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Abstract The problem of partitioning systems of inde-

pendent constrained-deadline sporadic tasks upon het-

erogeneous multiprocessor platforms is considered. Sev-

eral di�erent integer linear program (ILP) formulations

of this problem, o�ering di�erent tradeo�s between ef-

fectiveness (as quanti�ed by speedup bound) and run-

ning time e�ciency, are presented. One of the formu-

lations is leveraged to improve the best speedup guar-

antee known for a polynomial-time partitioning algo-

rithm, from 12.9 to 7.83. Extensive computational re-

sults on synthetically generated instances are also pro-

vided to establish the e�ectiveness of the ILP formula-

tions.

Keywords task partitioning · sporadic tasks ·
unrelated machines · speedup bound · ILP rounding

1 Introduction

Heterogeneous multicore CPUs � CPUs in which the

processing elements di�er from one another with re-

spect to functionality or processing speed � are cur-

rently widely available and increasingly becoming the
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common case. The presence of such heterogeneity re-

quires choices to be made when mapping software com-

ponents onto processing elements. The need to resolve

such choices adds considerable complexity to resource

allocation, and inhibits the adoption of such platforms

by the embedded computing industry despite signi�-

cant potential bene�ts in terms of balancing perfor-

mance and energy.

We consider here real-time systems that are mod-

eled as collections of independent sporadic tasks (the

model is described in detail in Section 2). We seek to

devise algorithms for implementing such systems upon

heterogeneous multiprocessor platforms under the par-

titioned paradigm. To our knowledge, this topic has not

been studied much previously:

� On the one hand, most prior real-time scheduling re-

search that considers heterogeneous platforms (see,

e.g., [11,24,23,25,27]; [22] has a nice survey) has re-

stricted attention to implicit-deadline sporadic tasks.

� On the other hand, prior research that does ad-

dress the partitioned scheduling of task systems rep-

resented using models that are more general than

the implicit-deadline model considers identical mul-

tiprocessor platforms only (see, e.g., [7,10]), or re-

stricts the amount of heterogeneity, in the sense that

the models allow only a very small number of types

of processors (see, e.g., [4]).

In this paper, we initiate a methodical study of the

problem of partitioning, upon arbitrarily heterogeneous

multiprocessor platforms, task systems that are rep-

resented using the constrained-deadline sporadic task

model1. We assume that once the partitioning has been

performed and tasks assigned to the processors, run-

1 Although we expect that most of our results will also
extend to the arbitrary-deadline sporadic task model, for ease
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time scheduling is done on each processor using the ear-

liest deadline �rst (EDF) scheduling algorithm, which

is known to be optimal for this purpose [20,12]. On the

other hand, we remark that the task partitioning prob-

lem subsumes the NP-hard unrelated machines schedul-

ing problem [19,26].

Our approach. We will derive various approaches to

task partitioning. These algorithms share the common-

ality that they are all based upon formulating the task

partitioning problem as an integer linear program (ILP).

For implicit-deadline task systems, this is not particu-

larly di�cult to do; indeed most of the research on par-

titioning implicit-deadline sporadic task systems (in-

cluding the works [24,23,25,27] cited above) has been

based upon �rst formulating such an ILP, and then

seeking polynomial-time algorithms for obtaining ap-

proximate solutions to these ILPs (solving an ILP is

known to be NP-hard [16], and hence unlikely to be

solvable exactly in polynomial time).

Despite this inherent intractability of solving ILPs,

however, the optimization community has recently been

devoting immense e�ort to devise extremely e�cient

implementations of ILP solvers, and highly-optimized

libraries with such e�cient implementations are widely

available today. Modern ILP solvers, particularly when

running upon powerful computing clusters, are often

capable of solving ILPs with tens of thousands of vari-

ables and constraints. We therefore believe that it is

reasonable to attempt to solve ILPs exactly rather than

only approximately, and seek to obtain ILP formula-

tions that we will seek to solve exactly to solve the parti-

tioning problem for constrained-deadline sporadic task

systems. Since the running time of ILP solvers tends to

increase with the number of variables and constraints in

the ILP to be solved, we seek to develop ILPs for task

partitioning in which the number of variables and con-

straints are restricted to be low-order polynomials of

the representation of the task system. While the num-

ber of constraints may not always be a good indicator

of the complexity of an ILP formulation, we use it as a

�rst approximation: indeed, the best known complexity

bounds for solving ILPs do increase with the number of

linear constraints [13, Theorem 5.3]. Possibly more re-

�ned metrics, such as the constrained induced-width [14]

or the constraint density [2], have also been suggested

in other settings, but not in the context of the problem

of partitioning tasks onto heterogeneous processors �

not even implicit-deadline tasks [15]; these re�nements

fall outside the scope of this work.

of presentation we do not explore this issue any further in this
paper, but leave it for future work.

Our results. In partitioning implicit-deadline sporadic

task systems, an ILP represents an exact solution to the

partitioning problem � solving an ILP exactly there-

fore constitutes an optimal algorithm for performing

such partitioning. For partitioning constrained-deadline

systems, however, we do not know how to obtain such

an exact ILP representation of this problem with only

polynomially many constraints � this di�culty was

previously identi�ed even for partitioning upon identi-

cal multiprocessors in [5]. Instead, our goal here is to ob-

tain polynomial-sized ILP representations of the prob-

lem of partitioning constrained-deadline sporadic task

systems upon heterogeneous multiprocessor platforms

with the property that exact solutions of the ILP con-

stitute approximate solutions to the partitioning prob-

lem. Our metric of e�ectiveness of such an approximate

solution is the speedup factor � an ILP formulation has

speedup factor f , f ≥ 1, if any constrained-deadline

sporadic task system that can be partitioned upon a

particular heterogeneous platform by a hypothetical op-

timal algorithm can be partitioned using this ILP for-

mulation upon a platform in which each processor is at

least f times as fast.

We have derived several di�erent ILP representa-

tions for the problem of partitioning constrained-deadline

sporadic task systems upon heterogeneous multiproces-

sor platforms, all of which have number of variables

and constraints polynomial in the representation of the

task system. All these ILP formulations have nm in-

teger variables, where n is the number of tasks and m

the number of processors, but specify di�erent numbers

of constraints and o�er di�erent speedup guarantees �

they are summarized in Table 1.

Outline of the paper. The rest of the paper is structured

as follows. In Section 2, we formally de�ne our model

and introduce some notation. In Section 3, we present a

�rst ILP formulation for the partitioning problem, with

a guaranteed speedup bound of 4, and show one possi-

ble generalization. In Section 4, we consider a strength-

ened ILP formulation that trades o� the number of con-

straints with the speedup guarantee. Section 5 discusses

a variant of the ILP of Section 3 that is used as the ba-

sis of a polynomial-time partitioning algorithm with a

guaranteed speedup bound of 7.83, which improves the

current bound of 12.9 [21]. In Section 6, we report the

results of a large number of experimental results that

test our ILP formulations on synthetically generated

instances. We give our conclusions in Section 7.
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Model Number of constraints Speedup factor Comments

1. n+m+m log2 dmax 3 In Section 3.2

1'. n+m+m logρ dmax 1 + ρ In Section 3.3. ρ is a constant > 1. A generalization of Model 1
(which is obtained if ρ = 2)

2. n+m+ nmk 1 + 1
k

In Section 4. k is any integer ≥ 1.

3. n+m+m logρ dmax 2 + ρ+ ρ2

ρ−1
In Section 5. A �poorer� version of Model 1' � same number
of constraints, larger speedup factor. But more amenable to
polynomial-time approximation � see Section 5 for details

Table 1 Summary of ILP models and results

2 System model, background, and notation

We seek to partition a sporadic task system τ compris-

ing the n independent sporadic tasks τ1, τ2, . . . , τn upon

an unrelated multiprocessor platform π comprising the

m processors π1, π2, . . . , πm. The i'th sporadic task τi
is characterized by a period pi and a relative deadline

di, and m worst-case execution time (WCET) param-

eters ci,1, ci,2, . . . ci,m, with ci,j denoting the WCET of

τi if it executes upon processor πj . In this paper, we

restrict attention to task systems in which di ≤ pi for

each task τi ∈ τ � such sporadic task systems are

called constrained-deadline sporadic task systems. Dur-

ing run-time, τi releases a sequence of jobs at time-

instants that are not known beforehand, but with the

constraint that successive jobs are released at least pi
time units apart. Each job of τi has a deadline di time

units after its release time; the amount of execution

needed by this job depends upon the identity of the

processor on which it executes. More speci�cally, since

we are studying partitioned scheduling in this paper,

given task system τ and multiprocessor platform π, our

objective is to obtain a partitioning of the tasks upon

the processors. Let f(i) ∈ {1, 2, . . . ,m} denote the in-

dex of the processor to which each τi is assigned under

such a partitioning; each job of τi needs to execute for

up to ci,f(i) time units upon processor πf(i).

Since the preemptive Earliest Deadline First schedul-

ing algorithm (EDF) is known to be optimal for schedul-

ing a single preemptive processor, we will use EDF

as the scheduling algorithm upon each individual pro-

cessor during run-time. The demand bound function

(dbf) [6] of a sporadic task is widely used to quantify

the computational demand of such a task, where the

dbf(τi, t) of sporadic task τi with period pi, relative

deadline di, and WCET ci for an interval of duration t

is de�ned as follows:

dbf(τi, t) :=

⌊
t+ pi − di

pi

⌋
ci.

It is known that a collection of sporadic tasks can be

scheduled to always meet all deadlines upon a preemp-

tive uniprocessor by EDF if and only if for all t ≥ 0,

the sum of the dbf's of all the tasks in the collection for

an interval of duration t does not exceed t.

Some additional notation:

� Let N := {1, 2, . . . , n} denote the task index set.

� Let M := {1, 2, . . . ,m} denote the processor index
set.

� Let ui,j := ci,j/pi denote the utilization of task τi
on processor πj .

� Let dmax := max1≤i≤n{di} denote the largest rela-
tive deadline parameter of any task in τ .

As above, let f : N → M denote a partitioning of the

task system τ upon multiprocessor platform π. We use

the notation dbff,j(t) to denote the sum of the dbf's of

all the tasks in τ that have been assigned to processor

πj under the partitioning f , for interval duration t:

dbff,j(t) :=
∑

i∈N :f(i)=j

(⌊ t+ pi − di
pi

⌋
ci,j

)
.

3 A simple ILP model for task partitioning

Marchetti-Spaccamela et al. have previously [21] de-

rived a polynomial-time algorithm for assigning spo-

radic tasks to heterogeneous processors, and shown that

this algorithm has a speedup bound of (8 + 2
√

6) or

≈ 12.9. An intermediate step in [21] is the derivation

of a 0/1 ILP representation of the partitioning problem

with nm variables and (n+m+m log dmax) linear con-

straints, and a proof that this ILP representation has
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a speedup factor of 6. In this section, we present two

results:

1. We derive, in Theorem 1 below, an improved ILP

with the same number of variables and constraints

and show (Corollary 2) that it has a superior (i.e.,

smaller) speedup factor of 3.

2. In Theorem 2, we generalize the derivation of this

improved ILP in the following manner. For any con-

stant ρ > 1, we can derive an ILP with nm vari-

ables and (n + m + m logρ dmax) linear constraints

and speedup bound 2ρ; by choosing ρ to be smaller

than two, a smaller speedup bound than 3 is thus

obtained at the cost of needing to solve an ILP with

a larger number of constraints.

3.1 A review of some results from [21]

First a preliminary de�nition. Let D denote the set of

values{
0, 1, 2, 4, . . . , 2dlog2 dmaxe

}
.

We call D the deadline checkpoint set for task system

τ .

The starting point of the reasoning in [21] is the

following lemma.

Lemma 1 (from [21]) Let f : N → M denote an

assignment of the tasks in task system τ to the proces-

sors of unrelated multiprocessor platform π such that,

for each j ∈M∑
i:f(i)=j

ui,j ≤ β,

and for each j ∈M and k, 1 ≤ k ≤ dlog2 dmaxe,( ∑
i:(f(i)=j)∧(2k−1<di≤2k)

ci,j

)
≤ β · 2k.

Then for each j ∈M , dbff,j(t) ≤ 6βt for all t ≥ 0.

Let us try and understand what this lemma means.

The �rst set of inequalities requires that the cumulative

utilization assigned to each processor not exceed β; the

second, that the sum of the WCETs of all tasks assigned

to a processor that have relative deadlines between two

successive powers of two not exceed β times the larger

power of two. (For example, considering k = 6, the sec-

ond constraint mandates that the sum of the WCETs

of all tasks with relative deadline in the range (32, 64]

not exceed 64β.) The lemma asserts that if these con-

ditions are satis�ed by an assignment, then this assign-

ment constitutes a valid partitioning upon processors

of speed 6× β.

Now, suppose that τ is feasible upon π under parti-

tioned scheduling, i.e., there is an assignment f : N →
M of τ upon π such that all jobs of all tasks will always

complete by their deadlines if tasks are assigned accord-

ing to this partitioning, and each processor scheduled

during run-time by EDF. For this assignment f , it is

evident that the utilization constraints of Lemma 1 are

satis�ed for β = 1. The second set of constraints in

Lemma 1 will also be satis�ed for β = 1, by the follow-

ing reasoning:

� Since the partitioning f is feasible, the sum of the

dbf's of all the tasks assigned to the jth processor

for interval duration 2k is no more than 2k.

� Each task with relative deadline in (2k−1, 2k] must

have dbf(τi, 2
k) ≥ ci,j .

� Hence the sum of the ci,j 's for all tasks τi that have

relative deadline in (2k−1, 2k] and are assigned to

the jth processor must be ≤ 2k.

Hence if τ is feasible upon π, there exists an f : N →M

for which the conditions of Lemma 1 are satis�ed with

β = 1; therefore dbff,j(t) ≤ 6t for all t ≥ 0 for each j.

Thus [21] derives the following speedup result:

Corollary 1 Let f : N →M denote an assignment of

tasks to processors satisfying the conditions of Lemma 1.

Then f constitutes a feasible partitioning of τ upon π

under a speedup factor of 6β. In particular, if the condi-

tions of the lemma are satis�ed with β ≤ 1/6, then as-

signment f constitutes a feasible partitioning of τ upon

the given platform π.

In summary, the conditions of Lemma 1 are necessary

when β = 1 and su�cient when β = 1/6, i.e., they

yield a speedup factor of 6 for partitioning constrained-

deadline sporadic tasks upon heterogenous multiproces-

sor platforms.

3.2 An ILP with speedup factor 3

We now prove an improved version of Lemma 1 that

yields a superior speedup bound (of three, rather than

six). The conditions speci�ed in our theorem below dif-

fers from those in Lemma 1 only in that the summation

of ci,j 's in the second inequality is over all tasks with

relative deadline ≤ 2k (rather than only those with rel-

ative deadline > 2k−1 and ≤ 2k).

Theorem 1 Let f : N → M denote an assignment of

the tasks in task system τ to the processors of unrelated

multiprocessor platform π such that, for each j ∈M∑
i:f(i)=j

ui,j ≤ β (1)
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and for each j ∈M and each k, 1 ≤ k ≤ dlog2 dmaxe,( ∑
i:(f(i)=j)∧(di≤2k)

ci,j

)
≤ β · 2k. (2)

Then for each j, 1 ≤ j ≤ m, dbff,j(t) ≤ 3βt for all

t ≥ 0.

Proof Consider any t ≥ 0 and let s := 2k denote the

smallest integer power of 2 that is not smaller than t

(i.e. s = 2k ≥ t > s/2).

Consider the assignment f : N →M of the tasks to

the processors as in the hypothesis of the theorem. For

any j ∈M , we have

dbff,j(t) =
∑

i:f(i)=j∧di≤t

⌊
t+ pi − di

pi

⌋
cij

≤
∑

i:f(i)=j∧di≤t

(
t
cij
pi

+ cij

)
≤ t

∑
i:f(i)=j

cij
pj

+
∑

i:f(i)=j∧di≤s

cij

= t
∑

i:f(i)=j

uij + β · 2k

≤ βt+ βs

≤ 3βt,

and the theorem is proved.

This implies that any f satisfying Inequalities 1

and 2 of Theorem 1 constitutes a feasible partitioning

of the tasks in τ upon the set of heterogeneous proces-

sors π, when the processors receive a speedup factor of

3β.

Corollary 2 Let f : N → M denote an assignment

of tasks to processors satisfying Inequalities 1 and 2 of

Theorem 1. Then f constitutes a feasible partitioning

of τ upon π under a speedup factor of 3β. In particu-

lar, if Inequalities 1 and 2 are satis�ed with β ≤ 1/3,

then assignment f constitutes a feasible partitioning of

τ upon the given platform π. ut

We now apply the result of Theorem 1 above to

construct a 0/1 integer linear program (ILP) for spec-

ifying a feasible partitioning of sporadic task system

τ upon the platform π. That is, we will construct a

0/1 ILP, a solution to which will yield a partitioning

f : N →M that satis�es Inequalities 1 and 2. This ILP

is constructed as follows:

� For each i ∈ N, j ∈ M , we have a 0/1 integer vari-

able (i.e., an integer variable that takes on either the

value zero or the value one) xi,j , denoting whether

τi is to be assigned to processor πj .

� We specify that each task gets assigned to exactly

one processor; this is done by the following n con-

straints:

∀i ∈ N
(∑
j∈M

xi,j

)
= 1 (3)

� We next specify that Inequality 1 of Theorem 1

should be satis�ed; this is achieved by the follow-

ing m constraints:

∀j ∈M
(∑
i∈N

xi,jui,j

)
≤ β (4)

� Finally, we specify Inequality 2 of Theorem 1 by the

following (log dmax ×m) constraints:

∀k ∈ D, ∀j ∈M
( ∑
(i∈N)∧(di≤2k)

ci,jxi,j

)
≤ β · 2k (5)

By Theorem 1, any assignment of integer values to the

{xi,j} variables satisfying the Constraints 3�5 above

bears witness to the schedulability of τ , with a speedup

of 3β, upon the platform π. Moreover, for a τ that is

feasible upon π the model always admits a solution with

β = 1, since all inequalities are clearly valid; thus, this

ILP guarantees a speedup factor of at most 3. When the

ILP model is feasible with β ≤ 1/3, Theorem 1 guar-

antees schedulability on the original platform; hence,

a reasonable objective function for the ILP with Con-

straints (3)�(5) would be to minimize β.

Throughout the rest of this paper, we will still re-

fer to the problem of the minimization of β subject to

(3)�(5) as ILP, even if β is not strictly constrained to

be integer. However, we adopt this terminology for ex-

tension, and also because β could equivalently be �xed,

for example in a binary search fashion.

The ILP model consisting of Contraints (3)�(5) will

be referred to asModel 1 in the remainder of the paper.

3.3 A generalization

Above, we derived an ILP model for the problem of

partitioned scheduling of constrained-deadline sporadic

task systems upon unrelated multiprocessors, such that

any solution to the ILP immediately yields a partition-

ing algorithm at a speedup bound of 4. We also saw that

this ILP has (n+m+m× dlog2 dmaxe) constraints; we
now brie�y describe how to reduce the speedup bound

by increasing the number of constraints.

Recall that we had de�ned the deadline checkpoint

set D as powers of two:D = {0, 20, 2, 22, . . . , 2dlog2 dmaxe}.
For any given constant ρ > 1, we could instead have

chosen to de�ne it as

Dρ = {0, 1, ρ, ρ2, ρ3, . . . , ρdlogρ dmaxe},
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The following generalization of Theorem 1 is easily proved

via a proof analogous to the proof of Theorem 1:

Theorem 2 Let f : N → M denote an assignment of

the tasks in task system τ to the processors of unrelated

multiprocessor platform π such that, for each j ∈M∑
i:f(i)=j

ui,j ≤ β,

and for each j ∈M and k, 1 ≤ k ≤ dlogρ dmaxe,( ∑
i∈N :(f(i)=j)∧(di≤ρk)

ci,j

)
≤ β · ρk

Then for each j ∈ M , dbff,j(t) ≤ (1 + ρ)βt for all

t ≥ 0. ut

It follows, from arguments virtually identical to those

of Corollary 2, that the speedup bound for the ILP con-

structed based on Theorem 2 above is (1 + ρ); hence

by choosing ρ to be smaller than 2 a speedup bound

smaller than 3 is obtained. The tradeo� is that the num-

ber of constraints increases to (n+m+m×dlogρ dmaxe);
this is > log2 dmax for ρ < 2, becoming larger as ρ→ 1.

Theorem 2 thus suggests one approach for obtaining

speedup bounds arbitrarily close to 2, by simply select-

ing a denser deadline checkpoint set. In Section 4 below,

we explore another approach, that allows for speedup

bounds arbitrarily close to one (once again at the cost

of having additional constraints).

4 A strengthened ILP formulation

We now explore a di�erent idea that also trades o� an

increase in the number of constraints in the ILP for a

superior speedup bound. Speci�cally, for any positive

integer constant k we will derive an ILP model with

(n+m+mnk) constraints, �nding a feasible solution

to which corresponds a partitioning at a speedup bound

of
(
1 + 1

k

)
.

Approximation schemes have been de�ned for com-

puting the value of dbf to any desired degree of accuracy

(see, e.g. [3]). Equation 6 below gives such an approxi-

mation scheme; for any �xed positive integer value of k,

dbf(k)(τi, t) de�nes an approximation of dbf(τi, t) that

is exact for the �rst k �steps" of dbf(τi, t), and an upper

bound for larger values of t:

dbf(k)(τi, t) =

{
ci,j × b t+pi−dipi

c if t ≤ (k − 1)pi + di
ci + (t− di)ui otherwise

(6)

The following lemma (see, e.g., [5]) provides a quanti-

tative bound on the degree by which dbf(k) may deviate

from dbf:

Lemma 2 For all t ≥ 0

dbf(τi, t) ≤ dbf(k)(τi, t) <
(
1 +

1

k

)
dbf(τi, t).

That is, dbf(k)(τi, t) provides an upper bound on

dbf(k)(τi, t) that is no more than a fraction 1/k greater

than the actual value of dbf(k)(τi, t).

As previously stated, it is known that a collection

of sporadic tasks can be scheduled to always meet all

deadlines upon a preemptive uniprocessor by EDF if

and only if for all t ≥ 0, the sum of the dbf's of all the

tasks in the collection over an interval of duration t does

not exceed t. For schedulability, it is clearly necessary

that the utilizations of all the tasks in the collection

sum to no more than 1. Since dbf(k)is an upper bound

on dbf, it follows that a su�cient uniprocessor EDF-

schedulability test for a collection of tasks is that the

sum of the dbf(k) functions of all the tasks in the collec-

tion over an interval of duration t not exceed t. Albers

and Slomka showed [3, Lemma 4] that it su�ces to val-

idate this fact only for those values of t at which one

or more of the dbf(k) functions has a step discontinuity.

More precisely, let

Si,k = {t : t = di + hpi, h = 0, 1, . . . , k}

and Sk =
⋃
all i

Si,k

It su�ces to test that the sum of the dbf(k) functions of

all the tasks in the collection over an interval of duration

t not exceed t, only for values of t ∈ Sk.
We can use this result to de�ne a revised ILP formu-

lation for modeling the partitioned scheduling of spo-

radic task systems upon heterogeneous multiprocessors.

The �rst part of this revised ILP is identical to the one

constructed in Section 3:

� As in Section 3, we will have a zero-one integer vari-

able xi,j , denoting whether τi is to be assigned to

processor πj , for each i ∈ N, j ∈M .

� Again as in Section 3, the following n constraints

specify that each task gets assigned to exactly one

processor:

∀i ∈ N
(∑
j∈M

xi,j

)
= 1 (7)

� The following m constraints bound the total utiliza-

tion on each processor:

∀j ∈M
(∑
i∈N

xi,jui,j

)
≤ β (8)
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The �nal set of constraints replace the Inequalities 5

of the ILP in Section 3 with constraints based upon

the dbf(k) approximation, that express the requirement

that the sum of the dbf(k) functions of all tasks assigned

each processor over an interval duration not exceed the

duration. As we had stated above, this condition only

needs to be validated for interval durations in Sk; this

motivates the following set of constraints:

∀t ∈ Sk, ∀j ∈M
(∑
i∈N

(
xi,j × dbf

(k)
j (τi, t)

))
≤ β · t (9)

(where for each j ∈M , dbf
(k)
j (τi, t) denotes the function

dbf(k)(τi, t) when the WCET of τi is set equal to ci,j .)

Since each τi contributes at most k distinct points to

Sk, it follows that |Sk| ≤ nk; hence there are at most

mnk such constraints.

Note that the Inequalities 9 are constructed for spec-

i�ed values of t; i.e., for each t ∈ Sk. For each such

speci�ed t, it is straightforward to observe that the in-

equality is indeed a linear one, since inspection of Ex-

pression 6 reveals that for a given value of t for each τi
the expression dbf

(k)
j (τi, t) is a constant .

Theorem 3 A feasible solution to the ILP on the 0/1

variables {xi,j}, i ∈ N, j ∈ M , with Constraints 7�

9 (de�ned above) yields a feasible partitioning of the

tasks in τ to a platform in which each processor in π

is speeded up by a multiplicative factor of (1 + 1/k)β.

In particular, if the inequalities are satis�ed with β ≤
(1 + 1/k)−1, then a feasible solution to the ILP yields

a feasible partitioning on the given platform.

Proof It is evident from the result of Albers and Slomka

that satisfying Constraints 7�9 is su�cient for feasibil-

ity upon a speed-β(1 + 1/k) platform. Additionally we

conclude from the lower bound in Lemma 2 that failure

to satisfy these conditions implies infeasibility upon a

speed-β platform.

The ILP model consisting of Constraints (7)�(9) will

be referred to asModel 2 in the remainder of the paper.

The quality of the solution that is obtained by solving

Model 2 depends on the value of k: the larger this value,

the better is the quality (i.e., the lower the speedup fac-

tor) of the obtained solution. However we observe that

the number of constraints increases with k. It follows

that large values of k lead to an ILP that is not solvable

with state of the art packages.

5 An ILP that is amenable to polynomial time

approximation

In the previous sections, we discussed assignment al-

gorithms based on solving reasonably-sized ILPs. How-

ever, in some scenarios the solution of an ILP may be a

computational bottleneck � solving an ILP is, after all,

a prototypical NP-hard problem. Therefore, the design

of e�cient (polynomial time) assignment and schedula-

bility algorithms retains interest.

A standard technique that has been developed for

e�ciently obtaining an approximate solution to an ILP

is to �rst consider the linear program (LP) obtained by

�relaxing� (i.e., ignoring) the integrality requirement,

solve this LP (this can be done in polynomial time), and

then �rounding� the solution so obtained to obtained

an integral solution as desired. The main challenge in

designing the rounding procedure is to ensure that such

rounding does not degrade the feasibility or the quality

of the solution (i.e., the value of the objective function

that was optimized) too much.

Recently, a new approach to rounding, known as

iterative rounding [18], has been shown to provide im-

proved rounding guarantees. Analogously to prior round-

ing approaches, the �rst step requires that an LP relax-

ation be solved and a non-integer solution (say, X) be

obtained. However, instead of rounding all non inte-

gral values of X at the same time, only one variable is

rounded; assume, for example, that the value of variable

x1 is set to x̂1. Then the method iterates and solves a

new LP-relaxation that is obtained from the original

LP by �xing the value of x1 to x̂1. In this way, a new

solution X ′ is obtained; as in the previous case, the

method now rounds one variable of X ′; the method is

iterated until all variables satisfy the given integrality

constraints.

In this section, we seek to construct an ILP formula-

tion of the problem of partitioning sporadic tasks upon

heterogeneous multiprocessors that is more amenable to

iterative rounding than the ILP formulations we have

seen above. It will turn out (Theorem 4 below) that

this ILP has the same number of variables and con-

straints, but a poorer (larger) speedup factor than the

one described in Section 3.3 (Theorem 2). Hence from

the perspective of just developing an ILP, this is not

a particularly useful result. However, we will see that

this ILP can in fact be rounded iteratively in a manner

that we were unable to pull o� with the earlier ILP for-

mulations, resulting in a polynomial-time algorithm for

partitioning sporadic tasks upon heterogeneous multi-

processors that has speedup bound of ≈ 7.83, thereby

improving the ≈ 12.9 speedup bound of Marchetti-

Spaccamela et al. [21].

5.1 LP-rounding based approach

As before, we use variables xij for each pair (i, j) ∈
N×M , modeling the assignment of τi to πj . Apart from

the usual assignment constraints, the �rst constraints
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we consider are the utilization bounds on the tasks as-

signed to the same processor. That is, we require that∑
i∈N

uijxij ≤ 1 ∀j ∈M. (10)

Now, let ρ denote any constant, ρ > 1. We de-

�ne the function r(x) := ρdlogρ xe, and the set Dρ :=

{ρ0, ρ1, . . . , r(dmax)}. We want to express the require-

ment that for all tasks assigned to the same proces-

sor with deadline at most ρk, the sum of their WCETs

is at most ρk. Note that this is the set of tasks with

r(di) ≤ ρk. For technical reasons that will become ap-

parent later (in Lemma 3), we adopt the slightly weaker

constraint

∑
i∈N : r(di)≤d

cij

(
1− di

pi

)
xij ≤ d ∀d ∈ Dρ, ∀j ∈M.

(11)

We call these constraints (11) the relaxed dbf constraints.

It is clear that these constraints have to be ful�lled by

any feasible task assignment. (In particular, if di ≤ ρk

and xij = 1, then dbff,j(ρ
k) ≥ cij > cij(1 − di/pi),

where f is the assignment represented by x). We there-

fore arrive at the following ILP, denoted poly-ILP.∑
j∈M

xij = 1 ∀i ∈ N (12a)

∑
i∈N

uijxij ≤ 1 ∀j ∈M (12b)

∑
i∈N : r(di)≤d

cij

(
1− di

pi

)
xij ≤ d ∀d ∈ Dρ, ∀j ∈M

(12c)

xij ∈ {0, 1} ∀i ∈ N, ∀j ∈M
s.t. cij ≤ di.

(12d)

If poly-ILP is infeasible, then there can be no feasi-

ble task assignment. Now assume that it is feasible and

consider its relaxation, which is obtained by replacing

each constraint (12d) by

xij ≥ 0 ∀i ∈ N, ∀j ∈M s.t. cij ≤ di. (13)

Since it is an LP and not an ILP, the relaxation can be

solved in polynomial time. Let x∗ denote its solution.

For each j ∈ M and deadline d ∈ Dρ, we compute the

value

bj,d :=
∑

i∈N : r(di)=d

cij(1− di/pi)x∗ij .

Note that, by (12c),∑
d′≤d

bj,d′ ≤ d ∀d ∈ Dρ,∀j ∈M. (14)

Based on these computed values, we de�ne a variation

of poly-ILP, denoted by sparse-ILP in the sequel. We

obtain the latter by replacing the constraints (12c) with

the following set of constraints:∑
i∈N : r(di)=d

cij

(
1− di

pi

)
xij ≤ bj,d ∀d ∈ Dρ, ∀j ∈M.

By dividing both sides of the inequality by d, these

constraints can also be written as∑
i∈N : r(di)=d

c̄ijd

(
1− di

pi

)
xij ≤ b̄j,d ∀d ∈ Dρ, ∀j ∈M.

(15)

where b̄j,d = bj,d/d ≤ 1 (since x∗ is feasible for the

relaxation of poly-ILP) and c̄ijd = cij/d ≤ 1 (since if

r(di) = d then cij ≤ di ≤ d). Let A be the set of vectors

x satisfying (12a). We can now express sparse-ILP in

matrix notation as

{x ∈ A ∩ {0, 1}N×M : Ax ≤ b, x ≥ 0},

where A and b are, respectively, the matrix of coef-

�cients and the vector of right hand sides of the con-

straints (12b) and (15). Note that all entries of A and

b take values between 0 and 1.

By construction, if x∗ is a feasible solution for the

LP relaxation of poly-ILP it is also feasible for the LP

relaxation of sparse-ILP, and if the LP relaxation of

sparse-ILP is infeasible, then no feasible task assign-

ment exists. Our goal will be to round x∗ to an integral

vector which approximately satis�es the constraints of

sparse-ILP.

A reason for preferring sparse-ILP to poly-ILP is

that the former is an ILP formulation in which the

constraint matrix is sparse: each variable appears in

only a small number of constraints. This sparsity gives

the potential to derive e�cient rounding schemes which

result in integral solutions, violating the relaxed dbf-

constraints only by constant factors. We present such a

rounding scheme below; to this end, the following the-

orem shows that�even when violated up to constant

factors�the relaxed dbf constraints (15), together with

the utilization constraints (12b), are approximately suf-

�cient.

Theorem 4 Let β ≥ 1 and let f : N → M be an

assignment encoded by a vector x̂ ∈ A ∩ {0, 1}N×M
such that, for each j ∈M and d ∈ Dρ,∑
i∈N

uij x̂ij ≤ β (16)
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and∑
i∈N : r(di)=d

cij

(
1− di

pi

)
x̂ij ≤ bj,d + (β − 1) · d. (17)

Then dbff,j(s) ≤ (β + ρ + (β − 1)ρ2/(ρ − 1))s for all

s ≥ 0. In particular, if β ≤ 2, f is a feasible assignment

under a speedup factor of (2 + ρ+ ρ2/(ρ− 1)).

Proof For any s ≥ 0 and j ∈M , we bound dbff,j(s) as

follows:

dbff,j(s) =
∑

i∈N : di≤s

bs+ pi − di
pi

ccij x̂ij

≤
∑

i∈N : di≤s

(
s
cij
pi

+ cij

(
1− di

pi

))
x̂ij

≤
∑

i∈N : r(di)≤r(s)

(
s
cij
pj

+ cij

(
1− di

pi

))
x̂ij

≤ s
∑
i∈N

cij
pi
x̂ij +

∑
i∈N : r(di)≤r(s)

cij

(
1− di

pi

)
x̂ij

= s
∑
i∈N

uij x̂ij +

logρ(r(s))∑
k=0

∑
i∈N : r(di)=ρk

cij(1−
di
pi

) x̂ij

(16)

≤ βs+

logρ(r(s))∑
k=0

∑
i∈N : r(di)=ρk

cij(1−
di
pi

) x̂ij

(17)

≤ βs+

logρ(r(s))∑
k=0

(
bj,ρk + (β − 1)ρk

)
(14)

≤ βs+ ρlogρ(r(s)) +

logρ(r(s))∑
k=0

(β − 1)ρk

= βs+ r(s) + (β − 1)

logρ(r(s))∑
k=0

ρk

= βs+ r(s) + (β − 1) · ρ
logρ(r(s))+1 − 1

ρ− 1

= βs+ r(s) + (β − 1)
ρ · r(s)− 1

ρ− 1

≤ (β + ρ+ (β − 1)
ρ2

ρ− 1
)s.

The last inequality follows from r(s) ≤ ρ · s.

To construct x̂, we adopt an iterative rounding pro-

cedure that is similar to the procedure presented in [17,

21]. The idea of the iterative rounding procedure is the

following. In each iteration k, we �rst compute an ex-

treme point solution xk of a linear program LP k, where

LP 0 is the relaxation of sparse-ILP, and each LP k is

obtained by �xing the value for some variables or re-

moving some constraints of LP k−1.

Given a feasible fractional solution xk, to de�ne

LP k+1 we �rst �x all variables which are integral in

xk, i.e., those variables are not allowed to be changed

anymore in the remainder of the procedure. Let v be

the number of variables in LP k and let wa, wb and wb
be the number of constraints of types (12a), (12b) and

(15), respectively. Let w = wa + wb + wc. To obtain

LP k+1 we either delete one or more variables, in case

v > w, or delete a constraint while ensuring that in the

�nal solution that constraint will not be violated too

much. Along the way we ensure that the constraints of

type (12a) are always satis�ed exactly, so that xk ∈ A
at all times.

Note that if there is some variable xij that is �xed

at value 1 and removed from the program, then for all

j′ ∈ M \ {j}, xij′ will be set to 0 and also be removed

from the program. The constraint of type (12a) corre-

sponding to this i is then super�uous and will also be

removed.

To derive the bounds (16)�(17), we need to study

the coe�cient matrix A in more detail. Let γ be the

maximum, over all xij , of the sum of the values of the

coe�cients of variable xij in constraints (12b) and (15).

We �rst derive a bound on γ.

Lemma 3 For any task set τ , γ ≤ 1.

Proof Observe that γ is just the maximum value of uij+

c̄ijd(1 − di/pi) across all variables xij in the program.

Recall that for all such pairs (i, j), cij ≤ di, i.e., c̄ijd ≤
1, otherwise the variable xij is forced to 0 and removed

from the LP. We can now bound

uij + c̄ijd

(
1− di

pi

)
≤ cij

pi
+ 1− di

pi
≤ cij

pi
+ 1− cij

pi
= 1.

The following technical lemma is instrumental to

our rounding procedure. It is a specialization to our

setting of a more general rounding result for assignment

LPs [9].

Lemma 4 Let LP k be the linear program that is solved

in iteration k of the rounding procedure, with s variables

and r constraints. Let xk be an extreme point solution

to this LP. Then either,

(i) xk has at least one integer component; or

(ii) there is j ∈ M and a corresponding constraint of

type (12b) such that
∑
i∈N uijzij−

∑
i∈N uijx

k
ij ≤ γ for

any integer solution z; or

(iii) there are j ∈ M , d ∈ Dρ and a corresponding

constraint of type (15) such that∑
i∈N : r(di)=d

c̄ijd

(
1− di

pi

)
(zij − xkij) ≤ γ

for any integer solution z.
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Proof Let A be the coe�cient matrix of LP k. If v > w,

the null space of A is nontrivial, so let x0 be a nonzero

vector in the null space. Since xk is an extreme-point

solution to LP k, it cannot be expressed as the con-

vex combination of two (or more) solutions to LP k. If

xk does not have any integral entry, then we can �nd

a value δ > 0 such that xk + δx0 and xk − δx0 are

both solutions to LP k (since A(x ± δx0) = Ax) and,

in particular, xk is a convex combination of these two

solutions. Therefore xk must have at least one integral

entry.

If v ≤ w, we show that there always exists a con-

straint of type (12b) or type (15) such that maxz∈S
{(Az)l − (Ax)l} ≤ γ, where γ is the maximum sum

of coe�cients in a column of constraints (12b) and (15)

and where S is the integer solution space for all remain-

ing variables, i.e., S = {0, 1}v.
We show the statement by contradiction. Assume

that the statement is not true, that is, for each con-

straint l of type (12b) or (15) it holds that there exists

a vector z ∈ S such that

(Az)l − (Ax)l > γ. (18)

Note that all variables still present in the linear pro-

gram correspond to a processor j ∈M and a task i ∈ N
that is not yet assigned fully to one processor, but frac-

tionally to multiple processors. Hence, the constraint

of type (12a) corresponding to each τi is still present in

the linear program. It follows that∑
j∈M

∑
i∈N : xij∈(0,1)

xij = wa, (19)

where wa is the number of constraints of type (12a) re-

maining in LP k. De�ne L as the set of constraints of

types (12b) and (15) present in the current linear pro-

gram, and let wb and wc be their number, respectively

(so wa+wb+wc = w). For any q = (i, j), let Lq denote

the set of these constraints containing variable xq; by

de�nition of γ, we have

max
q

∑
l∈Lq

alq ≤ γ. (20)

Then,

γ(w − wa) = γ(wb + wc)

(18)
<
∑
l∈L

max
z∈S

((Az)l − (Ax)l)

as all alq≥0
=

∑
l∈L

((A1)l − (Ax)l)

=
∑
l∈L

∑
q

alq(1− xq)

=
∑
q

∑
l∈Lq

alq(1− xq)

≤
∑
q

γ(1− xq)

= γv −
∑
q

γxq

= γ(v − ra). (21)

The second inequality follows from (20).

The chain of inequalities implies that γ(w − wa) <

γ(w−wa)⇒ r < s which is a contradiction to being in

the case that v ≤ w. Hence we conclude that if v ≤ w,

there must be a constraint l of type (12b) or (15) for

which maxz∈S{(Az)l − (Ax)l} ≤ γ.

Lemma 4 is used to guide the rounding process. If

Case (i) applies, the variables that have an integer value

are �xed at that value and removed from the LP. If a

variable xij is �xed at value 1, then for all j′ ∈M\{j},
the variables xij′ are �xed at value 0 and the constraint

of type (12a) corresponding to i is removed. If we are

in Case (ii) or (iii), the constraint for which the claim

holds can be found in polynomial time by checking, for

each constraint l ∈ L of type (12b) or (15), whether∑
q alq(1 − xq) ≤ γ. This is su�cient since all alq ≥ 0

and the maximum value any variable xq can take is

1. If such a constraint is of type (12b) (Case (ii)) or

(15) (Case (iii)), the �nal task assignment will satisfy

(16) or (17) for that constraint, respectively, even if

the constraint is dropped ; thus, we drop the constraint,

obtaining the next (smaller) LP.

After either all constraints have been removed or

the values of all variables have been �xed at an integer

value, we obtain an integral vector x̂ which satis�es∑
i∈N uij x̂ij ≤ 1 + γ for each j ∈M and

∑
i∈N : r(di)=d

c̄ijd

(
1− di

pi

)
xij ≤ b̄j,d + γ

for all j ∈ M and all deadlines d ∈ Dρ. Hence, the

vector x̂ satis�es constraints (16), (17) with β := 1 +γ.

We are now in the position to invoke Theorem 4 to

obtain our �nal guarantee.

Theorem 5 There is a polynomial-time partitioning

algorithm with a speedup bound of (5 + 2
√

2) ≈ 7.83

for the problem of assigning constrained-deadline tasks

to heterogeneous processors.

Proof All steps required to construct x̂ can be carried

out in polynomial time. The assignment induced by x̂

satis�es (16)�(17) with β = 1 + γ ≤ 2 (Lemma 3).
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Thus, by Theorem 4 with ρ = 1+1/
√

2, the assignment

induced by x̂ is feasible with speedup

2 + ρ+
ρ2

ρ− 1
= 5 + 2

√
2 ≈ 7.83.

ut

5.2 Practical variant of the LP-rounding model

The above LP-rounding approach was designed with

the aim of minimizing the worst-case speedup bound in

Theorem 5. However, we observed that certain steps re-

quired for theoretical soundness �namely, sparsi�cation

of the constraints� can be avoided in practice. Thus, in

this subsection we brie�y discuss the practical variant

of the LP-rounding model that is the one we adopted in

the schedulability experiments, and that we will refer

to as Model 3.

The starting point is the following minimization ver-

sion of equations (12a)-(12d):

minβ (22a)∑
j∈M

xij = 1 ∀i ∈ N (22b)

∑
i∈N

uijxij ≤ β ∀j ∈M (22c)

∑
i∈N : r(di)≤d

cij
d

(
1− di

pi

)
xij ≤ β ∀d ∈ Dρ, ∀j ∈M

(22d)

xij ∈ {0, 1} ∀i ∈ N, ∀j ∈M
s.t. cij ≤ di,

(22e)

where β is the speedup parameter to be minimized. We

apply to this model the iterative rounding procedure as

described in the previous subsection, except that when

we need to drop a constraint, we drop the constraint

l for which the potential violation (i.e.,
∑
q alq(1− xq)

where A is the coe�cient matrix of Constraints (22c)�

(22d)) is the smallest. We also keep track of the largest

potential violation value during the whole process (we

call it γ, in analogy with the previous section). To de-

termine whether the instance is schedulable, at the end

of the process it is su�cient to compare the �nal value

of β+γ against (1+ρ)−1, due to the following Theorem.

Theorem 6 Let β, γ > 0 and let f : N → M be an

assignment encoded by a vector x̂ ∈ A ∩ {0, 1}N×M
such that, for each j ∈M and d ∈ Dρ,∑
i∈N

uij x̂ij ≤ β + γ (23)

and∑
i∈N : r(di)≤d

cij

(
1− di

pi

)
x̂ij ≤ (β + γ)d. (24)

Then dbff,j(s) ≤ (1 + ρ)(β + γ)s for all s ≥ 0. In

particular, if β + γ ≤ (1 + ρ)−1, then f is a feasible

assignment on unit speed processors.

Proof The proof is similar to that of Theorem 4. For

any s ≥ 0 and j ∈M , we bound dbff,j(s) as follows:

dbff,j(s) =
∑

i∈N : di≤s

bs+ pi − di
pi

ccij x̂ij

≤
∑

i∈N : di≤s

(
s
cij
pi

+ cij

(
1− di

pi

))
x̂ij

≤
∑

i∈N : r(di)≤r(s)

(
s
cij
pj

+ cij

(
1− di

pi

))
x̂ij

≤ s
∑
i∈N

cij
pi
x̂ij +

∑
i∈N : r(di)≤r(s)

cij

(
1− di

pi

)
x̂ij

= s
∑
i∈N

uij x̂ij +
∑

i∈N : r(di)≤r(s)

cij

(
1− di

pi

)
x̂ij

≤ s(β + γ) + (β + γ)r(s)

≤ s(β + γ) + ρs(β + γ)

= (1 + ρ)(β + γ)s.

The last inequality follows from r(s) ≤ ρ · s.

6 Schedulability experiments

In the sections above, we saw how the problem of par-

titioned scheduling of sporadic task systems upon un-

related multiprocessors could be modeled by ILPs. Our

motivation for doing so is that the optimization commu-

nity has devoted immense e�ort to coming up with ex-

tremely e�cient (although still exponential-time, since

solving ILPs is NP-hard) algorithms for solving ILPs,

and highly-optimized libraries implementing these e�-

cient algorithms are widely available. This is particu-

larly true for ILPs like the ones we have constructed

above, in which each variable is further constrained to

take in only the values zero or one. In this section, we

validate the performance of our ILP-based schedulabil-

ity tests against synthetic workloads in terms of the

percentage of schedulable task sets.

Our results show that Model 2 (the ILP model dis-

cussed in Section 4) provides solutions having better

quality, while Model 1 (the ILP model discussed in

Section 3) generates solutions of lower quality but in

less time. Model 3, the polynomial time LP-rounding

approach discussed in Section 5 has a solution quality

comparable to that of the Model 1, but runs even faster.
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6.1 Generation of the task sets and solutions

We developed a parametric framework with several pa-

rameters (m, κ, p, Ū , α � they are detailed below)

to randomly generate our workloads; this framework

is general enough to support our entire range of exper-

iments.

We consider m-processor platforms and n = κm

tasks, with κ ≥ 1 an integer-valued parameter. We ran-

domly generate an a�nity mask Ri,j for each i ∈ N and

j ∈ M : Ri,j ← 1 with probability p and 0 with proba-

bility (1− p). These a�nity masks help de�ne the Ci,j
values: Ci,j has a value < ∞ if and only if Ri,j = 1. If

the generated mask does not allow a particular task to

be processed on any processor, we then allow that task

to be processed upon a randomly chosen processor.

We then generate utilization values for every allowed

pair (i, j) for which Ri,j = 1. Tasks are grouped into m

groups of size κ each: tasks τ1+(k−1)κ to τkκ form the

kth group. For each group we use the UUniSort algo-

rithm [8] to generate randomly distributed utilizations

with total value Ū for the allowed task-processor pairs

in the group. Note that since there are m groups, each

of total utilization Ū , the value Ū represents the average

load that a processor can expect if tasks are randomly

assigned. Note that Ū ≤ 1 is not a necessary condition

for schedulability (indeed some of our ILP formulations

are able to schedule task sets with Ū > 1).

We generate the periods by setting pi = 2∆i , with

each ∆i uniformly distributed in the range 3...10. The

worst-case execution times are computed directly from

the periods and utilizations. Finally, the relative dead-

line of each task is sampled uniformly in the range

[(1− α) · (maxj cij) + αpi, pi], where α ∈ [0, 1].

In the experiments we consider the three models:

Model 1 (that is, the ILP model discussed in Section

3.2), Model 2 (that is, the ILP model discussed in Sec-

tion 4) with k = 3, and Model 3 (that is, the iter-

ative LP-rounding approach discussed in Section 5).

All optimization models have been solved by using a

branch-and-cut approach implemented in the mathe-

matical programming solver Gurobi 6.50 [1] on a PC

with Intel i7-4770 CPU at 3.4 GHz and 16Gb RAM.

Collectively, the experiments consist of 5200 instances

of the task partitioning problem.

6.2 Discussion of the results

6.2.1 Schedulability

Experiment 1: Variation of Ū (Figure 1) In the �rst

type of experiment, we use the average load Ū as the

independent variable. We vary Ū from 0.2 to 1.5. We
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Fig. 1 Experimental results 1: percentage of task sets found
to be schedulable by the three models. Variation of Ū (m =
10, κ = 10, p = 0.5, α = 0.2).
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Fig. 2 Experimental results 2: percentage of task sets found
to be schedulable by the three models. Variation ofm (κ = m,
Ū = 1, p = 0.8, α = 0.2).

�x m = 10, κ = 10, p = 0.5, α = 0.2. We generate

30 task sets for each value of Ū . When the percent-

age of schedulable task sets was strictly between 0 and

1, we generated 20 additional task sets to achieve a

higher precision. Figure 1 shows the dependency on Ū

of the percentage of task sets that are guaranteed to

be schedulable by Corollary 2 (for Model 1), Theorem

3 (for Model 2) and Theorem 6 (for Model 3). Indeed,

as could be expected, schedulability decreases when the

load factor Ū increases. It is interesting to note that for

Model 2, more than 90% of the generated task sets are

schedulable as long as Ū ≤ 1.

Experiment 2: Variation of m (Figure 2) In the second

type of experiment, we look at the impact of the number

of processors on schedulability, so we vary m from 2 to
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Fig. 3 Experimental results 3: percentage of task sets found
to be schedulable by the three models. Variation of p (m = 10,
κ = 10, Ū = 1, α = 0.2).
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Fig. 4 Experimental results 4: speedup required to guarantee
schedulability by the three models. Variation of the number
of types of processors (m = 8, κ = 8, Ū = 0.6, p = 0.5,
α = 0.2).

12. We �x κ = m, so n = m2. In this set of experiments,

we �x Ū = 1, p = 0.8, α = 0.2. For each experiment,

we generated 30 task sets for each value of m. In all

cases, schedulability increases with the number of pro-

cessors even though Ū is �xed. This is due to the fact

that, for a �xed total utilization value of each group,

a higher number of tasks in a group implies lower uti-

lization values for the individual tasks, and therefore a

more e�cient partitioning. The best quality is again ob-

tained by Model 2, while Model 1 and Model 3 achieve

a similar solution quality.

Experiment 3: Variation of p (Figure 3) In the third

type of experiment, we control the sparsity of the pro-

cessor a�nity matrix R, by varying p from 0.2 to 0.9.

We �x m = 10, κ = 10, Ū = 1, α = 0.2. We gener-

ate 30 task sets for each value of p. We �nd out that

the sparsity has a high impact on schedulability: there

are clear schedulability thresholds around p = 0.7 (for

Models 1 and 3) and p = 0.45 (for Model 2). This is

not entirely unexpected, as when the a�nity matrix is

sparser, it may happen that several tasks of large com-

bined utilization can only be assigned to a small set of

processors.

Experiment 4: Variation of the number of processor types

(Figure 4) In the fourth type of experiment, we control

the e�ect of similarity among processors. We group the

processors into types; we ensure that ci,τ = ci′,τ when-

ever i and i′ are of the same type. We then vary the

number of types of processors. We �x m = 8 and for

simplicity we consider equal-sized groups, so we vary

the number of types in the set {1, 2, 4, 8}. We also �x

κ = 8, Ū = 0.6, p = 0.5, α = 0.2, and we generate 30

task sets for each value of the independent variable. In

this case, it seems more signi�cant to plot the average

speedup that is required to ensure schedulability (thus,

lower values are preferable, and values below 1 ensure

schedulability without speedup). As expected, similar-

ity is helpful, i.e., an increase in the number of types

is associated with an increase in the speedup required,

particularly for Models 1 and 3.

6.2.2 Running times

In this subsection we discuss the solution time required

to solve the instances for the experiments described in

the previous section. These times are reported in the

Tables 2, 3, 4, and 5. As a general observation, run-

ning times for solving Models 1 and 3 are considerably

shorter than those needed for Model 2, but as we have

seen the latter one is clearly more e�ective in terms

of schedulability. We also note that, for Models 1 and

2, each set of instances generated with the same pa-

rameters may have rather variable solution times: the

maximum time is often more than 10 times the average

time. Model 3, on the other hand, is extremely fast and

its maximum times are quite close to the averages.

For Experiment 1, where we vary the average load

Ū (Table 2), we observe a slight decrease of the running

times as the instances become less schedulable. This is

likely due to the solver being able to rule out quickly

those instances that happen to be markedly overloaded.

For Experiment 2, where we vary the number m of

processors (Table 3), the running times increase rapidly

with m, but this is in large part due to the fact that in

this scenario we generate n = m2 tasks per instance, so

even the size of the input becomes of the order of m3.
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Table 2 Running times for Experiment 1: average and maximum (in secs.) for di�erent ranges of Ū .

Model
Range of Ū

0.1�0.55 0.6�1.05 1.1�1.55 1.6�2.0

Model 1
Mean 0.39 0.37 0.36 0.39
Max 5.66 2.20 1.45 2.01

Model 2
Mean 9.65 9.73 7.09 4.65
Max 88.16 89.25 51.72 22.82

Model 3
Mean 0.03 0.03 0.03 0.03
Max 0.09 0.09 0.12 0.09

Table 4 Running times for Experiment 3: average and maximum (in secs.) for di�erent ranges of p.

Model
Range of p

0.2�0.375 0.4�0.575 0.6�0.775 0.8�0.925

Model 1
Mean 0.13 0.39 0.55 0.64
Max 0.70 8.54 2.76 3.81

Model 2
Mean 2.05 8.89 19.66 27.38
Max 16.91 87.16 138.92 180.02

Model 3
Mean 0.03 0.03 0.03 0.03
Max 0.04 0.06 0.06 0.04

Table 3 Running times for Experiment 2: average and max-
imum (in secs.) for di�erent values of m.

Model
Range of m

2�8 9�10 11 12

Model 1
Mean 0.04 0.53 1.65 3.79
Max 0.26 3.03 13.60 28.50

Model 2
Mean 0.53 18.26 97.68 310.55
Max 4.47 160.49 380.05 709.27

Model 3
Mean 0.01 0.03 0.04 0.04
Max 0.04 0.04 0.05 0.07

Table 5 Running times for Experiment 4: average and max-
imum (in secs.) for di�erent number of types of processors.

Model
Types of processors
1 2 4 8

Model 1
Mean 0.16 0.09 0.05 0.07
Max 0.36 0.22 0.17 0.14

Model 2
Mean 3.14 1.13 0.67 1.06
Max 11.83 3.54 2.12 4.57

Model 3
Mean 0.02 0.02 0.02 0.02
Max 0.03 0.03 0.03 0.03

After discounting this fact, the running times are still

positively correlated with m, in particular for Model 2.

For Experiment 3, where we vary the a�nity prob-

ability p (Table 4), we observe a sharp transition from

unschedulable to schedulable instances, and running

times progressively increase. Again, this is likely due

to the solver being able to rule out quickly those in-

stances where the a�nity relation is too sparse to allow

schedulability.

For Experiment 4, where we vary the number of

types of processors (Table 5), all running time are lim-

ited to a few seconds at most and we do not �nd any

signi�cant correlation between the running time and

the number of types.

7 Summary and conclusions

In this work, we proposed a partitioning approach for

constrained-deadline tasks on heterogenous (unrelated)

processors. The approach is based on integer linear pro-

gramming formulations and allows the derivation of

guaranteed speedup bounds and consequently, su�cient

schedulability tests.

Experiments using randomly generated task work-

loads clearly show that the approach based on the solu-

tion of Model 2 is viable in terms of computation time,

and quite e�ective in its scheduling capacity, especially

when the task-processor a�nity relation is dense. On

the other hand, the approach based on the solution of

Model 1, despite its reduced scheduling capacity, may

be of use in the case of instances so large that they can-

not be solved with the previous approach in reasonable

times. The LP-rounding variant, Model 3, achieves a

comparable quality to Model 1 and appears to be ex-

tremely fast in practice.
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