
Course on Automated Planning: Intro to Planning

Hector Geffner
ICREA & Universitat Pompeu Fabra

Barcelona, Spain

Hector Geffner, Course on Automated Planning, Rome, 7/2010 1



Planning: Motivation

How to develop systems or ’agents’

that can make decisions on their own?

Hector Geffner, Course on Automated Planning, Rome, 7/2010 2



Wumpus World PEAS description

Performance measure
gold +1000, death -1000
-1 per step, -10 for using the arrow

Environment
Squares adjacent to wumpus are smelly
Squares adjacent to pit are breezy
Glitter iff gold is in the same square
Shooting kills wumpus if you are facing it
Shooting uses up the only arrow
Grabbing picks up gold if in same square
Releasing drops the gold in same square

Breeze Breeze

Breeze

Breeze
Breeze

Stench

Stench

Breeze
PIT

PIT

PIT

1 2 3 4

1

2

3

4

START

Gold

Stench

Actuators Left turn, Right turn,
Forward, Grab, Release, Shoot

Sensors Breeze, Glitter, Smell

Chapter 7 5Hector Geffner, Course on Automated Planning, Rome, 7/2010 3



Autonomous Behavior in AI: The Control Problem

The key problem is to select the action to do next. This is the so-called control
problem. Three approaches to this problem:

• Programming-based: Specify control by hand

• Learning-based: Learn control from experience

• Model-based: Specify problem by hand, derive control automatically

Approaches not orthogonal though; and successes and limitations in each . . .

Hector Geffner, Course on Automated Planning, Rome, 7/2010 4



Settings where greater autonomy required

• Robotics

• Video-Games

• Web Service Composition

• Aerospace

• Manufacturing

• ...

Hector Geffner, Course on Automated Planning, Rome, 7/2010 5



Solution 1: Programming-based Approach

Control specified by programmer; e.g.,

• don’t move into a cell if not known to be safe (no Wumpus or Pit)

• sense presence of Wumpus or Pits nearby if this is not known

• pick up gold if presence of gold detected in cell

• . . .

Advantage: domain-knowledge easy to express

Disadvantage: cannot deal with situations not anticipated by programmer

Hector Geffner, Course on Automated Planning, Rome, 7/2010 6



Solution 2: Learning-based Approach

• Unsupervised (Reinforcement Learning):

. penalize agent each time that it ’dies’ from Wumpus or Pit

. reward agent each time it’s able to pick up the gold, . . .

• Supervised (Classification)

. learn to classify actions into good or bad from info provided by teacher

• Evolutionary:

. from pool of possible controllers: try them out, select the ones that do
best, and mutate and recombine for a number of iterations, keeping best

Advantage: does not require much knowledge in principle

Disadvantage: in practice though, right features needed, incomplete information is
problematic, and unsupervised learning is slow . . .

Hector Geffner, Course on Automated Planning, Rome, 7/2010 7



Solution 3: Model-Based Approach

• specify model for problem: actions, initial situation, goals, and sensors

• let a solver compute controller automatically

Actions

Sensors

Goals

−→ SOLVER −→ CONTROLLER
actions−→

observations←−
World

Advantage: flexible, clear, and domain-independent

Disadvantage: need a model; computationally intractable

Model-based approach to intelligent behavior called Planning in AI

Hector Geffner, Course on Automated Planning, Rome, 7/2010 8



Basic State Model for Classical AI Planning

• finite and discrete state space S

• a known initial state s0 ∈ S

• a set SG ⊆ S of goal states

• actions A(s) ⊆ A applicable in each s ∈ S

• a deterministic transition function s′ = f(a, s) for a ∈ A(s)

• positive action costs c(a, s)

A solution is a sequence of applicable actions that maps s0 into SG, and it is
optimal if it minimizes sum of action costs (e.g., # of steps)

Different models obtained by relaxing assumptions in bold . . .

Hector Geffner, Course on Automated Planning, Rome, 7/2010 9



Uncertainty but No Feedback: Conformant Planning

• finite and discrete state space S

• a set of possible initial state S0 ∈ S

• a set SG ⊆ S of goal states

• actions A(s) ⊆ A applicable in each s ∈ S

• a non-deterministic transition function F (a, s) ⊆ S for a ∈ A(s)

• uniform action costs c(a, s)

A solution is still an action sequence but must achieve the goal for any possible
initial state and transition

More complex than classical planning, verifying that a plan is conformant in-
tractable in the worst case; but special case of planning with partial observability

Hector Geffner, Course on Automated Planning, Rome, 7/2010 10



Planning with Markov Decision Processes

MDPs are fully observable, probabilistic state models:

• a state space S

• initial state s0 ∈ S

• a set G ⊆ S of goal states

• actions A(s) ⊆ A applicable in each state s ∈ S

• transition probabilities Pa(s′|s) for s ∈ S and a ∈ A(s)

• action costs c(a, s) > 0

– Solutions are functions (policies) mapping states into actions

– Optimal solutions minimize expected cost to goal

Hector Geffner, Course on Automated Planning, Rome, 7/2010 11



Partially Observable MDPs (POMDPs)

POMDPs are partially observable, probabilistic state models:

• states s ∈ S

• actions A(s) ⊆ A

• transition probabilities Pa(s′|s) for s ∈ S and a ∈ A(s)

• initial belief state b0

• final belief states bF

• sensor model given by probabilities Pa(o|s), o ∈ Obs

– Belief states are probability distributions over S

– Solutions are policies that map belief states into actions

– Optimal policies minimize expected cost to go from b0 to bF

Hector Geffner, Course on Automated Planning, Rome, 7/2010 12



Models, Languages, and Solvers

• A planner is a solver over a class of models; it takes a model description, and
computes the corresponding controller

Model =⇒ Planner =⇒ Controller

• Many models, many solution forms: uncertainty, feedback, costs, . . .

• Models described in suitable planning languages (Strips, PDDL, PPDDL, . . . )
where states represent interpretations over the language.

Hector Geffner, Course on Automated Planning, Rome, 7/2010 13



Language for Classical Planning: Strips

• A problem in Strips is a tuple P = 〈F,O, I, G〉:

. F stands for set of all atoms (boolean vars)

. O stands for set of all operators (actions)

. I ⊆ F stands for initial situation

. G ⊆ F stands for goal situation

• Operators o ∈ O represented by

. the Add list Add(o) ⊆ F

. the Delete list Del(o) ⊆ F

. the Precondition list Pre(o) ⊆ F

Hector Geffner, Course on Automated Planning, Rome, 7/2010 14



From Language to Models

A Strips problem P = 〈F,O, I, G〉 determines state model S(P ) where

• the states s ∈ S are collections of atoms from F

• the initial state s0 is I

• the goal states s are such that G ⊆ s

• the actions a in A(s) are ops in O s.t. Prec(a) ⊆ s

• the next state is s′ = s−Del(a) + Add(a)

• action costs c(a, s) are all 1

– (Optimal) Solution of P is (optimal) solution of S(P )

– Slight language extensions often convenient (e.g., negation and conditional
effects); some required for describing richer models (costs, probabilities, ...).

Hector Geffner, Course on Automated Planning, Rome, 7/2010 15



Example: Blocks in Strips (PDDL Syntax)

(define (domain BLOCKS)
(:requirements :strips) ...
(:action pick_up

:parameters (?x)
:precondition (and (clear ?x) (ontable ?x) (handempty))
:effect (and (not (ontable ?x)) (not (clear ?x)) (not (handempty)) (holding ?x)))

(:action put_down
:parameters (?x)
:precondition (holding ?x)
:effect (and (not (holding ?x)) (clear ?x) (handempty) (ontable ?x)))

(:action stack
:parameters (?x ?y)
:precondition (and (holding ?x) (clear ?y))
:effect (and (not (holding ?x)) (not (clear ?y)) (clear ?x)(handempty)

(on ?x ?y))) ...
(define (problem BLOCKS_6_1)

(:domain BLOCKS)
(:objects F D C E B A)
(:init (CLEAR A) (CLEAR B) ... (ONTABLE B) ... (HANDEMPTY))
(:goal (AND (ON E F) (ON F C) (ON C B) (ON B A) (ON A D))))

Hector Geffner, Course on Automated Planning, Rome, 7/2010 16



Example: Logistics in Strips PDDL

(define (domain logistics)
(:requirements :strips :typing :equality)
(:types airport - location truck airplane - vehicle vehicle packet - thing thing location city)
(:predicates (loc-at ?x - location ?y - city) (at ?x - thing ?y - location) (in ?x - packet ?y - vehicle))
(:action load

:parameters (?x - packet ?y - vehicle)
:vars (?z - location)
:precondition (and (at ?x ?z) (at ?y ?z))
:effect (and (not (at ?x ?z)) (in ?x ?y)))

(:action unload ..)
(:action drive

:parameters (?x - truck ?y - location)
:vars (?z - location ?c - city)
:precondition (and (loc-at ?z ?c) (loc-at ?y ?c) (not (= ?z ?y)) (at ?x ?z))
:effect (and (not (at ?x ?z)) (at ?x ?y)))

...
(define (problem log3_2)
(:domain logistics)
(:objects packet1 packet2 - packet truck1 truck2 truck3 - truck airplane1 - airplane)
(:init (at packet1 office1) (at packet2 office3) ...)
(:goal (and (at packet1 office2) (at packet2 office2))))

Hector Geffner, Course on Automated Planning, Rome, 7/2010 17



Example: 15-Puzzle in PDDL

(define (domain tile)
(:requirements :strips :typing :equality)
(:types tile position)
(:constants blank - tile)
(:predicates (at ?t - tile ?x - position ?y - position)

(inc ?p - position ?pp - position)
(dec ?p - position ?pp - position))

(:action move-up
:parameters (?t - tile ?px - position ?py - position ?bx - position ?by - position)
:precondition (and (= ?px ?bx) (dec ?by ?py) (not (= ?t blank)) ...)
:effect (and (not (at blank ?bx ?by)) (not (at ?t ?px ?py)) (at blank ?px ?py) (at ?t ?bx ?by)))

...
(define (domain eight_tile) ..
(:constants t1 t2 t3 t4 t5 t6 t7 t8 - tile p1 p2 p3 - position)
(:timeless (inc p1 p2) (inc p2 p3) (dec p3 p2) (dec p2 p1)))

(define (situation eight_standard)
(:domain eight_tile)
(:init (at blank p1 p1) (at t1 p2 p1) (at t2 p3 p1) (at t3 p1 p2) ..)
(:goal (and (at t8 p1 p1) (at t7 p2 p1) (at t6 p3 p1) ..)

Hector Geffner, Course on Automated Planning, Rome, 7/2010 18



Computation: how to solve Strips planning problems?

• Key issue: exploit two roles of language:

– specification: concise model description
– computation: reveal useful heuristic info

• Two traditional approaches: search vs. decomposition

• explicit search of the state model S(P ) direct but not effective til recently
• near decomposition of the planning problem thought a better idea

Hector Geffner, Course on Automated Planning, Rome, 7/2010 19



Computational Approaches to Classical Planning

• Strips algorithm (70’s): Total ordering planning backward from Goal; work
always on top subgoal in stack, delay rest

• Partial Order (POCL) Planning (80’s): work on any subgoal, resolve threats;
UCPOP 1992

• Graphplan (1995 – . . . ): build graph containing all possible parallel plans up
to certain length; then extract plan by searching the graph backward from Goal

• SatPlan (1996 – . . . ): map planning problem given horizon into SAT problem;
use state-of-the-art SAT solver

• Heuristic Search Planning (1996 – . . . ): search state space S(P ) with heuristic
function h extracted from problem P

• Model Checking Planning (1998 – . . . ): search state space S(P ) with
‘symbolic’ BrFS where sets of states represented by formulas implemented by
BDDs

Hector Geffner, Course on Automated Planning, Rome, 7/2010 20



State of the Art in Classical Planning

• significant progress since Graphplan (Blum & Furst 95)

• empirical methodology

. standard PDDL language

. planners and benchmarks available; competitions

. focus on performance and scalability

• large problems solved (non-optimally)

• different formulations and ideas

We’ll focus on two formulations:

• (Classical) Planning as Heuristic Search, and

• (Classical) Planning as SAT

Hector Geffner, Course on Automated Planning, Rome, 7/2010 21


