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Abstract

This paper is focussed on algorithms to solve the k-shortest path prob-

lem. Three codes were described and compared on rand and grid net-

works using random generators available on

http://www.dis.uniroma1.it/∼challenge9

Codes were also tested on the USA road networks available on the same

URL address. One million paths were ranked in less than 3 seconds

on random instances with 10 000 nodes and 10 seconds for real-world

instances.
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1. Introduction

The shortest path problem was one of the first network problems studied in terms

of operations research, [6]. Fixed two specific nodes s and t in the network, the goal

is to find a minimum cost way to go from s to t.

The first papers dealing with this subject appear in the last years of 50th decade,

[5, 8, 19]. In [7, 13], one can find an extensive bibliography of published paper about

the shortest path problem until 1984.

The k-shortest path problem is a variant of the shortest path problem, where one

intends to determine k paths p1, . . . , pk (in order), between two fixed nodes. Each

path pi should have cost greater or equal than pi−1, 1 < i ≤ k, and the remainder

paths between the fixed nodes should have cost at least equal to pk. It has been

well-studied, [3, 11, 12, 14, 16, 17, 18, 21, 22, 23, 24], and many algorithms are

known. Dreyfus, [9], and Yen, [25] cite several additional papers on this subject

going back as far as 1957. The interested reader may adresses to a bibliography due

to Eppstein with hundred of references that is online with the following web page:

http://liinwww.ira.uka.de/bibliography/Theory/k-path.html.

This problem has several applications in others network optimization problems.

One of them is the restricted shortest path, where the shortest path that verifies a

specified condition is searched. This problem can be solved ranking paths until find

the first one which satisfies the condition given.

However, usually there is no an upper bound for the number of paths to be

ranked and it is a seriously handicap for this method. Depending on the restriction

given, one needs to rank less or more paths and it may be or not an efficient way to

solve it. For instance, when the condition is the path passes for all nodes once (find

the shortest Hamiltonian path), ranking paths does not solve the problem for large

networks. On the other hand, if one is interested on ranking loopless paths (paths

without repeated nodes), this method produces very good results, [16].

The paper is divided into five sections. Section 2 is devoted to the mathematical

description of the k-shortest path problem. In section 3 is given a briefly description
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of the algorithms used. Finally, section 4 and 5, computational results and the

conclusion are reported.

2. Problem description

A network, G, is defined upon a set of nodes, N = {1, . . . , n}, and a set of arcs,

A = {a1, . . . , am}. An arc links two nodes, i and j, in the network and mean that

one can pass from one node (i or j) to the other. When the arc is oriented, we can

only pass in one direction through this arc (it will be the case in this paper). So, an

arc ak can be represented by a pair of nodes, ak = (i, j), where i is called the tail and

j the head node of the arc. We will denote by A+
i = {(j, i) : (j, i) ∈ A and j ∈ N}

the set of arcs incoming to node i and A−
i = {(i, j) : (i, j) ∈ A and j ∈ N} the set

of arcs outgoing node i.

We fixed two nodes in the network, the initial node (s) and the terminal one (t).

Each arc ak = (i, j) has associated a value, cak
or ci,j, indicating the cost (or

distance, time, etc.) to cross the arc.

A path is a sequence of arcs where the head node of one arc is the tail node of the

next arc in the sequence. If there is no multiple arcs (arcs with the same tail and

head nodes), a path can be represented only by the sequence of the nodes wherein

the path passes through. For instance, path p = 〈(v0, v1), (v1, v2), . . . , (v`−1, v`)〉 will

be represented only by p = 〈v0, v1, v2, . . . , v`−1, v`〉. Let us denote by P the set of

paths from node s to node t. The cost of path p is the sum of the arcs cost in p and

it will be denoted by f(p). So, f(p) =
∑

(i,j)∈p ci,j.

The shortest path problem consists of determining a path p∗ ∈ P such that

f(p∗) ≤ f(q),∀q ∈ P. In a similar way, in the k-shortest path problem one is

looking for k paths (p1, . . . , pk) verifying f(pi) ≤ f(pi+1), 1 ≤ i < k, and f(pk) ≤
f(q),∀q ∈ P − {p1, . . . , pk}.

3. Algorithms description

In this section, the algorithms used in this work are described. In order to simplify

this task, it is assumed that there is no arcs with s as head node neither t as tail
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node. If it is not the case, one can add two new nodes (S and T ) to the network

and the zero cost arcs (S, s) and (t, T ). The initial and terminal nodes have to be

redefined as S and T .

3.1. Removing path algorithm

This algorithm was proposed by Martins, [14, 15], in 1984. The main idea takes

into account the following property: the second shortest path p2 in G is the shortest

path in a new network G ′, obtained from G removing the shortest path p1. In addi-

tion, the third shortest path p3 in G corresponds to the shortest path in a network

G ′′ obtained from G removing p1 and p2, or removing p2 from G ′. Consequently, the

general steps of the algorithm are:

• remove the shortest path in the current network;

• determining the shortest path in the resulting network.

The remotion of a path p = 〈s = v0, v1, . . . , v` = t〉 in network G can be done

building a new network G ′ from G as follows:

• make a copy of path p, creating copies of the internals nodes of p, that is,

N ′ = N ∪ {v′1, . . . , v′`−1} (observe that v0 is not copied; however, to simplified

this description we will write v′0 to represent v0);

• join the arcs {(v′i−1, v
′
i)}, 1 < i < `, to the new network G ′;

• link each internal node v′i to the original network G. Do this replacing by v′i

the head node of the arcs incoming to vi which are not in p, that is, A′+
v′i

=

{(j, v′i) : (j, vi) ∈ A and j ∈ N − {vi−1}} ∪ {(v′i−1, v
′
i)} and A′+

vi
= {(vi−1, vi)},

1 ≤ i < `.

• move the arc (v`−1, v`) to (v′`−1, v`) (consequently, 〈v0, v1, . . . , v`〉 is removed

from G ′);

Let Ts (T ′
s ) be the shortest tree rooted at s in network G (G ′), that is, a tree formed

by shortest paths from s to all nodes of N (N ′). If Ts was already computed, then T ′
s
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is obtained in a very easy way. In fact, note that labels of nodes in N −{t} are kept

in T ′
s . On the other hand, the new nodes v′i are labelled with πv′i

= min{πj + cj,v′i
:

(j, v′i) ∈ A+
v′i
}, 1 ≤ i < `, where πj corresponds to the shortest path value from s to

j in G.

It can be proved, [20], that the set of paths from s to t in G ′ corresponds to

P − {p}. Note that, if #A+
v1

= 1, node v′1 will be redundant in G ′ because there is

no arcs incoming to this node. The same happen to v′2 when #A+
v1

= #A+
v2

= 1.

Consequently, some improvements were done in order to eliminate redundant nodes,

[1, 2, 4, 3], leading to a version where the shortest path from s to v′i corresponds to

the next shortest path from s to vi.

In 1995, Martins and Santos, [20, 18], notice that A+
vi

is not longer used after the

creation of node v′i. As a consequence, the information in A+
v′i

can be stored in A+
vi
,

allowing to save a large amount of memory and CPU time.

The last improvement in the algorithm was produced in 1999, [17], sorting the

tail nodes of A+
vi

by the value πj + cj,vi
, for all node j such that (j, vi) ∈ A+

vi
. So, the

label of node v′i is obtained from the first arc of A+
vi
. Note that we have to update

this sorting when a new copy of vi is made.

3.2. Deviation path algorithm

This algorithm starts with a work of Eppstein, [11], describing how to obtain the

k-shortest path from deviation paths of p1, p2, . . . , pk−1. Thus, these deviation paths

are candidates for the next shortest path, being pk the one with minimum cost.

From now on, let us denote the shortest tree rooted at t by Tt and the shortest

path from i to t in Tt by Tt(i). The keyword of this algorithm is the computation

of deviation paths from a path p = 〈v0, . . . , v`〉 in the network. We say that q =

〈u0, . . . , uw〉 is a deviation path of p if there is x ∈ IN0 such that

• x < ` and x < w;

• vi = ui, 0 ≤ i ≤ x;

• vx+1 6= ux+1;
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• 〈ux+1, . . . , uw = t〉 is the shortest path from ux+1 to t, that is, Tt(ux+1).

In this case, we say (ux, ux+1) is the deviation arc of q from p.

To guarantee each candidate is determined no more than once, it is imposed that

deviations paths can only be generated from nodes vx of p in the last part of p, that

is, from nodes vx for which 〈vx, . . . , v` = t〉 ∈ Tt.

The reduced cost of an arc (i, j) relatively to Tt, c̄i,j, makes easier the computation

of the cost of deviation paths. In fact, denoting by πx the value of the shortest path

from x to t, the reduced cost of arc (i, j) is defined by c̄i,j = ci,j +πj−πi and satisfies

the following properties:

1. c̄i,j ≥ 0, ∀(i, j) ∈ A;

2. c̄i,j = 0, ∀(i, j) ∈ Tt;

3. f̄(q) =
∑w

i=1 c̄ui−1,ui
= πt − πs +

∑w
i=1 cui−1,ui

= πt − πs + f(q).

The last property assures that ranking paths by f value is identical from the

rank obtained with f̄ value. In addition, the second property tells us that f̄(q) =

f̄(p) + c̄ux,ux+1 , where q is a deviation path from p with deviation arc (ux, ux+1).

The deviation path algorithm starts with the determination of Tt, and put the

shortest path from s to t in a set of candidates for the next shortest path denoted

by X. So, initializing k with 0, the general steps of this algorithm consist of:

• k = k + 1;

• let pk be the path with minimum f̄ value in X;

• remove pk from X;

• join all deviation paths from pk to X.

We can decrease the number of candidates determined if we sort A−
i by the value

of the reduced cost, [16]. We would like to emphasize that the arc of A−
i belonging

to Tt have to be the first one.
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In this way, denoting by vy the tail node of the deviation arc of p, we have only

to compute one deviation path for each node vx of 〈vy, . . . , v`〉 (that is Tt(vy)), using

the arc following (vx, vx+1) in A−
vx

, y ≤ x < `.

3.3. Deviation path algorithm - second version

In this paper, we propose a new variant for the deviation path algorithm, com-

puting only two candidates for each path ranked. It consists of sorting the entire set

of arcs A by the reduced cost value (independent its tail node), assuming that the

first n − 1 arcs as the ones belonging to Tt. Let us denoted by aTt(i) the arc of Tt

with i as its tail node. Therefore, supposing that pk was obtained from pz (z < k)

with the deviation arc (vx, vx+1), we have to add into X

• one candidate from pk: the deviation path of pk where its deviation arc is the

first one following aTt(vx) with tail node belonging to Tt(vx);

• one candidate from pz: the deviation path of pz using as deviation arc the first

one that follows (vx, vx+1) and its tail node belongs to Tt(ur), where ur is the

tail node of the deviation arc of pz.

Using a correct data structure, these arcs can be obtained efficiently.

4. Computational results

The computational experience was carried on a Intel(R) Pentium(R) 4 CPU

3.00GHz personal computer with 1024 KB cache size. Codes was written in C

language and compiled using the ”cc” compiler of Linux system (Suse 9.3 version).

In this section, we compared the following codes:

• ”rem”: an implementation of the removing path algorithm;

• ”dev”: an implementation of the deviation path algorithm;

• ”dev2”: an implementation of the deviation path algorithm which computes

only two candidates for each ranked path;
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The three codes for solving the k-shortest path problem were compared in two

kind of problems: random generated and real-world instances. The CPU time was

measured in seconds with the ”timer” function available in the web page

http://www.dis.uniroma1.it/∼challenge9

4.1. Random generated instances

In this case, instances were produced with the random generators ”sprand.exe”

and ”spgrid.exe” available online on the URL address above mentioned. The arc

cost was randomly chosen in the interval [1, 1000]. It was considered just a query

pair for each graph. The initial and terminal node in rand instances were always 1

and n (number of nodes), respectively. For square grid graphs, they corresponded

to nodes on corners of the grid. The computational results presented in this section

correspond to the average of 30 instances of each type of network using the seed

from 1 to 30 (it was considering only the first query pair of each instance). The code

performance was evaluated changing the number of paths ranked (k), the number

of nodes (n) and the graph density (d = (number of arcs)/n).

Tables 1 – 3 and Tables 4 – 5 resume our computational experience on rand and

grid instances, respectively, determining one million path in less than 3 seconds of

CPU time.

Let us note that ”dev2” needs an extra CPU time (see Table 6) to build the data

structures which allows sorting the set of arcs before starting the ranking paths.

Finally, we would like to notice that ”dev2” computes, at most, two candidates for

each new ranked path. On the other hand, the number of candidates generated by

”dev” is not predictable, Table 7. Taking into account our computational results,

”dev” determines an average of 10 candidates for each new ranked path in rand

networks and this ratio increases upon to 30, when grid networks are considered. In

what concerns to ”rem” codes, the number of ranked shortest paths to internal nodes

is equivalent to the number of candidates generated by ”dev” and these numbers

are similar in rand and grid networks.
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k 100 200 300 400 500 600 700 800 900 1000
rem 0,24 0,46 0,67 0,88 1,07 1,24 1,42 1,59 1,75 1,92
dev 0,14 0,29 0,44 0,59 0,74 0,89 1,03 1,17 1,32 1,46
dev2 0,26 0,53 0,80 1,06 1,32 1,57 1,81 2,06 2,30 2,54

Table 1: CPU time for ranking k thousand paths in rand networks with 10000 nodes
and 100000 arcs.

n 2000 4000 6000 8000 10000
rem 1,14 1,42 1,61 1,86 2,02
dev 0,93 1,10 1,21 1,35 1,43
dev2 1,35 1,78 2,08 2,30 2,42

Table 2: CPU time for ranking one million paths in rand networks with n nodes
and 10n arcs.

d 2 4 6 8 10
rem 2,95 2,08 2,14 3,27 2,10
dev 1,42 1,32 1,34 1,37 1,39
dev2 1,90 2,09 2,22 2,28 2,30

Table 3: CPU time for ranking one million paths in rand networks with 10000 nodes
and 10000d arcs.

k 100 200 300 400 500 600 700 800 900 1000
rem 0,36 0,68 0,99 1,30 1,60 1,91 2,22 2,51 2,81 3,10
dev 0,43 0,70 0,96 1,22 1,35 1,62 1,88 2,16 2,43 2,70
dev2 0,33 0,54 0,75 0,95 1,05 1,24 1,44 1,63 1,82 2,01

Table 4: CPU time for ranking k thousand paths in square grid networks with 10000
nodes.

x = y 20 40 60 80 100
rem 1,16 2,48 2,65 2,69 3,35
dev 0,69 1,25 1,56 2,14 2,66
dev2 0,52 0,74 0,99 1,54 2,03

Table 5: CPU time for ranking one million paths in square grid networks with x× y
nodes.
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n 2000 4000 6000 8000 10000
rand 0,01 0,05 0,10 0,15 0,21

d 2 4 6 8 10
rand 0 0,01 0,04 0,11 0,21

x = y 20 40 60 80 100
grid 0 0,01 0,07 0,25 0,68

Table 6: CPU time to buil the data structure in ”dev2” code.

rand
n 2000 4000 6000 8000 10000

rem 7,12 7,75 8,07 8,53 8,72
dev 8,12 8,75 9,06 9,52 9,71
dev2 2,00 2,00 2,00 2,00 2,00

rand
d 2 4 6 8 10

rem 13,71 9,46 8,83 8,85 8,72
dev 11,58 10,27 9,80 9,84 9,71
dev2 2,00 2,00 2,00 2,00 2,00

grid
x = y 20 40 60 80 100
rem 6,74 13,48 17,19 22,82 27,68
dev 7,69 14,48 18,18 23,81 28,64
dev2 2,00 2,00 2,00 2,00 2,00

Table 7: Average number of candidates generated by each path ranked.
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Name NY BAY COL
n 264345 321269 435665
m 734610 801264 1059582

k = 1 5,27 5,97 14.65
”rem” ord – – –

K 50000 < 50000 50000
rank 2,24 2,30 2,30
ratio 37,69 12,00 27,45

”dev” ord 0,04 0,04 0,06
K 250000 150000 100000

rank 0,69 1,04 1,17
ratio 25,38 25,99 24,30

”dev2” ord 157,78 263,39 539,25
rank 7,29 6,95 9,53
ratio 2,00 2,00 2,00

Table 8: Computational results on USA road network.

4.2. Real-world instances instances

In this section we use the ”TIGER/Line” collection of real-world instances avail-

able for the ”9th DIMACS Implementation Challenge - Shortest Paths” which cor-

responds to the (undirected) road networks of the 50 US States and the District of

Columbia (USA-road-d package).

The values presented in Table 8 correspond to the average results for the first 100

query pairs in file ”problem.p2p” for each instance. Line ”K” indicates the largest

value of K for which the codes solve all the instances (”dev2” ranked always 1000000

paths). Finally, line ”rank” reports the ratio CPU time between the code ”rem” or

”dev” and ”dev2” for the number of paths pointed in line ”K”; for ”dev2” codes, it

shows the CPU time for the largest values of K considered. From these results, one

can conclude that ”dev2” are the unique code which ranks one million paths in all

instances. So, despite the great time to build the data structure, ”dev2” have the

best performance to rank path in real-world problems.

5. Conclusion
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Three codes for solving the k-shortest path problem were described in this work.

All of them are very efficient, computing one million path in less than 3 seconds

of CPU time in random instances. The removing path have, in general, worst

performance than the deviation path algorithm. On the other hand, the second

variant of the deviation path algorithm takes advantage over the original one in grid

networks.

In what concerns to real-world problems, ”dev2” was the unique code capable to

solve all instances.

Our future work on this subject is focussed on the data structure that allows to

sort the set of arcs in the variant of the deviation path algorithm.
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