Course on Automated Planning: Intro to Planning

Hector Geffner

ICREA & Universitat Pompeu Fabra
Barcelona, Spain

Hector Geffner, Course on Automated Planning, Rome, 7/2010

Planning: Motivation

How to develop systems or 'agents’
that can make decisions on their own?

Hector Geffner, Course on Automated Planning, Rome, 7/2010

Wumpus World PEAS description

Performance measure

gold +1000, death -1000

-1 per step, -10 for using the arrow

Environment s [FReE B -
Squares adjacent to wumpus are smelly Coes P,
Squares adjacent to pit are breezy ’ /%f T
Glitter iff gold is in the same square cooes ot
Shooting kills wumpus if you are facing it i
Shooting uses up the only arrow 1 %{T Zo | [| S
Grabbing picks up gold if in same square START
Releasing drops the gold in same square 1 2 3 4

Actuators Left turn, Right turn,
Forward, Grab, Release, Shoot

Sensors Breeze, Glitter, Smell

Hector Geffner, Course on Automated Planning, Rome, 7/2010

Chapter 7 3

Autonomous Behavior in Al: The Control Problem

The key problem is to select the action to do next. This is the so-called control
problem. Three approaches to this problem:

e Programming-based: Specify control by hand
e Learning-based: Learn control from experience

e Model-based: Specify problem by hand, derive control automatically

Approaches not orthogonal though; and successes and limitations in each . . .

Hector Geffner, Course on Automated Planning, Rome, 7/2010 4

Settings where greater autonomy required

e Robotics

e Video-Games

e Web Service Composition
e Aerospace

e Manufacturing

Hector Geffner, Course on Automated Planning, Rome, 7/2010

Solution 1: Programming-based Approach

Control specified by programmer; e.g.,

e don't move into a cell if not known to be safe (no Wumpus or Pit)
e sense presence of Wumpus or Pits nearby if this is not known

e pick up gold if presence of gold detected in cell

Advantage: domain-knowledge easy to express

Disadvantage: cannot deal with situations not anticipated by programmer

Hector Geffner, Course on Automated Planning, Rome, 7/2010

Solution 2: Learning-based Approach

e Unsupervised (Reinforcement Learning):

> penalize agent each time that it 'dies’ from Wumpus or Pit
> reward agent each time it's able to pick up the gold, . ..

e Supervised (Classification)

> learn to classify actions into good or bad from info provided by teacher

e Evolutionary:

> from pool of possible controllers: try them out, select the ones that do
best, and mutate and recombine for a number of iterations, keeping best

Advantage: does not require much knowledge in principle

Disadvantage: in practice though, right features needed, incomplete information is
problematic, and unsupervised learning is slow . . .

Hector Geffner, Course on Automated Planning, Rome, 7/2010 7

Solution 3: Model-Based Approach

e specify model for problem: actions, initial situation, goals, and sensors

e let a solver compute controller automatically

Actions actions
Sensors — SOLVER —— CONTROLLER ohservations World
Goals A

Advantage: flexible, clear, and domain-independent

Disadvantage: need a model; computationally intractable

Model-based approach to intelligent behavior called Planning in Al

Hector Geffner, Course on Automated Planning, Rome, 7/2010

Basic State Model for Classical Al Planning

e finite and discrete state space S

e a known initial state sp € S

e aset Sg C S of goal states

e actions A(s) C A applicable in each s € S

e a deterministic transition function s’ = f(a,s) for a € A(s)

e positive action costs c(a, s)

A solution is a sequence of applicable actions that maps sg into Sg, and it is
optimal if it minimizes sum of action costs (e.g., # of steps)

Different models obtained by relaxing assumptions in bold . . .

Hector Geffner, Course on Automated Planning, Rome, 7/2010 9

Uncertainty but No Feedback: Conformant Planning

e finite and discrete state space S

e a set of possible initial state Sy € S

e aset Sg C S of goal states

e actions A(s) C A applicable in each s € S

¢ a non-deterministic transition function F'(a,s) C S for a € A(s)

e uniform action costs c(a, s)

A solution is still an action sequence but must achieve the goal for any possible
initial state and transition

More complex than classical planning, verifying that a plan is conformant in-
tractable in the worst case; but special case of planning with partial observability

Hector Geffner, Course on Automated Planning, Rome, 7/2010 10

Planning with Markov Decision Processes

MDPs are fully observable, probabilistic state models:

e a state space S

e initial state sp € S

e aset G C § of goal states

e actions A(s) C A applicable in each state s € S

e transition probabilities P,(s'|s) for s € S and a € A(s)

e action costs c(a,s) > 0

— Solutions are functions (policies) mapping states into actions

— Optimal solutions minimize expected cost to goal

Hector Geffner, Course on Automated Planning, Rome, 7/2010

11

Partially Observable MDPs (POMDPs)

POMDPs are partially observable, probabilistic state models:

states s € S
actions A(s) C A

transition probabilities P,(s’|s) for s € S and a € A(s)

initial belief state by
final belief states b

sensor model given by probabilities P,(o|s), o € Obs

Belief states are probability distributions over .S
Solutions are policies that map belief states into actions

Optimal policies minimize expected cost to go from by to b

Hector Geffner, Course on Automated Planning, Rome, 7/2010

12

Models, Languages, and Solvers

e A planner is a solver over a class of models; it takes a model description, and
computes the corresponding controller

Model —> | Planner | =—> Controller

e Many models, many solution forms: uncertainty, feedback, costs, . . .

e Models described in suitable planning languages (Strips, PDDL, PPDDL, . . .)
where states represent interpretations over the language.

Hector Geffner, Course on Automated Planning, Rome, 7/2010 13

Language for Classical Planning

e A problem in Strips is a tuple P = (F, O, I, G):

> F' stands for set of all atoms (boolean vars)
> O stands for set of all operators (actions)
> [C F' stands for initial situation

> G C F stands for goal situation

e Operators 0 € O represented by

> the Add list Add(o) C F
> the Delete list Del(o) C F
> the Precondition list Pre(o) C F

Hector Geffner, Course on Automated Planning, Rome, 7/2010

: Strips

14

From Language to Models

A Strips problem P = (F, O, I,G) determines state model S(P) where

e the states s € S are collections of atoms from F
e the initial state sg is 1

e the goal states s are such that G C s

e the actions a in A(s) are ops in O s.t. Prec(a) C s
e the next state is ' = s — Del(a) + Add(a)

e action costs c(a, s) are all 1

— (Optimal) Solution of P is (optimal) solution of S(P)

— Slight language extensions often convenient (e.g., negation and conditional
effects); some required for describing richer models (costs, probabilities, ...).

Hector Geffner, Course on Automated Planning, Rome, 7/2010 15

Example: Blocks in Strips (PDDL Syntax)

(define (domain BLOCKS)
(:requirements :strips)
(:action pick_up
:parameters (7x)
:precondition (and (clear 7x) (ontable 7x) (handempty))

ceffect (and (not (ontable 7x)) (not (clear ?x)) (not (handempty)) (hol
(raction put_down

:parameters (7x)
:precondition (holding 7x)

ceffect (and (not (holding ?x)) (clear 7x) (handempty) (ontable ?7x)))
(:raction stack

:parameters (7x 7y)
:precondition (and (holding ?x) (clear 7y))
ceffect (and (not (holding 7x)) (not (clear 7y)) (clear 7x) (handempty)
(on 7x ?7y)))
(define (problem BLOCKS_6_1)
(:domain BLOCKS)
(:objects F D C E B A)
(:init (CLEAR A) (CLEAR B) ... (ONTABLE B) ... (HANDEMPTY))
(:goal (AND (ON E F) (ON F C) (ON C B) (ON B A) (ON A D))))

Hector Geffner, Course on Automated Planning, Rome, 7/2010 16

Example: Logistics in Strips PDDL

(define (domain logistics)
(:requirements :strips :typing :equality)
(:types airport - location truck airplane - vehicle vehicle packet - thing thir
(:predicates (loc-at ?x - location ?y - city) (at 7x - thing 7y - location) (in 73
(:raction load
:parameters (7x - packet 7y - vehicle)
:vars (?z - location)
:precondition (and (at 7x 7z) (at 7y ?7z))
reffect (and (not (at 7x 7z)) (in 7x ?7y)))
(:raction unload ..)
(:raction drive
:parameters (7x - truck 7y - location)
:vars (?z - location 7c - city)
:precondition (and (loc-at 7z 7c) (loc-at ?y ?c) (not (= 7z 7y)) (at ?x 7z))
reffect (and (not (at 7x 7z)) (at 7x ?7y)))

(define (problem log3_2)
(:domain logistics)
(:objects packetl packet2 - packet truckl truck2 truck3 - truck airplanel - airg
(:init (at packetl officel) (at packet2 office3) ...)
(:goal (and (at packetl office2) (at packet2 office2))))

Hector Geffner, Course on Automated Planning, Rome, 7/2010 17

Example: 15-Puzzle in PDDL

(define (domain tile)
(:requirements :strips :typing :equality)
(:types tile position)
(:constants blank - tile)
(:predicates (at ?t - tile ?x - position 7y - position)
(inc ?p - position 7pp - position)
(dec 7?p - position 7pp - position))
(:action move-up
:parameters (7t - tile 7px - position ?py - position 7?7bx - position 7by - posit
:precondition (and (= 7px 7bx) (dec ?by ?py) (not (= 7t blank)) ...)
ceffect (and (not (at blank ?bx 7by)) (not (at ?t 7px 7py)) (at blank 7px 7py) |

(define (domain eight_tile)
(:constants tl1 t2 t3 t4 tb t6 t7 t8 - tile pl p2 p3 - position)
(:timeless (inc pl p2) (inc p2 p3) (dec p3 p2) (dec p2 pl)))

(define (situation eight_standard)
(:domain eight_tile)
(:init (at blank pl p1l) (at t1 p2 pl) (at t2 p3 pl) (at t3 pl p2) ..)
(:goal (and (at t8 pl pl) (at t7 p2 pl) (at t6 p3 pl) ..)

Hector Geffner, Course on Automated Planning, Rome, 7/2010 18

Computation: how to solve Strips planning problems?

o Key issue: exploit two roles of language:
— specification: concise model description
— computation: reveal useful heuristic info
e Two traditional approaches: search vs. decomposition

o explicit search of the state model S(P) direct but not effective til recently
e near decomposition of the planning problem thought a better idea

Hector Geffner, Course on Automated Planning, Rome, 7/2010

19

Computational Approaches to Classical Planning

e Strips algorithm (70's): Total ordering planning backward from Goal; work
always on top subgoal in stack, delay rest

e Partial Order (POCL) Planning (80’s): work on any subgoal, resolve threats;
UCPOP 1992

e Graphplan (1995 — . ..): build graph containing all possible parallel plans up
to certain length; then extract plan by searching the graph backward from Goal

e SatPlan (1996 — . ..): map planning problem given horizon into SAT problem;
use state-of-the-art SAT solver

o Heuristic Search Planning (1996 — . . .): search state space S(P) with heuristic
function h extracted from problem P

e Model Checking Planning (1998 — ...): search state space S(P) with
‘'symbolic’ BrFS where sets of states represented by formulas implemented by
BDDs

Hector Geffner, Course on Automated Planning, Rome, 7/2010 20

State of the Art in Classical Planning

e significant progress since Graphplan (Blum & Furst 95)

e empirical methodology

> standard PDDL language
> planners and benchmarks available; competitions
> focus on performance and scalability

e large problems solved (non-optimally)

e different formulations and ideas
We'll focus on two formulations:
o (Classical) Planning as Heuristic Search, and

e (Classical) Planning as SAT

Hector Geffner, Course on Automated Planning, Rome, 7/2010

21

