Basi di dati

Giuseppe De Giacomo

Dipartimento di Informatica e Sistemistica "Antonio Ruberti" Università di Roma "La Sapienza"

> Anno Accademico 2005/2006 Canale M-Z

http://www.dis.uniroma1.it/~degiacomo/didattica/basidati/

2. Il modello relazionale

2.1 Basi di dati relazionali

- 1. basi di dati relazionali
- 2. algebra relazionale

Il modello relazionale

- Proposto da E. F. Codd nel 1970 per favorire l'indipendenza dei dati
- Disponibile come modello logico in DBMS reali nel 1981 (non è facile realizzare l'indipendenza con efficienza e affidabilità!)
- Si basa sul concetto matematico di **relazione** (con una variante)
- Le relazioni hanno una rappresentazione naturale per mezzo di tabelle
- Il modello è "basato su valori": anche i riferimenti fra dati in strutture (relazioni) diverse sono rappresentati per mezzo dei valori stessi

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 3

Relazione: tre accezioni

- relazione matematica: come nella teoria degli insiemi
- relazione (dall'inglese relationship) che rappresenta una classe di fatti — una relazione matematica fra due entità, nel modello Entity-Relationship; talvolta tradotto con associazione o correlazione
- relazione secondo il modello relazionale dei dati: tabella

Relazione matematica

- D₁, D₂, ..., D_n (n insiemi anche non distinti)
- il prodotto cartesiano $D_1 \times D_2 \times ... \times D_n$, è l'insieme di tutte le n-uple ordinate $(d_1, d_2, ..., d_n)$ tali che $d_1 \in D_1$, $d_2 \in D_2$, ..., $d_n \in D_n$
- una relazione matematica su D₁, D₂, ..., D_n è un sottoinsieme del prodotto cartesiano D₁×D₂×...×D_n
- D₁, D₂, ..., D_n sono i domini della relazione. Una relazione su n domini ha grado (o arietà) n
- il numero di n-uple è la cardinalità della relazione

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 5

Relazione matematica: esempio

- $D_1 = \{a,b\}$
- $D_2 = \{x, y, z\}$
- prodotto cartesiano D₁ × D₂

a x y a z b x b y b z

• una relazione $r \subseteq D_1 \times D_2$

a x a z b y b z

Relazione matematica: proprietà

Una relazione matematica è un insieme di $\ n$ -uple ordinate: $(d_1, \ ..., \ d_n)$ tali che $d_1 \in D_1, \ ..., \ d_n \in D_n$

- la relazione è un insieme; quindi:
 - non c'è ordinamento fra le n-uple
 - le n-uple sono distinte
- ciascuna n-upla è ordinata; quindi
 - l' i-esimo valore proviene dall' i-esimo dominio

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 7

Relazione matematica, esempio

Partita ⊆ string × string × integer × integer

Juve	Lazio	3	1
Lazio	Milan	2	0
Juve	Roma	1	2
Roma	Milan	0	1

- Ciascuno dei domini ha due ruoli distinti, distinguibili attraverso la posizione: il primo e il terzo dominio si riferiscono a nome e reti della squadra ospitante; il secondo e il quarto a nome e reti della squadra ospitata
- La struttura è posizionale

Relazioni nel modello relazionale dei dati

- Ogni relazione è sostanzialmente una tabella
- A ciascun dominio associamo un nome (attributo), unico nella relazione, che "descrive" il ruolo del dominio
- Nella rappresentazione tabellare, gli attributi sono usati come intestazioni delle colonne

Casa	Fuori	RetiCasa	RetiFuori
Juve	Lazio	3	1
Lazio	Milan	2	0
Juve	Roma	1	2
Roma	Milan	0	1

 L'ordinamento fra gli attributi è irrilevante: la struttura è non posizionale

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 9

Notazioni

- Se t è una ennupla (o tupla) su X e A∈X, allora t[A] (oppure t.A) indica il valore di t su A
- Nell'esempio, se t è la prima ennupla della tabella t[Fuori] = Lazio
- La stessa notazione è estesa anche ad insiemi di attributi, nel qual caso denota ennuple: t[Fuori,RetiFuori] è una ennupla su due attributi
- Nell'esempio, se t è la prima ennupla della tabella t[Fuori,RetiFuori] = <Lazio, 1>

Altra notazione

 Per una relazione R con attributi A1, A2 e A3, e corrispondenti domini D1, D2 e D3 si può denotare anche come

R(A1: D1, A2: D2, A3: D3)

 Di conseguenza, una tupla di R con t[A1] = a, t[A2] = b e t[A3] = c si può denotare anche come

<A1: a, A2: b, A3: c>

 In altre parole, la tupla si può vedere come "tupla etichettata", in cui le etichette sono gli attributi della relazione, ed i valori associati alle etichette sono i valori che compongono la tupla.

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 11

Tabelle e relazioni

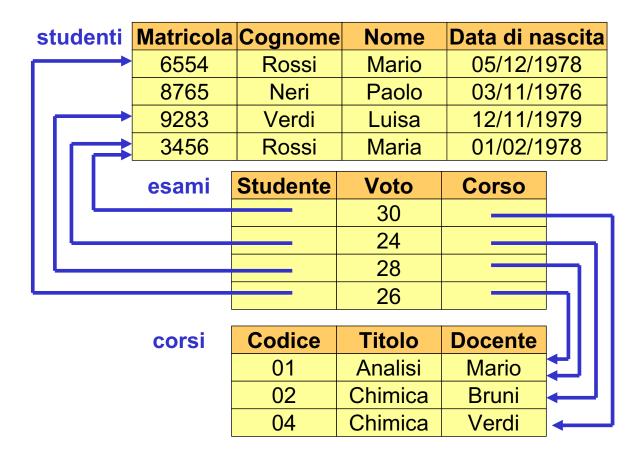
- Una tabella rappresenta una relazione se
 - i valori di ciascuna colonna sono fra loro omogenei (appartengono allo stesso dominio)
 - le righe sono diverse fra loro
 - le intestazioni delle colonne (attributi) sono diverse tra loro
- Inoltre, in una tabella che rappresenta una relazione
 - l'ordinamento tra le righe è irrilevante
 - l'ordinamento tra le colonne è irrilevante
- Il modello relazionale è basato su valori: i riferimenti fra dati in relazioni diverse sono rappresentati per mezzo di valori dei domini che compaiono nelle ennuple

studenti

Mat	tricola	Cognome	Nome	Data di nascita
6	5554	Rossi	Mario	05/12/1978
8	765	Neri	Paolo	03/11/1976
9	283	Verdi	Luisa	12/11/1979
3	456	Rossi	Maria	01/02/1978

esami

Studente	Voto	Corso
3456	30	04
3456	24	02
9283	28	01
6554	26	01


corsi

Codice	Titolo	Docente
01	Analisi	Mario
02	Chimica	Bruni
04	Chimica	Verdi

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 13

Vantaggi della struttura basata su valori

- indipendenza dalle strutture fisiche, che possono cambiare anche dinamicamente
- si rappresenta solo ciò che è rilevante dal punto di vista dell'applicazione (dell'utente); i puntatori sono meno comprensibili per l'utente finale (senza, l'utente finale vede gli stessi dati dei programmatori)
- i dati sono portabili più facilmente da un sistema ad un altro
- i valori consentono bi-direzionalità, i puntatori sono direzionali

Nota: i puntatori possono essere usati a livello fisico

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 15

Definizioni

Schema di relazione: un nome di relazione R con un insieme di attributi $A_1,...,A_n$

$$R(A_1,..., A_n)$$

Schema di base di dati: insieme di schemi di relazione con nomi diversi:

$$\mathbf{R} = \{R_1(X_1), ..., R_n(X_n)\}$$

(Istanza di) relazione su uno schema R(X): insieme r di ennuple su X

(Istanza di) base di dati su uno schema $\mathbf{R} = \{R_1(X_1), ..., R_n(X_n)\}$: insieme di relazioni $\mathbf{r} = \{r_1, ..., r_n\}$ (con r_i relazione su R_i)

Esempio

studenti

Matricola	Cognome	Nome	Data di nascita
6554	Rossi	Mario	05/12/1978
8765	Neri	Paolo	03/11/1976
9283	Verdi	Luisa	12/11/1979
3456	Rossi	Maria	01/02/1978

studenti lavoratori

Matricola
6554
3456

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 17

Informazione incompleta

- Il modello relazionale impone ai dati una struttura rigida:
 - le informazioni sono rappresentate per mezzo di ennuple
 - le ennuple ammesse sono dettate dagli schemi di relazione
- I dati disponibili possono non corrispondere esattamente al formato previsto, per varie ragioni

Esempio:

- di Firenze non conosciamo l'indirizzo della prefettura
- Tivoli non è provincia: non ha prefettura
- Prato è "nuova" provincia: ha la prefettura?

Città	Prefettura
Roma	Via IV Novembre
Firenze	
Tivoli	
Prato	

Informazione incompleta: soluzioni?

Non conviene (anche se spesso si fa) utilizzare valori ordinari del dominio (0, stringa nulla, "99", etc), per vari motivi:

- potrebbero non esistere valori "non utilizzati"
- valori "non utilizzati" potrebbero diventare significativi
- in fase di utilizzo (ad esempio, nei programmi) sarebbe necessario ogni volta tener conto del "significato" di questi valori

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 19

Informazione incompleta nel modello relazionale

- Si adotta una tecnica rudimentale ma efficace:
 - valore nullo: denota l'assenza di un valore del dominio (e non è un valore del dominio)
- Formalmente, è sufficiente estendere il concetto di ennupla: t[A], per ogni attributo A, è un valore del dominio dom(A) oppure il valore nullo NULL
- Si possono (e debbono) imporre restrizioni sulla presenza di valori nulli

Tipi di interpretazione del valore nullo

- (almeno) tre casi differenti
 - valore sconosciuto: esiste un valore del dominio, ma non è noto (Firenze)
 - valore inesistente: non esiste un valore del dominio (Tivoli)
 - valore senza informazione: non è noto se esista o meno un valore del dominio (Prato)
- I DBMS non distinguono i tipi di valore nullo (e quindi implicitamente adottano l'interpretazione "senza informazione")

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 21

Vincoli di integrità

Esistono istanze di basi di dati che, pur sintatticamente corrette, non rappresentano informazioni possibili per l'applicazione di interesse.

Studenti

Matricola	Cognome	Nome	Nascita
276545	Rossi	Maria	23/04/1968
276545	Neri	Anna	23/04/1972
788854	Verdi	Fabio	12/02/1972

Esami

Studente	Voto	Lode	Corso
276545	28	e lode	01
276545	32		02
788854	23		03
200768	30	e lode	03

Corsi

Codice	Titolo	Docente
01	Analisi	Giani
03	NULL	NULL
02	Chimica	Belli

Vincolo di integrità

Definizione

- proprietà che deve essere soddisfatta dalle istanze che rappresentano informazioni corrette per l'applicazione
- ogni vincolo può essere visto come una funzione booleana (o un predicato) che associa ad ogni istanza il valore vero o falso
- Ad uno schema associamo un insieme di vincoli e consideriamo corrette (lecite, valide, ammissibili) solo le istanze che soddisfano tutti i vincoli
- Tipi di vincoli:
 - intrarelazionali
 - interrelazionali

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 23

Vincoli di integrità: motivazioni

- risultano utili al fine di descrivere la realtà di interesse in modo più accurato di quanto le strutture permettano;
- forniscono un contributo verso la "qualità dei dati"
- costituiscono uno strumento di ausilio alla progettazione
- sono utilizzati dal sistema nella scelta della strategia di esecuzione delle interrogazioni

Nota:

 non tutte le proprietà di interesse sono rappresentabili per mezzo di vincoli esprimibili direttamente

Vincoli intrarelazionali: vincoli di ennupla

- Esprimono condizioni sui valori di ciascuna ennupla, indipendentemente dalle altre ennuple
- Una possibile sintassi: espressione booleana (con AND, OR e NOT) di atomi che confrontano valori di attributo o espressioni aritmetiche su di essi
- Un vincolo di ennupla è un vincolo di dominio se coinvolge un solo attributo

Esempi:

(Voto
$$\geq$$
 18) AND (Voto \leq 30)
(Voto = 30) OR NOT (Lode = "e lode")

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 25

Vincoli intrarelazionali: vincoli di chiave

Matricola	Cognome	Nome	Corso	Nascita
27655	Rossi	Mario	Ing Inf	5/12/78
78763	Rossi	Mario	Ing Inf	3/11/76
65432	Neri	Piero	Ing Mecc	10/7/79
87654	Neri	Mario	Ing Inf	3/11/76
67653	Rossi	Piero	Ing Mecc	5/12/78

- il numero di matricola identifica gli studenti:
 - non ci sono due ennuple con lo stesso valore sull'attributo Matricola
- i dati anagrafici identificano gli studenti:
 - non ci sono due ennuple uguali su tutti e tre gli attributi Cognome, Nome e Nascita

Vincoli di chiave

Chiave: insieme di attributi che identificano univocamente le ennuple di una relazione

Più precisamente:

- un insieme K di attributi è superchiave per una relazione r se r non contiene due ennuple distinte t₁ e t₂ tali che t₁[K] = t₂[K]
- K è chiave per r se è una superchiave minimale (cioè non contiene un'altra superchiave) per r

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 27

Vincoli di chiave: esempi

Matricola	Cognome	Nome	Corso	Nascita
27655	Rossi	Mario	Ing Inf	5/12/78
78763	Rossi	Mario	Ing Inf	3/11/76
65432	Neri	Piero	Ing Mecc	10/7/79
87654	Neri	Mario	Ing Inf	3/11/76
67653	Rossi	Piero	Ing Mecc	5/12/78

- Matricola è una chiave:
 - Matricola è superchiave
 - contiene un solo attributo e quindi è minimale
- Cognome, Nome, Nascita è un'altra chiave:
 - l'insieme Cognome, Nome, Nascita è superchiave
 - nessuno dei suoi sottoinsiemi è superchiave
- Cognome, Nome, Nascita, Corso è superchiave (non chiave)

Un'altra chiave?

Matricola	Cognome	Nome	Corso	Nascita
27655	Rossi	Mario	Ing Inf	5/12/78
78763	Rossi	Mario	Ing Civile	3/11/76
65432	Neri	Piero	Ing Mecc	10/7/79
87654	Neri	Mario	Ing Inf	3/11/76
67653	Rossi	Piero	Ing Mecc	5/12/78

- non ci sono ennuple uguali su Cognome e Corso:
 Cognome e Corso formano una chiave
- ma è sempre vero?

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 29

Vincoli, schemi e istanze

- i vincoli corrispondono a proprietà del mondo reale modellato dalla base di dati
- interessano a livello di schema (con riferimento cioè a tutte le istanze): ad uno schema associamo un insieme di vincoli che vogliamo siano soddisfatti da tutte le sue istanze corrette
- consideriamo quindi corrette (valide, ammissibili) le istanze che soddisfano tutti i vincoli
- N.B.: un'istanza può soddisfare altri vincoli ("per caso")

Individuazione delle chiavi

Individuiamo le chiavi

- considerando le proprietà che i dati soddisfano nell'applicazione (il "frammento di mondo reale di interesse")
- notando quali insiemi di attributi permettono di identificare univocamente le ennuple
- e individuando i sottoinsiemi minimali di tali insiemi che conservano la capacità di identificare le ennuple

Esempio:

Studenti(Matricola, Cognome, Nome, Corso, Nascita) ha 2 chiavi:

Matricola Cognome, Nome, Nascita

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 31

Esistenza delle chiavi

- poiché le relazioni sono insiemi, una relazione non può contenere ennuple uguali fra loro:
 - ogni relazione ha come superchiave l'insieme degli attributi su cui è definita
- poiché l'insieme di tutti gli attributi è una superchiave per ogni relazione, ogni schema di relazione ha almeno una superchiave
- ne segue che ogni schema di relazione ha (almeno) una chiave

Importanza delle chiavi

- l'esistenza delle chiavi garantisce l'accessibilità a ciascun dato della base di dati
- ogni singolo valore è univocamente accessibile tramite:
 - nome della relazione
 - valore della chiave
 - nome dell'attributo
- le chiavi sono lo strumento principale attraverso il quale vengono correlati i dati in relazioni diverse ("il modello relazionale è basato su valori")

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 33

Chiavi e valori nulli

- In presenza di valori nulli, i valori degli attributi che formano la chiave:
 - non permettono di identificare le ennuple come desiderato
 - né permettono di realizzare facilmente i riferimenti da altre relazioni

Matricola	Cognome	Nome	Corso	Nascita
NULL	NULL	Mario	Ing Inf	5/12/78
78763	Rossi	Mario	Ing Civile	3/11/76
65432	Neri	Piero	Ing Mecc	10/7/79
87654	Neri	Mario	Ing Inf	NULL
NULL	Neri	Mario	NULL	5/12/78

Chiave primaria

- La presenza di valori nulli nelle chiavi deve essere limitata
- Soluzione pratica: per ogni relazione scegliamo una chiave (la chiave primaria) su cui non ammettiamo valori nulli.
- Notazione per la chiave primaria: gli attributi che la compongono sono sottolineati

<u>Matricola</u>	Cognome	Nome	Corso	Nascita
27655	Rossi	Mario	Ing Inf	5/12/78
78763	Rossi	Mario	Ing Civile	3/11/76
65432	Neri	Piero	Ing Mecc	10/7/79
87654	Neri	Mario	Ing Inf	NULL
67653	Rossi	Piero	NULL	5/12/78

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 35

Vincoli interrelazionali: integrità referenziale

- Informazioni in relazioni diverse sono correlate attraverso valori comuni, in particolare, attraverso valori delle chiavi (primarie, di solito)
- Un vincolo di integrità referenziale (detto anche vincolo di ("foreign key") fra un insieme di attributi X di una relazione R₁ e un'altra relazione R₂ impone ai valori su X di ciascuna ennupla dell'istanza di R₁ di comparire come valori della chiave (primaria) dell'istanza di R₂
- Giocano un ruolo fondamentale nel concetto di "modello basato su valori"

Vincoli di integrità referenziale: esempio

Infrazioni

<u>Codice</u>	Data	Vigile	Prov	Numero
34321	1/2/95	3987	MI	39548K
53524	4/3/95	3295	ТО	E39548
64521	5/4/96	3295	PR	839548
73321	5/2/98	9345	PR	839548

Vigili

<u>Matricola</u>	Cognome	Nome
3987	Rossi	Luca
3295	Neri	Piero
9345	Neri	Mario
7543	Mori	Gino

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 37

Esempio (cont.)

Infrazioni

<u>Codice</u>	Data	Vigile	Prov	Numero
34321	1/2/95	3987	MI	39548K
53524	4/3/95	3295	ТО	E39548
64521	5/4/96	3295	PR	839548
73321	5/2/98	9345	PR	839548

Auto

<u>Prov</u>	<u>Numero</u>	Cognome	Nome
MI	39548K	Rossi	Mario
ТО	E39548	Rossi	Mario
PR	839548	Neri	Luca

Vincoli di integrità referenziale: esempio

- Nell'esempio, i vincoli di integrità referenziale sussistono fra:
 - l'attributo Vigile della relazione Infrazioni e la relazione Vigili
 - gli attributi Prov e Numero di Infrazioni e gli omonimi attributi della relazione Auto

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 39

Violazione di vincolo di integrità referenziale

Infrazioni

<u>Codice</u>	Data	Vigile	Prov	Numero
34321	1/2/95	3987	MI	39548K
53524	4/3/95	3295	ТО	E39548
64521	5/4/96	2468	PR	839548
73321	5/2/98	9345	PR	839548

Vigili

<u>Matricola</u>	Cognome	Nome
3987	Rossi	Luca
3295	Neri	Piero
9345	Neri	Mario
7543	Mori	Gino

Violazione di vincolo di integrità ref. (cont.)

Infrazioni

<u>Codice</u>	Data	Vigile	Prov	Numero
34321	1/2/95	3987	MI	39548K
53524	4/3/95	3295	ТО	39548K
64521	5/4/96	3295	PR	839548
73321	5/2/98	9345	PR	839548

Auto

<u>Prov</u>	<u>Numero</u>	Cognome	Nome
MI	39548K	Rossi	Mario
TO	E39548	Rossi	Mario
PR	839548	Neri	Luca

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 41

Integrità referenziale e valori nulli

In presenza di valori nulli i vincoli possono essere resi meno restrittivi

Impiegati

<u>Matricola</u>	Cognome	Progetto
34321	Rossi	IDEA
53524	Neri	XYZ
64521	Verdi	NULL
73032	Bianchi	IDEA

Progetti

<u>Codice</u>	Inizio	Durata	Costo
IDEA	01/2000	36	200
XYZ	07/2001	24	120
вон	09/2001	24	150

Integrità referenziale: azioni compensative

Sono possibili meccanismi per il supporto alla gestione dei vincoli di integrità ("azioni" compensative a seguito di violazioni)

Ad esempio, se viene eliminata una ennupla causando una violazione:

- comportamento "standard": rifiuto dell'operazione
- azioni compensative:
 - · eliminazione in cascata
 - introduzione di valori nulli

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 43

Eliminazione in cascata

Impiegati

<u>Matricola</u>	Cognome	Progetto
34321	Rossi	IDEA
53524	Neri	XYZ
64521	Verdi	NULL
73032	Bianchi	IDEA

Progetti

<u>Codice</u>	Inizio	Durata	Costo
IDEA	01/2000	36	200
XYZ	07/2001	24	120
ВОН	09/2001	24	150

Introduzione di valori nulli

Impiegati

<u>Matricola</u>	Cognome	Progetto
34321	Rossi	IDEA
53524	Neri	NULL
64521	Verdi	NULL
73032	Bianchi	IDEA

Progetti

<u>Codice</u>	Inizio	Durata	Costo
IDEA	01/2000	36	200
XYZ	07/2001	24	120
ВОН	09/2001	24	150

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 45

Vincoli multipli su più attributi

Incidenti

<u>Codice</u>	Data	ProvA	NumeroA	ProvB	NumeroB
34321	1/2/95	TO	E39548	MI	39548K
64521	5/4/96	PR	839548	ТО	E39548

Auto

<u>Prov</u>	<u>Numero</u>	Cognome	Nome
MI	39548K	Rossi	Mario
ТО	E39548	Rossi	Mario
PR	839548	Neri	Luca

2. Il modello relazionale

2.2 Algebra relazionale

- 1. basi di dati relazionali
- 2. algebra relazionale

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 47

Linguaggi per basi di dati

operazioni sullo schema:

DDL: data definition language

operazioni sui dati:

DML: data manipulation language

- -interrogazione ("query")
- -aggiornamento

Linguaggi di interrogazione per basi di dati relazionali

Tipologia:

- Dichiarativi: specificano le proprietà del risultato ("che cosa")
- Procedurali: specificano le modalità di generazione del risultato ("come")

Rappresentanti più significativi:

- Algebra relazionale: procedurale
- Calcolo relazionale: dichiarativo (teorico)
- SQL (Structured Query Language): parzialmente dichiarativo (reale)
- QBE (Query by Example): dichiarativo (reale)

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 49

Algebra relazionale

Costituita da un insieme di operatori

- definiti su relazioni
- che producono relazioni
- e possono essere composti

Operatori dell'algebra relazionale:

- · unione, intersezione, differenza
- ridenominazione
- selezione
- proiezione
- join (join naturale, prodotto cartesiano, theta-join)

Operatori insiemistici

- · le relazioni sono insiemi
- · i risultati debbono essere relazioni
- è possibile applicare unione, intersezione, differenza solo a relazioni definite sugli stessi attributi

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 51

Unione

Laureati

Matricola	Nome	Età
7274	Rossi	42
7432	Neri	54
9824	Verdi	45

Quadri

Matricola	Nome	Età
9297	Neri	33
7432	Neri	54
9824	Verdi	45

Laureati ∪ **Quadri**

Matricola	Nome	Età
7274	Rossi	42
7432	Neri	54
9824	Verdi	45
9297	Neri	33

Intersezione

Laureati

Matricola	Nome	Età
7274	Rossi	42
7432	Neri	54
9824	Verdi	45

Quadri

Matricola	Nome	Età
9297	Neri	33
7432	Neri	54
9824	Verdi	45

Laureati ∩ **Quadri**

Matricola	Nome	Età
7432	Neri	54
9824	Verdi	45

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 53

Differenza

Laureati

Matricola	Nome	Età
7274	Rossi	42
7432	Neri	54
9824	Verdi	45

Quadri

Matricola	Nome	Età
9297	Neri	33
7432	Neri	54
9824	Verdi	45

Laureati - Quadri

Matricola	Nome	Età
7274	Rossi	42

Un'unione sensata ma impossibile

Paternità

Padre	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

Maternità

Madre	Figlio
Eva	Abele
Eva	Set
Sara	Isacco

Paternità ∪ Maternità ??

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 55

Ridenominazione

- operatore monadico (con un argomento)
- "modifica lo schema" lasciando inalterata l'istanza dell'operando

Paternità

Padre	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

REN_{Genitore ← Padre} (Paternità)

Genitore	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

Paternità

Padre	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

$REN_{Genitore \leftarrow Padre}$ (Paternità)

Genitore	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

Maternità

Madre	Figlio
Eva	Abele
Eva	Set
Sara	Isacco

$REN_{Genitore \leftarrow Madre}$ (Maternità)

Genitore	Figlio
Eva	Abele
Eva	Set
Sara	Isacco

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 57

REN_{Genitore ← Padre} (Paternità)

Genitore	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

$$\mathsf{REN}_{\mathsf{Genitore}} \leftarrow \mathsf{Padre} \ (\textbf{Paternità})$$

REN_{Genitore ← Madre} (Maternità)

$REN_{Genitore \leftarrow Madre}$ (Maternità)

Genitore	Figlio
Eva	Abele
Eva	Set
Sara	Isacco

Genitore	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco
Eva	Abele
Eva	Set
Sara	Isacco

			4 .
			211
	UI	CU	ati
-	 г.		

Cognome	Ufficio	Stipendio
Rossi	Roma	55
Neri	Milano	64

Operai

Cognome	Fabbrica	Salario
Bruni	Monza	45
Verdi	Latina	55

 $\textbf{REN}_{Sede, \ Retribuzione} \leftarrow \underline{\textbf{Ufficio}}, \underline{\textbf{Stipendio}} \ \textbf{(Impiegati)}$

REN Sede, Retribuzione

Fabbrica, Salario (Operai)

Cognome	Sede	Retribuzione
Rossi	Roma	55
Neri	Milano	64
Bruni	Monza	45
Verdi	Latina	55

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 59

Selezione

- operatore monadico
- produce un risultato che
 - ha lo stesso schema dell'operando
 - contiene un sottoinsieme delle ennuple dell'operando
 - quelle che soddisfano una condizione

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	44
5698	Neri	Napoli	64

- · impiegati che
 - guadagnano più di 50
 - guadagnano più di 50 e lavorano a Milano
 - hanno lo stesso nome della filiale presso cui lavorano

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 61

Selezione, sintassi e semantica

Sintassi:

SEL Condizione (Operando)

Condizione: espressione booleana (come quelle dei vincoli di ennupla)

Semantica

il risultato contiene le ennuple dell'operando che soddisfano la condizione - impiegati che guadagnano più di 50

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	64
5698	Neri	Napoli	64

SEL_{Stipendio > 50} (Impiegati)

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 63

 impiegati che guadagnano più di 50 e lavorano a Milano

Impiegati

Matricola	Cognome	Filiale	Stipendio
5998	Neri	Milano	64

SEL_{Stipendio > 50 AND Filiale = 'Milano'} (Impiegati)

 impiegati che hanno lo stesso nome della filiale presso cui lavorano

Impiegati

Matricola	Cognome	Filiale	Stipendio
9553	Milano	Milano	44

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 65

Selezione e proiezione

Sono due operatori "ortogonali"

- selezione:
 - decomposizione orizzontale
- proiezione:
 - decomposizione verticale

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 66

Proiezione

- operatore monadico
- · produce un risultato che
 - ha parte degli attributi dell'operando
 - contiene ennuple cui contribuiscono tutte le ennuple dell'operando

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 67

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Neri	Napoli	55
5998	Neri	Milano	64
9553	Rossi	Roma	44
5698	Rossi	Roma	64

- per tutti gli impiegati:
 - matricola e cognome
 - cognome e filiale

Proiezione, sintassi e semantica

Sintassi

PROJ ListaAttributi (Operando)

Semantica

 il risultato contiene le ennuple ottenute da tutte le ennuple dell'operando ristrette agli attributi nella lista

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 69

- matricola e cognome di tutti gli impiegati

Matricola	Cognome
7309	Neri
5998	Neri
9553	Rossi
5698	Rossi

PROJ Matricola, Cognome (Impiegati)

- cognome e filiale di tutti gli impiegati

Cognome	Filiale	
Neri	Napoli	
Neri	Milano	
Rossi	Roma	

PROJ Cognome, Filiale (Impiegati)

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 71

Cardinalità delle proiezioni

- una proiezione
 - contiene al più tante ennuple quante l'operando
 - può contenerne di meno
- se X è una superchiave di R, allora PROJ_X(R) contiene esattamente tante ennuple quante R

Selezione e proiezione

 Combinando selezione e proiezione, possiamo estrarre interessanti informazioni da una relazione

matricola e cognome degli impiegati che guadagnano più di 50

Matricola	Cognome
7309	Rossi
5998	Neri
5698	Neri

PROJ_{Matricola,Cognome} (SEL_{Stipendio > 50} (Impiegati))

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 73

Join

- combinando selezione e proiezione, possiamo estrarre informazioni da una relazione
- non possiamo però correlare informazioni presenti in relazioni diverse
- il join è l'operatore più interessante dell'algebra relazionale
- · permette di correlare dati in relazioni diverse

Corsi e linguaggi di programmazione

- Ogni docente insegna uno o più corsi
- Ogni corso prevede l'insegnamento di zero o piu linguaggi
- Quali docenti insegnano quali linguaggi?

1	Basi di dati
2	Prog. sw
3	Reti
1	Prog. sw

SQL	Basi di dati	
Java	Prog. sw	
UML	Prog. sw	
Java	Basi di dati	

SQL	1
Java	1
UML	1
Java	2
UML	2

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 75

Join: esempio

Docente	Corso
1	BD
2	PS
3	Reti
1	PS

Corso	Ling
BD	SQL
BD	Java
PS	Java
PS	UML

Docente	Ling
1	SQL
1	Java
1	UML
2	Java
2	UML

Join naturale

- operatore binario (generalizzabile)
- produce un risultato
 - sull'unione degli attributi degli operandi
 - con ennuple costruite ciascuna a partire da una ennupla di ognuno degli operandi

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 77

Join, sintassi e semantica

- $R_1(X_1), R_2(X_2)$
- R₁ JOIN R₂ è una relazione su X₁X₂

{ t su
$$X_1X_2$$
 | esistono $t_1 \in R_1e$ $t_2 \in R_2$
con $t[X_1] = t_1 e$ $t[X_2] = t_2$ }

Un join completo

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparto	Capo
Α	Mori
В	Bruni

Impiegato	Reparto	Capo
Rossi	А	Mori
Neri	В	Bruni
Bianchi	В	Bruni

In un join completo ogni ennupla contribuisce al risultato.

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 79

Un join non completo

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparto	Capo
В	Mori
С	Bruni

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori

Un join vuoto

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparto	Capo
D	Mori
С	Bruni

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 81

Un join completo, con n x m ennuple

Impiegato	Reparto
Rossi	В
Neri	В

Reparto	Capo
В	Mori
В	Bruni

Impiegato	Reparto	Capo
Rossi	В	Mori
Rossi	В	Bruni
Neri	В	Mori
Neri	В	Bruni

Cardinalità del join

- R₁(A,B), R₂(B,C)
- In generale, il join di R₁ e R₂ contiene un numero di ennuple compreso fra zero e il prodotto di |R₁| e |R₂|:

$$0 \le |R_1 \text{ JOIN } R_2| \le |R_1| \times |R_2|$$

• se il join coinvolge una chiave di R_2 (ovvero, B è chiave in R_2), allora il numero di ennuple è compreso fra zero e $|R_1|$:

$$0 \le |R_1 \text{ JOIN } R_2| \le |R_1|$$

 se il join coinvolge una chiave di R₂ (ovvero, B è chiave in R₂) ed esiste un vincolo di integrità referenziale fra B (in R₁) e R₂, allora il numero di ennuple è pari a |R₁|:

$$|R_1 \text{ JOIN } R_2| = |R_1|$$

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 83

Join, un'osservazione

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparto	Capo
В	Mori
С	Bruni

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori

Alcune ennuple non contribuiscono al risultato: vengono "tagliate fuori"

Join esterno

- Il join esterno estende, con valori nulli, le ennuple che verrebbero tagliate fuori da un join (interno)
- esiste in tre versioni:
 - sinistro: mantiene tutte le ennuple del primo operando, estendendole con valori nulli, se necessario
 - destro: ... del secondo operando ...
 - completo: ... di entrambi gli operandi ...

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 85

Join esterno sinistro

Impiegati

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparti

Reparto	Capo
В	Mori
С	Bruni

Impiegati JOIN LEFT Reparti

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori
Rossi	Α	NULL

Join esterno destro

Impiegati

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparti

Reparto	Capo
В	Mori
С	Bruni

Impiegati JOIN RIGHT Reparti

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori
NULL	С	Bruni

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 87

Join esterno completo

Impiegati

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparti

Reparto	Capo
В	Mori
С	Bruni

Impiegati JOINFULL Reparti

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori
Rossi	Α	NULL
NULL	С	Bruni

Join e proiezioni

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparto	Capo
В	Mori
С	Bruni

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori

Impiegato	Reparto
Neri	В
Bianchi	В

Reparto	Capo
В	Mori

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 89

Proiezioni e join

	Impiegato	Reparto	Саро
	Neri	В	Mori
	Bianchi	В	Bruni
I	Verdi	Α	Bini

Impiegato	Reparto
Neri	В
Bianchi	В
Verdi	Α

Reparto	Саро
В	Mori
В	Bruni
Α	Bini

Impiegato	Reparto	Саро
Neri	В	Mori
Bianchi	В	Bruni
Neri	В	Bruni
Bianchi	В	Mori
Verdi	А	Bini

Join e proiezioni

• $R_1(X_1)$, $R_2(X_2)$

$$PROJ_{X_1}(R_1 JOIN R_2) \subseteq R_1$$

• R(X), $X = X_1 \cup X_2$

$$(\mathsf{PROJ}_{\mathsf{X}_1}(\mathsf{R}))\,\mathsf{JOIN}\,(\mathsf{PROJ}_{\mathsf{X}_2}(\mathsf{R}))\,{\supseteq}\,\mathsf{R}$$

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 91

Prodotto cartesiano

- un join naturale su relazioni senza attributi in comune
- contiene sempre un numero di ennuple pari al prodotto delle cardinalità degli operandi (le ennuple sono tutte combinabili)

Impiegati

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparti

Codice	Capo
Α	Mori
В	Bruni

Impiegati JOIN Reparti

Impiegato	Reparto	Codice	Capo
Rossi	Α	Α	Mori
Rossi	Α	В	Bruni
Neri	В	Α	Mori
Neri	В	В	Bruni
Bianchi	В	Α	Mori
Bianchi	В	В	Bruni

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 93

Theta-join

 Il prodotto cartesiano, in pratica, ha senso (quasi) solo se seguito da selezione:

$$SEL_{Condizione}$$
 (R_1 JOIN R_2)

L'operazione viene chiamata theta-join e indicata con

- La condizione di selezione è spesso una congiunzione (AND) di atomi di confronto A₁9 A₂ dove 9 è uno degli operatori di confronto (=, >, <, ...). Da questo deriva il nome "theta-join".
- Se l'operatore è sempre l'uguaglianza (=) allora si parla di equi-join.

Impiegati

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparti

Codice	Capo
Α	Mori
В	Bruni

$Impiegati\ JOIN_{Reparto=Codice}\ Reparti$

Impiegato	Reparto	Codice	Capo
Rossi	Α	Α	Mori
Neri	В	В	Bruni
Bianchi	В	В	Bruni

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 95

Impiegati

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparti

Reparto	Capo
Α	Mori
В	Bruni

Impiegati JOIN Reparti

Join naturale ed equi-join

Possiamo riesprimere un join naturale usando un equi-join.

Impiegati

Reparti

Impiegato Reparto

Reparto

Capo

Impiegati JOIN Reparti

PROJ_{Impiegato,Reparto,Capo} (SEL_{Reparto=Codice}

(Impiegati JOIN REN_{Codice ← Reparto} (Reparti)))

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 97

Esempi

Impiegati

Matricola	Nome	Età	Stipendio
7309	Rossi	34	45
5998	Bianchi	37	38
9553	Neri	42	35
5698	Bruni	43	42
4076	Mori	45	50
8123	Lupi	46	60

Supervisione

Impiegato	Capo
7309	5698
5998	5698
9553	4076
5698	4076
4076	8123

Trovare matricola, nome, età e stipendio degli impiegati che guadagnano più di 40 milioni.

SEL_{Stipendio>40}(Impiegati)

Matricola	Nome	Età	Stipendio
7309	Rossi	34	45
5698	Bruni	43	42
4076	Mori	45	50
8123	Lupi	46	60

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 99

Trovare matricola, nome ed età degli impiegati che guadagnano più di 40 milioni.

PROJ_{Matricola, Nome, Età} (SEL_{Stipendio>40}(Impiegati))

Matricola	Nome	Età
7309	Rossi	34
5698	Bruni	43
4076	Mori	45
8123	Lupi	46

Trovare le matricole dei capi degli impiegati che guadagnano più di 40 milioni.

Impiegati Matricola Nome Età Stipendio

Supervisione Impiegato Capo

PROJ_{Capo} (Supervisione
JOIN Impiegato=Matricola
(SEL_{Stipendio>40}(Impiegati)))

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 101

Trovare nome e stipendio dei capi degli impiegati che guadagnano più di 40 milioni.

Impiegati Matricola Nome Età Stipendio

Supervisione Impiegato Capo

PROJ_{Nome,Stipendio} (
Impiegati JOIN _{Matricola=Capo}
PROJ_{Capo}(Supervisione

JOIN _{Impiegato=Matricola} (SEL_{Stipendio>40}(Impiegati))))

Trovare gli impiegati che guadagnano più del proprio capo, mostrando matricola, nome e stipendio dell'impiegato e del capo.

Impiegati Matricola Nome Età Stipendio

Supervisione Impiegato Capo

 $\begin{array}{c} PROJ_{Matr,Nome,Stip,MatrC,NomeC,StipC}\\ (SEL_{Stipendio>StipC}(\\ REN_{MatrC,NomeC,StipC,EtàC}\leftarrow \\ Matr,Nome,Stip,Età(Impiegati)\\ JOIN \\ MatrC=Capo\\ (Supervisione JOIN \\ Impiegato=Matricola \\ Impiegati))) \end{array}$

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 103

Trovare le matricole dei capi i cui impiegati guadagnano tutti più di 40 milioni.

Impiegati Matricola Nome Età Stipendio

Supervisione Impiegato Capo

 $\begin{array}{c} \mathsf{PROJ}_{\mathsf{Capo}} \left(\mathsf{Supervisione} \right) \text{-} \\ \mathsf{PROJ}_{\mathsf{Capo}} \left(\mathsf{Supervisione} \right. \\ \mathsf{JOIN} \left._{\mathsf{Impiegato=Matricola}} \right. \\ \left(\mathsf{SEL}_{\mathsf{Stipendio}} \leq 40 \left(\mathsf{Impiegati} \right) \right) \end{array}$

Equivalenza di espressioni

- Due espressioni sono equivalenti se producono lo stesso risultato qualunque sia l'istanza attuale della base di dati
- L'equivalenza è importante in pratica perché i DBMS cercano di eseguire espressioni equivalenti a quelle date, ma meno "costose"

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 105

Un'equivalenza importante

• Effettuare le selezioni il prima possibile (push selections)

Esempio: se A è attributo di
$$R_2$$

SEL _{A=10} (R_1 JOIN R_2) = R_1 JOIN SEL _{A=10} (R_2)

 Le selezioni tipicamente riducono in modo significativo la dimensione del risultato intermedio (e quindi il costo dell'operazione)

Selezione con valori nulli

Impiegati

Matricola	Cognome	Filiale	Età
7309	Rossi	Roma	32
5998	Neri	Milano	45
9553	Bruni	Milano	NULL

SEL Età > 40 (Impiegati)

La condizione atomica è vera solo per valori non nulli

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 107

Un risultato non desiderabile

 $\text{SEL}_{\text{Età}>30}$ (Persone) \cup $\text{SEL}_{\text{Età}\leq30}$ (Persone) \neq Persone

Perché? Perché le selezioni vengono valutate separatamente!

Ma anche

 $SEL_{Et\grave{a}>30 \lor Et\grave{a}\leq30}$ (Persone) \neq Persone

Perché? Perché anche le condizioni atomiche vengono valutate separatamente!

Selezione con valori nulli: soluzione

SEL Età > 40 (Impiegati)

- la condizione atomica è vera solo per valori non nulli
- per riferirsi ai valori nulli esistono forme apposite di condizioni:

IS NULL IS NOT NULL

 si potrebbe usare (ma non serve) una "logica a tre valori" (vero, falso, sconosciuto)

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 109

Quindi:

$$\begin{array}{c} \text{SEL}_{\,\text{Et\grave{a}}>30} \, (\text{Persone}) \cup \, \text{SEL}_{\,\text{Et\grave{a}}\leq30} \, (\text{Persone}) \cup \, \text{SEL}_{\,\text{Et\grave{a}}\,\text{IS}} \\ \text{NULL} \, (\text{Persone}) \\ = \\ \text{SEL}_{\,\text{Et\grave{a}}>30 \, \vee \, \text{Et\grave{a}}\leq30 \, \vee \, \text{Et\grave{a}}\, \text{IS}\, \text{NULL}} \, (\text{Persone}) \\ = \\ \text{Persone} \end{array}$$

Impiegati

Matricola	Cognome	Filiale	Età
5998	Neri	Milano	45
9553	Bruni	Milano	NULL

SEL (Età > 40) OR (Età IS NULL) (Impiegati)

Giuseppe De Giacomo

Basi di Dati

Modello relazionale - 111