) ∈ A represents the connection between
channels h and k. The weight wh,k associated to the edge
(h, k) ∈ A can be set to the value provided by one of the
synchronization measures presented in Section III-A. Note that
the synchronization measures and, hence, the edge weights
wh,k vary over time. Graph G is a mathematical tool that
may help to highlight changes in the neural activity over time,
observing how epileptiform events modify the graph structure.
Indeed, Graph Theory provides a methodological framework



0018-9294 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2018.2874716, IEEE
Transactions on Biomedical Engineering

5

to develop efficient algorithms on the graph for the detection of
particular measures and structures, which can be used for the
analysis of synchronization patterns. As observed in [31], two
easily computable graph measures of brain connectivity are
the degree of a node, i.e., the number of edges (with weights
larger than a given threshold) incident to a node in G, and the
strength of a node, i.e., the sum of the weights of the edges
incident to a node in G.

As an example, Figure 6 illustrates the evolution of the
graph G at several time instants in the approach of an epileptic
seizure. More precisely, the data are related to the third seizure
of the patient Chb03 of the “CHB-MIT Scalp EEG Database”
[18], starting at the second 432. Each graph is related to a time
window ∆t of 6 seconds, and edges’ weights wh,k measure
PLI between channels h and k computed over the time window
∆t by Formula (2). For a better view, only edges with wh,k
larger than 0.7 are reported and the nodes, i.e., the channels,
have been positioned around a circle. Observe that the number
of edges with high weights increases in the two time windows
(the graphs in Figures 6.(d) and 6.(e)) immediately before the
seizure (the graph in Figure 6.(f)), implying an increase in
synchronization. Figure 7 reports the behavior over time of the

Fig. 6. (a) G related to ∆t = [390, 396]; (b) G related to ∆t = [394, 400];
(c) G related to ∆t = [404, 410]; (d) G related to ∆t = [414, 420]; (e) G
related to ∆t = [424, 430]; (f) G related to ∆t = [429, 435].

node’s strength related to node/channel P7 − O1, computed
by PLI, on a time period of about 600 seconds containing the
third seizure of patient Chb03, starting at the second 432). The
two vertical dotted lines delimit the ictal period. Note that the
strength of the node increases as the ictal period is approaching
and then decreases. The period immediately preceding the ictal
period is called preictal period. Its length is not defined in
general. Thus, in our experiments, we consider the length of
the preictal period as a parameter and we call it prediction
interval.

IV. FEATURE EXTRACTION

The prediction of a seizure from the analysis of the synchro-
nization measures introduced in Section III could already be
viewed as a classification problem. However, to successfully
use a classification algorithm, we should integrate and/or

Fig. 7. Strength for Channel P7−O1.

elaborate the features directly extracted from the EEG data,
i.e., the synchronization measures, with additional informa-
tion derived from them. This additional information should
basically inform the classifier, in each time instant, about the
relation occurring at that time between the current value of
the features and their past values considered at an aggregate
level, otherwise this information would not be available to
the classifier. More specifically, to allow a reliable detection
of a preictal state, it could be useful to define functions that
should be able to highlight the particular (rising) trends in
the synchronization measures which could be precursors of
a seizure occurrence (see Figures 2 and 3). In what follows,
we propose indicators based on moving average techniques,
which may be of help in the detection of the above described
trends in the synchronization measures of the EEG data.

Let us denote each of the measure computed in the previous
section (i.e., PLIh,k,∆t

or WPLIh,k,∆t
) by fh,k(∆t). We

resort to the following functions:
a) A function Th,k(∆t) describing the trend of the generic
measure fh,k(∆t) at time period ∆t.
b) A function Lh,k(∆t) representing a current lower limit of
the above Th,k(∆t) in a time window representing the recent
past with respect to time period ∆t.
c) A function Mh,k(∆t) measuring the elevation of the current
trend above the current lower limit at time period ∆t, to detect
whether a rising trend occurs for a sufficient interval of time.

a) Choice of the trend function Th,k(∆t): A moving
average, i.e., the average over a certain time interval of the
values of fh,k(∆t), is generally chosen to describe trends.
A weighted moving average (WMA) has multiplying factors
to give different weights to the different instants of time.
Usually, recent instants receive more importance than older
ones. In particular, an exponential moving average (EMA)
applies weighting factors which decrease exponentially in the
past, using a parameter w representing the extension of the
past. In our case, we chose for the trend function Th,k(∆t) an
EMA, computed as follows:

Th,k(∆t) =

{
fh,k(1) for t = 1(

2
w+1

)
fh,k(∆t) +

(
1− 2

w+1

)
Th,k(∆t − 1) for t > 1

We experimentally find that w = 7 provides a good trend
description in our application.
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b) Choice of the current lower limit Lh,k(∆t): To evalu-
ate the current lower limit, we chose the minimum of Th,k(∆t)
over the previous p time intervals.

Lh,k(∆t) = min
τ∈{∆t−p,...,∆t}

{Th,k(τ)}

We experimentally find that p = 27 provides a satisfactory
lower limit in our application.

c) Choice of the elevation function Mh,k(∆t): In this
case, we follow the ideas underlying the trading indica-
tor called Moving Average Convergence/Divergence (MACD)
[21]. The simplest version of MACD is the difference between
two moving averages, one over a shorter time interval and
one over a longer time interval. Indeed, when the trend
is increasing, the moving average over the shorter interval
becomes the greater one. Conversely, the same moving average
becomes the smaller one when the trend is decreasing. Further
insight can be obtained by using a third moving average of the
MACD itself over an even shorter interval, called “signal line”.

However, to detect the particular kind of rising trend that in
our application represents a preictal situation, we experienced
better accuracy by substituting the longer-period average with
the current lower limit Lh,k(∆t). This allows to highlight not
only the “relative” information of the changes in the trend of
a measure fh,k(∆t), but also the more “absolute” information
of the amplitude of the elevation of that measure over the
current low value. We call this difference Moving Average and
Amplitude Convergence/Divergence (MAACD), computed as:

Mh,k(∆t) = Th,k(∆t)− Lh,k(∆t). (4)

In conclusion, we compute the described MAACD for each
measure fh,k(∆t), and we use MAACD as features to perform
the classification. As an example, Figure 8 shows the function
MAACD computed over the WPLI reported in Figure 5.b As
can be noted, MAACD rises as the seizure is approaching.

Fig. 8. MAACD computed on WPLIh,k with h = {P3 − O1} and k =
{FT9− FT10} on the 5th epileptic seizure of patient Chb01.

V. CLASSIFICATION

This section describes the classification approaches used to
predict the preictal states. We tested two different classifica-
tion algorithms from the literature, namely a Support Vector
Machine (SVM) algorithm [16] and a Gradient Boosting
Decision Tree algorithm called LightGBM [17]. Furthermore,

we present and test a computationally inexpensive threshold-
based classification algorithm specifically designed for this
problem, called ThAlgo. Indeed, in the case of on-line seizure
prediction operated by means of wearable, small devices, with
necessarily limited power, the low computational requirements
would be highly desirable.

For all the classification algorithms, the MAACD features
Mh,k(∆t) (4) introduced in Section IV have been employed.
As stated at the end of Section III-B, given a dataset possibly
containing seizures, the prediction interval is a time window
immediately preceding each seizure (not univocally defined
in the literature), that constitutes the time period in which we
would like to obtain the alarm for the incoming crisis. Records
inside (outside) the prediction interval constitute the positive
(negative) class. We allow the use of different values of
prediction interval, receiving them as input of our procedures.
When the classifier is applied to an unlabeled dataset to operate
the prediction, the positive classification of at least one record
inside a given prediction interval means that the corresponding
seizure has been successfully predicted. The prediction time of
a seizure is computed as the distance between the first positive
record inside the prediction interval of a seizure and its onset.
On the contrary, the positive classification of a record outside
the defined prediction intervals is counted as a false positive.

Observe that the cardinalities of the two classes in the
datasets are very different, with the positive records being
generally less than 1%. Thus, this is a very imbalanced case of
classification problem, and this makes the classification task
more difficult. To face this issue, classification algorithms may
allow the attribution of weights to the classes.

A. Support Vector Machines

SVMs are supervised learning models that build a determin-
istic linear classifier. They are based on finding a separating
hyperplane that maximizes the margin between the extreme
training data of opposite classes. New examples are then
mapped into that same space and predicted to belong to a
class, on the basis of which side of the hyperplane they fall
on. In addition to performing linear classification, SVMs can
efficiently perform a non-linear classification using what is
called the kernel trick, by implicitly mapping their inputs to a
higher dimensional space, see also [16]. This classifier requires
to set some algorithmic parameters, in particular when using as
kernel a Gaussian radial basis function. The main parameters
in this case are the penalty parameter c of the error term
and the kernel coefficient γ. Moreover, the weights assigned
to the classes become for this imbalanced problem another
main parameter for SVM classifiers. Very roughly, weights
should be inversely proportional to the cardinalities of the two
classes. In our experiments, the exact values of parameters
and weights have been determined by means of a grid search
technique, choosing the combination of values (for parameters
and weights) that constitute a good compromise between crisis
prediction and number of false alarms, determined patient by
patient. We use the SVM implementation provided in [32].
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B. Gradient Boosting Decision Tree algorithms

Gradient Boosting frameworks are based on decision tree
algorithms, and are widely used for classification tasks due
to their efficiency and accuracy. Gradient boosting trains
an ensemble of simple estimators (i.e., decision trees). The
training is done in sequence and in each iteration the training
process aims at minimising the residual errors. State-of-the-art
Gradient Boosting implementations [33], [17] make use of a
number of improvements to attain more accurate results and
faster predictions, and are used in classification and machine
learning applications. LightGBM [17] is an efficient implemen-
tation of a Gradient Boosting Decision Tree algorithm.

C. Threshold-based classification approach

The threshold-based approach ThAlgo uses a feature selec-
tion phase before the classification phase. Feature selection
may in general exploit a variety of search techniques to
identify the subsets of features that are the most relevant for
the classification task, possibly providing a measure which
scores the different subsets.

In ThAlgo, the selection phase has two steps. In the first
step, a set of thresholds θh,k is obtained, one for each of the
MAACD features Mh,k(∆t) (4). In practice, threshold θh,k
is computed as the average of Mh,k(∆t) over the prediction
intervals (or a suitable subset of it) of the training data. In
the second step, two different rankings of these MAACD
features are computed. In the first ranking, the features are
sorted in descending order of the number of times each feature
Mh,k(∆t) has a value above its threshold θh,k inside the
prediction intervals. This ranking basically evaluates, for each
feature, its ability in the identification of positive records,
i.e., those corresponding to preictal states. In the second
ranking, the features are sorted in descending order of the
number of times each feature Mh,k(∆t) has a value below
its threshold θh,k outside the prediction intervals. Hence, it
basically evaluates the ability in not producing false positive
predictions of the negative records, i.e., those corresponding
to interictal states. The indices of the features topping the
first ranking constitute the set S1; the indices of the features
topping the second ranking constitute S2. The cardinalities of
S1 and S2 can be selected, and they represent parameters of
the algorithm.

In the subsequent classification phase, all the selected fea-
tures Mh,k(∆t) and their corresponding thresholds θh,k are
linearly combined to obtain a single feature M(∆t) and a
corresponding single threshold Θ, as follows:

M(∆t) =
∑

(h,k)∈S1

αh,kMh,k(∆t) +
∑

(h,k)∈S2

αh,kMh,k(∆t) (5)

Θ =
∑

(h,k)∈S1

αh,kθh,k +
∑

(h,k)∈S2

αh,kθh,k (6)

where the weights αh,k, with (h, k) ∈ S1∪S2, are parameters
of the algorithm. The classification is performed by evaluating,
on the test data set, whenever the combined feature M(∆t) (6)
is above (below) its threshold Θ inside (outside) the prediction
intervals. In our experiments, two features are selected in

the selection phase, namely the first feature of each ranking.
Hence, |S1| = |S2| = 1.

VI. DATA DESCRIPTION AND EXPERIMENTAL SETUP

This section describes the EEG data used in our experiments
and the main preprocessing steps. Two sets of data have
been considered. The first set contains data of the patients
of the “CHB-MIT Scalp EEG Database” [18], [13], which
consists of bipolar scalp EEG recordings from 23 pediatric
subjects (18 females and 5 males) with intractable seizures
from the Children’s Hospital Boston. The age of the patients
ranges from 1.5 to 22 years. No other clinical information
is available for the data of this set. All signals are sampled
at 256 Hz using the International 10–20 system of EEG
electrode positions. The dataset of each patient is composed
of a number of instances, generally lasting about 1 hour
each. Some are seizure instances, i.e., they contain at least
a seizure occurrence, the other are nonseizure instances. To
prepare the data for our prediction task, each seizure instance
(1 hour long in most of the cases) is fractioned into (sub-
)instances, each containing a single seizure, in which we
discarded: all the ictal periods (i.e., the periods between the
onset and the ending time of each seizure); the time period
preceding the onset of a seizure of more than 1 hour, if
any; a (postictal) period of 1000 seconds after the end of
each seizure. Then, all the seizure instances obtained so far
with a preictal period smaller than 300 seconds have been
removed from the dataset. (As a consequence, a seizure is
not considered if, in the original seizure instance, a preceding
seizure exists, such that the period of time between the end of
the preceding seizure and the beginning of the current seizure
is smaller than 1300 seconds.) Furthermore, for each patient,
we only considered recordings (i.e., instances) with the same
EEG montage and the same number of EEG channels. All
the nonseizure instances (with the same EEG montage and
the same number of channels) have been considered for each
patient. No subsampling of the data has been performed. The
second set contains data acquired from 7 patients admitted
to the Unit of Neurology and Neurophysiology, Department
of Neurological and Neurosensorial Sciences, University of
Siena. The patients were monitored with a Video-EEG with a
sampling rate of 512 Hz, with electrodes arranged on the basis
of the international 10-20 system. The diagnosis of epilepsy
and the classification of seizures according to the criteria of
the International League Against Epilepsy [34] (reported in
Table II) were performed by an expert clinician after a careful
revision of the clinical and electrophysiological data of each
patient. The data in this set have been subsampled at 256 Hz
and segmented into seizure and nonseizure instances according
to the criteria described above. Tables I and II reports detailed
overviews of the two sets of data. Table II also reports the
clinical information for the second set of data (Columns 2–6).
Columns 2 and 3 of Table I and Columns 7 and 8 of Table II
show, for each patient, the number of EEG channels (n) and
seizures (Seiz.).

In the classification phase, for each patient, we use a cross
validation approach, which is a statistical technique to assess
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the quality of a prediction model. More precisely, let m be
the total number of instances of a patient dataset, and let ms

and mns be the number of seizure instances (resulting by the
data selection described above) and the number of nonseizure
instances, respectively (m = ms +mns). The total number of
instances used for training is mtrain = b0.6mc (i.e., no more
than 60% of the overall patient’s dataset). The training set is
obtained by randomly selecting d0.5mse seizure instances and
mtrain−d0.5mse nonseizure instances. As a consequence, the
testing is performed on m−mtrain instances, of which ms−
d0.5mse are seizure instances. Columns 4 and 5 of Table I and
Columns 9 and 10 of Table II report the number of seizures
used in the training phase and in the test phase respectively.

For each patient, q rounds of cross validation have been
performed, with the additional condition that each seizure
instance is selected for testing in at least one of the q rounds.
Parameter q has been set equal to 5 for patients such that
ms ≥ 4 and equal to 3 when ms = 3. Observe that three out of
the 23 patients of the CHB-MIT database cannot be included
(i.e., Chb02, Chb11, Chb19) since they have only 2 seizures
and do not allow a reasonable definition of training and testing
sets for cross validation. Finally, Columns 6 and 7 of Table I
and Columns 11 and 12 of Table II report the average number
of EEG hours over the q rounds of cross validation used in
the training phase and in the test phase respectively.

According to a preliminary analysis in which different
settings have been tested, in the feature extraction phase (see
Figure 1) we operated the following steps on each data set:
(i) EEG signals are filtered using a band-pass FIR filter with
band [8–13] Hz; (ii) The synchronization measures presented
in Section III-A have been computed for each channel pair on
a time window ∆t = 6 secs with an overlap of 1 sec. No
additional artifact suppression method is used.

Two sets of features have been evaluated. The first set
contains the MAACD functions (4), denoted as Mh,k(∆t)
and M ′h,k(∆t), computed over the two synchronization mea-
sures PLIh,k(∆t) and WPLIh,k(∆t), respectively. Then, this
set contains two features for each channel pair (h, k), with
h, k = 1, . . . , n, h 6= k, i.e., for each arc of the graph
G introduced in section III-B. The second set contains the
strengths of each channel k (i.e., node k of graph G) related
to the same MAACD functions (4), i.e., 2n features in total.
More formally, the two strengths at node k are defined as

n∑
h=1,h6=k

Mh,k(∆t) and
n∑

h=1,h6=k
M ′h,k(∆t).

In all the classification algorithms, in the training and test
phase we consider prediction intervals of length T . In the
training phase, we set to True the records of a time window
ranging from T seconds before each seizure onset till the
actual onset of the seizure. All the other records are set to
False (interictal). In our experiments, three different lengths
of T have been considered: T ∈ {150, 200, 300} seconds.

VII. EXPERIMENTAL RESULTS

This section reports on our experiments on the data of
the patients described in Section VI. Table III shows the
results obtained by the three classification algorithms ThAlgo,
LightGBM and SVM on the data of Table I. Table VI reports

the results attained by ThAlgo on the second data set. All
the results are average over the q runs of the cross validation
scheme described in Section VI, with q ∈ {3; 5}. Since our
approach is patient specific, results are computed choosing
for each patient the combination of the classifier parameters
giving the best performance. The performance is measured in
terms of correctly predicted seizures and rate of false alarms.
A seizure is correctly predicted if at least a record inside the
correspondent prediction interval is classified as true. In the
test phase, we considered the prediction time tp of a seizure
as the difference between the onset of the seizure marked
in the database and the time of the first record inside the
correspondent prediction interval classified as true. A positive
value of tp indicates how early a seizure is predicted. In
order to evaluate the systems’ behavior in terms of false
alarms, we compute the specificity (true-negative rate) and
the false positive rate computed as TN/(FP + TN) × 100
and FP/(FP +TN)×100, respectively, where TN and FP
are the number of true negative and false positives records,
respectively. More precisely, a record classified as true outside
all the prediction intervals produces a false positive, while a
record classified as negative outside all the prediction intervals
is a true negative.

In Table III, each row reports the average results of the
cross validation related to each of the considered patients of
the CHB-MIT database for the three classification algorithms.
The last row of the table shows the overall average results.
The first column of the table reports the patient’s id. Then,
for each algorithm, “F.” is the feature set on which the best
(average) results are obtained (“A” denotes all arcs of the graph
G, “N” denotes nodes’ strengths), pred% is the percentage
of seizures of the test set correctly predicted, spec% is the
specificity and fpr% is the false positive rate. Furthermore,
t̄p, tmp and tMp respectively are the average, the minimum and
the maximum prediction time in seconds, computed over all
the seizures of the the q runs of the cross validation scheme.
We observe that algorithm ThAlgo correctly predicts all the
seizures (pred% = 100), while LightGBM has a prediction
rate of 98% and SVM of 86.7%. LightGBM attains the best
specificity (and hence the best false positive rate) on average,
more than 96%, while ThAlgo and SVM get a specificity of
95.97% and 95%, respectively. Note that, in our experimental
settings, a specificity of 99.87% corresponds to less than 1
false positive per hour (0.94 to be precise), because our fea-
tures are computed over a time window (i.e., an epoch) ∆t of
6 seconds with one second of overlap, that is 720 samples per
hour. Such an encouraging false positive frequency is obtained
in several cases by our classifiers. In fact, as can be noted in
Table III, all together, LightGBM and ThAlgo produce less than
1 false positive per hour on 8 out of the tested 20 patients.
LightGBM has the biggest average, minimum and maximum
prediction time, equal to 124.24, 25.5 and 208.75 seconds
on average, respectively. ThAlgo and SVM provide about 79
and 109 average prediction time (in seconds), respectively.
Generally, those prediction times (ranging from about 1.3 to
2 minutes, on average) appear to be sufficient, for a real-time
use of the proposed system, for taking actions to reduce the
injuries. In fact, although a short-term prediction horizon may
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Pat. id n Seiz. Train Seiz. Test Seiz. Train hours Test hours
Chb01 22 7 4 3 22.63 15.08
Chb03 22 7 4 3 19.74 14.03
Chb04 22 4 2 2 83.86 57.6
Chb05 22 5 3 2 21.62 14.78
Chb06 22 10 5 5 29.73 18.82
Chb07 22 3 2 1 34.17 26.76
Chb08 22 5 3 2 11.16 7.46
Chb09 (2nd channel set) 22 4 2 2 39.59 22.51
Chb10 22 7 4 3 25.31 16.58
Chb12 (1st and 4th channel set) 22 9 5 4 8.82 5.8
Chb13 (4th and 6th channel set) 22 7 4 3 3.61 3.47
Chb14 22 8 4 4 14.11 9.44
Chb15 (2nd channel set) 31 13 7 6 17.37 12.04
Chb16 (1st channel set) 22 5 3 2 8.14 5.81
Chb17 (1st channel set) 22 3 2 1 11.56 7.78
Chb18 (2nd channel set) 22 5 3 2 18.7 13.2
Chb20 22 5 3 2 13.49 10.6
Chb21 22 4 2 2 18.16 13.2
Chb22 22 3 2 1 17.44 12.72
Chb23 22 6 3 3 13.88 7.58

TABLE I
DATA OF THE PATIENTS OF THE “CHB-MIT SCALP EEG DATABASE”.

Pat. Id Age (years) Gender Type of seizure Localization Lateralization n Seiz. Train Seiz. Test Seiz. Train hours Test hours
1 55 Male IAS T R 29 5 3 2 0.86 0.54
2 10 Female IAS T L 31 3 2 1 2.93 1.96
3 24 Male IAS T L 31 5 3 2 5.45 4.05
4 16 Male FBTC All All 30 8 4 4 6.69 4.44
5 9 Male IAS T L 30 4 2 2 3.15 2.17
6 34 Female IAS T L 31 3 2 1 4.08 3.09
7 19 Male WIAS T L 31 4 2 2 8.84 6.92

IAS: focal onset impaired awareness; WIAS: focal onset without impaired awareness; FBTC: focal to bilateral tonic–clonic; T: temporal; R: right, L: left.

TABLE II
DATA OF THE PATIENTS OF THE UNIT OF NEUROLOGY AND NEUROPHYSIOLOGY AT UNIVERSITY OF SIENA.

ThAlgo LightGBM SVM
Pat. F. pred% spec% t̄p tmp tMp F. pred% spec% t̄p tmp tMp F. pred% spec% t̄p tmp tMp

Chb01 A 100 98.73 29.4 0 122 A 100 99.98 32 0 105 N 100 100 28.65 5 70
Chb03 A 100 99.53 47.13 14 158 N 100 99.87 53.33 15 145 N 100 97.07 115 10 195
Chb04 A 100 97.41 42.1 0 115 A 59.8 98.35 62.3 0 195 N 40 98.82 160 100 205
Chb05 A 100 100 66.7 21 143 N 100 100 58.5 5 150 N 100 99.98 146 45 240
Chb06 N 100 91.74 198.48 9 293 N 100 92.79 223.2 35 295 N 80 95.72 143.25 5 195
Chb07 A 100 99.94 29.33 0 49 N 100 99.65 100 20 195 N 66 99.75 92.5 30 155
Chb08 A 100 99.34 51.2 0 210 N 100 98.77 57.5 10 125 N 90 98.85 44.4 30 60
Chb09 A 100 99.29 12.3 0 35 A 100 99.98 160 40 295 N 100 99.92 136.5 85 295
Chb10 N 100 100 39 19 70 A 100 99.98 84.67 0 145 N 100 99.74 108 35 195
Chb12 A 100 71.41 243.95 22 292 A 100 80.62 230.25 0 295 N 90 75.72 264.4 165 295
Chb13 A 100 83.49 221.67 47 291 N 100 86.5 218 110 295 N 93.33 69.22 241.4 175 295
Chb14 A 100 95.1 42.35 0 113 N 100 90.63 169 25 295 N 90 89.23 69.7 0 140
Chb15 A 100 93.77 178.3 8 295 A 100 95.82 153.17 0 295 N 90 98.47 85.55 15 145
Chb16 A 100 97.9 102.7 12 218 A 100 95.81 241.5 20 295 N 70 97.72 63.55 15 90
Chb17 A 100 98.66 76.67 19 175 N 100 98.05 213.33 110 280 N 66 98.99 22.5 15 30
Chb18 A 100 99.91 38.1 14 49 N 100 99.45 80.5 15 170 N 90 99.57 51.65 0 115
Chb20 A 100 95.84 28.6 0 82 A 100 95.87 70 5 135 N 100 91.46 101 0 195
Chb21 A 100 99.35 52.3 4 128 A 100 99.41 52.5 0 145 N 100 96.37 72 10 150
Chb22 A 100 100 17 1 32 A 100 100 138.33 100 175 N 100 99.98 110 55 160
Chb23 A 100 98.04 60.07 9 142 N 100 92.98 86.67 0 145 N 86.66 93.42 131.15 10 195

Av. 100 95.97 78.87 9.95 150.6 97.99 96.23 124.24 25.5 208.75 87.6 95 109.36 40.25 171

TABLE III
PERFORMANCES OF THE CLASSIFICATION ALGORITHMS ON THE DATA OF THE “CHB-MIT SCALP EEG DATABASE”.

not be enough to guarantee long-acting antiepilectic drugs to
take effect, it enables patients to find a safe position, while at
the same time not ruining the quality of life. In practice, even
in case of a false positive, the patient after few minutes of wait
can resume her previous activities. Note that, in some cases,
the algorithms obtain tmp = 0, i.e., at least one seizure in the
test set has been detected at the onset. Algorithms ThAlgo
and LightGBM have been tested both on the first and the
second set of features. As it results from columns 2 and 8
of Table III, ThAlgo attains the best performances mainly on
the first set of features (i.e., on the arcs of graph G), while
in LightGBM there is not a prominence of a features’ set
with respect to the other. SVM has been only tested on the
nodes’ strengths, because the higher computational demand
of the parameters choice in the training step does not allow
to run this classifier on the larger first set of features with
times compatible for a real time use. Table IV reports a more
detailed analysis of the results of Table III. The table shows
the Positive Predictive Value (PPV) of the three classification

approaches, computed as TP/(TP + FP )× 100, where TP
is the number of true positive records (i,e., records inside the
prediction intervals classified as true). For taking into account
the imbalanceness of the data between positive and negative
records, we also report in Table IV a new measure that we
call Balanced Positive Predictive Value (BPPV), computed as
TP/P/(TP/P +FP/N)×100, where P is the total number
of positive records and N is the total number of negative
records. In the last column, Imb. is the percentage of positive
records with respect to the total number of records, computed
considering the maximum prediction interval (of 300 seconds).
We observe that, data are highly unbalanced (Imb. is 5.45% on
average) due to a prevalance of negative records over positive
records. Hence, PPV ranges from 28 to 33% on average.
However, BPPV attains higher values (about 77% on average).
In the literature, the CHB-MIT database has been used both
for seizure detection, see [35], [13], [14], [36], and for seizure
prediction, see [39], [38], [37], [15]. However, few works
adopt a cross validation scheme to evaluate the performances
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ThAlgo LightGBM SVM
Pat. PPV BPPV PPV BPPV PPV BPPV Imb.

Chb01 11.36 76.51 92.08 99.66 100 100 3.91
Chb03 33.14 94.65 57.43 98.48 11.23 81.86 4.19
Chb04 1.32 82.23 15.05 97.86 1.64 74.13 0.58
Chb05 100 100 100 100 91.60 99.74 2.83
Chb06 4.12 46.35 4.74 50.01 7.65 71.77 4.95
Chb07 36.54 98.93 5.21 89.81 12.58 95.84 0.93
Chb08 26.07 86.05 11.20 68.82 20.94 87.63 5.65
Chb09 5.63 88.92 87.05 99.78 63.58 99.15 1.48
Chb10 100 100 94.62 99.90 53.03 97.94 3.54
Chb12 5.83 31.07 12.94 52.00 6.05 31.94 13.52
Chb13 12.11 41.21 8.48 32.04 5.59 23.16 19.12
Chb14 5.21 60.48 3.85 34.96 4.48 56.64 7.15
Chb15 18.58 70.85 27.63 80.26 38.62 93.35 9.32
Chb16 9.75 59.31 6.77 49.51 17.76 85.81 7.30
Chb17 12.60 81.61 2.69 45.95 5.08 77.03 3.21
Chb18 55.67 98.33 10.14 84.09 26.98 95.87 3.19
Chb20 1.87 49.03 2.68 58.13 3.69 59.07 3.94
Chb21 19.69 90.55 16.72 94.08 6.15 79.49 2.54
Chb22 90 99.85 100 100 84.62 99.76 1.97
Chb23 21.44 84.77 5.89 56.07 10.58 64.03 9.73

Av. 28.55 77.04 33.26 74.57 28.59 78.71 5.45

TABLE IV
PPV AND BPPV RESULTS RELATED TO THE RESULTS OF TABLE III.

Study # of patients Cross Val. Prediction Horizon pred% spec% Pred. Time
van Esbroeck et al.[14] (detection) 23 leave-one-out - 100 76.86 -
Samiee et al. [35] (detection) 24 - - 71.6 99.2 -
Xiang et al. [36] (detection) 18 10-fold - 98.27 98.36 -
Zandi et al. [15] (prediction) 3 - 40 min 83.81 99.93 16.13 min
Myers et al. [37] (prediction) 10 - 60 min 77 90.00 -
Chu et al. [38] (prediction) 13 - 85.5 min 89.19 99.88 49.51 min
Alotaiby et al. [39] (prediction) 24 leave-one-out 60, 90, 120 min 85.6 49.67 53.25 min
Proposed approach: ThAlgo (prediction) 20 5-fold 150, 200, 300 sec 100 95.97 1.31 min
Proposed approach: LightGBM (prediction) 20 5-fold 150, 200, 300 sec 97.99 96.23 2.07 min

TABLE V
COMPARISON WITH PUBLISHED WORKS USING THE “CHB-MIT SCALP EEG DATABASE” FOR SEIZURE DETECTION AND PREDICTION.

Pat. pred% spec% PPV BPPV t̄p tmp tMp Imb.
1 100 100 100 100 142.80 29 213 52.58
2 100 98.20 8.75 99.96 29.67 15 37 11.73
3 100 95.46 22.79 99.99 152.50 0 294 9.89
4 100 96.28 20.67 99.98 94.90 0 290 13.49
5 90 96.63 41.28 99.99 221.67 0 292 13.64
6 100 100 100 100 67 1 157 7.67
7 80 98.06 23.56 100 131.50 0 289 4.77

Av. 95.71 97.81 45.29 99.99 120 6.43 224.57 16.25

TABLE VI
PERFORMANCES OF Thalgo ON THE DATA OF THE UNIT OF NEUROLOGY

AND NEUROPHYSIOLOGY AT UNIVERSITY OF SIENA.

of the classification obtained [39], [14], [36], and in any case
the experimental settings differ considerably in the different
works. For example, the set of patients, the length of epochs
(in which the data are segmented for features’ extraction
and classification), the methods for choosing the training and
the test data are different. Thus, a fair comparison between
the different approaches cannot be directly performed. The
performances are often measured in terms of number of false
positives per hour, however this indicator strongly depends
on the length of the epochs (i.e., the time window ∆t) used
for extracting the features, and hence from the number of
samples contained in one hour. For this reason, we use the
specificity as a more reliable performance measure. Moreover,
the shorter prediction horizon used in our short-term approach
inevitably produces smaller prediction times and higher false
positive rates than the other longer-term prediction approaches.
Therefore, a direct comparison of this aspect is not easy.

Table VII shows a comparison of the best results of our
approach (obtained with ThAlgo and LightGBM) with other
works from the literature addressing seizure detection or pre-
diction. For each work, we report the number of tested patients

of the CHB-MIT database, the type of cross validation, if
any, the prediction horizon, the sensitivity (pred%, i.e., the
percentage of predicted seizures), the specificity (spec%) and
the average prediction time. When not provided, we derived
the specificity from the average number of false positives per
hour and the epoch’s length.

Observe that our ThAlgo and LightGBM algorithms achieve
the best sensitivity for seizure prediction (i.e., the percentage
of correctly classified seizures), while the two proposed algo-
rithms have a specificity of about 96%, smaller than the ones
obtained in [38], [15] (that use a smaller set of patients without
a cross validation scheme). As already stated, our prediction
times are smaller than the other prediction approaches, ranging
from about 1.3 to 2 minutes, on average. On the other hand,
we point out that a seizure predictor with too long prediction
times introduces an uncertainty on the right time for taking
the suitable actions (e.g., resting in a safe position), and could
be of limited practical interest for an everyday use.
Table VI reports the results for ThAlgo on the data of Table
II, using the feature set “A” only. Also in this case, data
are unbalanced (Imb. 16% on average). Note that, ThAlgo
performs better with respect to the results of the first dataset
with the only exception of the prediction rate (about 95.7%).

VIII. CONCLUSIONS

This work presents a patient-specific approach for the pre-
diction of epileptic seizures, based on finding synchronization
patterns in the EEG signals. At this aim, a graph model of
the brain interactions and an easily computable function have
been proposed. Three binary classification approaches have
been tested: a simple threshold-based classifier tailored for
our application, and two classifiers from the literature (i.e.,
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a Gradient Boosting Decision Tree and a Support Vector
Machine algorithm). Computational tests on real data from
the “CHB-MIT Scalp EEG Database” [18] and from the Unit
of Neurology and Neurophysiology at University of Siena
show that the computationally viable threshold-based approach
proposed in this work is able to effectively detect the changes
in the synchronization corresponding to the preictal state a few
minutes before the seizure onset. With the aim of developing
portable and wearable devices for real-life use, future research
directions include: (i) evaluation of different graph measures;
(ii) development of more sophisticated methods to compute
the thresholds in the linear classifier; (iii) testing our approach
on larger EEG scalp datasets; (iv) integration of the features
considered here with other features derived from different
physiological signals (e.g., EKG signals) to limit the artifact
influence and improve effectiveness and reliability of the
classification phase; (v) real-world data acquisition and real-
time application of the proposed classifiers.
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