
Course on Automated Planning: Planning as SAT

Hector Geffner
ICREA & Universitat Pompeu Fabra

Barcelona, Spain

Hector Geffner, Course on Automated Planning, Rome, 7/2010 1



Logics

• Logics come in many forms and shapes, like propositional and predicate logic,
modal logics, conditional logics, etc.

• Many uses in CS, AI, and Planning

• Some key dimensions:

. Language: defines the (valid) forms in the language, called formulas

. Semantics: defines the meaning of a formula as the set of models, and
when a formula is deducible (follows) from another

. Proof Theory: provides ’local’ (syntactic) methods for deriving new for-
mulas from old

• Some key properties:

. Proof theory is sound if derived formulas deducible from old

. Proof theory is complete if all deducible formulas are derivable

Hector Geffner, Course on Automated Planning, Rome, 7/2010 2



Propositional Logic: Language

Propositional language inductively defined as set of expressions P such that

• propositional symbols p, q, r, . . . are in P,

• ¬A is in P if A in P

• (A op B) in P if A and B in P, and op ∈ {∨,∧,⊃, . . .}

• (nothing else is in P)

– Expressiones in P called formulas

– Often some parenthesis omitted if no ambiguity; e.g.,

p ∧ q ⊃ ¬r ∨ s

abbreviates
((p ∧ q) ⊃ (¬r ∨ s))

Hector Geffner, Course on Automated Planning, Rome, 7/2010 3



Propositional Logic: Semantics

• States/worlds/truth valuations s are boolean (0/1) assignment over the proposi-
tional symbols in P

• The truth value of a propositional symbol p ∈ P in s denoted as s(p) ∈ {0, 1}
(0 = false, 1 = true)

• The truth value As of arbitrary formulas A defined inductively as:

• s(A) if A is a propositional symbol,
• NEG(Bs) if A is of the form ¬B
• OP (Bs, Cs) if A is of the form B op C

where NEG and OP ∈ OR,AND, IMPLIES, . . . are unary and binary func-
tions mapping booleans into booleans as follows (truth-tables):

NEG(0) = 1 , NEG(1)=0
OR(0,0) = 0, else OR(*,*)=1

AND(1,1)=1 , else AND(*,*)=0
IMPLIES(1,0)=0, else IMPLIES(*,*) = 1, ...

Hector Geffner, Course on Automated Planning, Rome, 7/2010 4



Propositional Logic Semantics: Definitions

• A formula A is satisfiable if As = 1 for some state s

• Two formulas A and B are logically equivalent if As = Bs for all states s

• A formula A is a tautology (contradiction) if As is true (false) for all states s

• A formula B deductively follows from A1, . . . , An, written A1, . . . , An |= B, if
for all s, Bs = 1 if As

1 = . . . = As
n = 1

Hector Geffner, Course on Automated Planning, Rome, 7/2010 5



Proof Theory

• Axiomatic Systems: based on a few axiom schemas and one or two rules of
inference (e.g., modus ponens with the form ‘if H ` A ⊃ B and H ` A, then
H ` B). Derivations often long and not natural.

• Natural Deduction: based on no axioms and a several rules of inference. Natural
derivations can be constructed by hand, but difficult to control automatically.

• Resolution based on no axioms and a single (resolution) rule of inference that
works on clauses only (disjunction of possibly negated atoms, called literals).

Hector Geffner, Course on Automated Planning, Rome, 7/2010 6



Resolution

• The resolution rule of inference has the form:

if p ∨ C and ¬p ∨ C ′, then C ∨ C ′

where C and C ′ are (potentially empty) clauses, and clauses are regarded as sets
of literals.

• The resolution rule used to derive a contradiction (empty clause) from the
premises and the negation of the conclusion (all expressed as a set of clauses).

• Otherwise, resolution is not complete (it’s refutation complete)

• Resolution (refutation) suitable for automated theorem proving, and simple to
extend to predicate logic. Many refinements advanced, and it’s at the basis of
PROLOG ...

Hector Geffner, Course on Automated Planning, Rome, 7/2010 7



Example

Model the following argument in propositional logic and prove the conclusion
semantically and by resolution.

John killed Louis or Peter did it. If it was John, then Mary must have seen the
killing and she must be shocked. Thus, if Mary is not shocked, Peter must
have done it.

Hector Geffner, Course on Automated Planning, Rome, 7/2010 8



SAT and SAT Solvers

• Best computational methods for checking validity in propositional logic rely
on SAT

• SAT is the problem of determining whether a set of clauses or CNF formula is
satisfiable

• A clause is disjunction of literals where a literal is a propositional symbol or its
negation

x ∨ ¬y ∨ z ∨ ¬w

• Many problems can be mapped into SAT such as Planning, Scheduling, CSPs,
Verification problems etc.

• SAT is an intractable problem (exponential in the worst case unless P=NP) yet
very large SAT problems can be solved in practice

• Best SAT algorithms not based on either pure case analysis (model theory) or
resolution (proof theory), but a combination of both

Hector Geffner, Course on Automated Planning, Rome, 7/2010 9



Davis and Putnam Procedure for SAT

• DP (DPLL) is a sound and complete proof procedure for SAT that uses resolution
in a restricted form called unit resolution, in which one parent clause must be
unit clause

• Unit resolution is very efficient (poly-time) but not complete (Example: q ∨ p,
¬q ∨ p, q ∨ ¬p, ¬q ∨ ¬p)

• When unit resolution gets stuck, DP picks undetermined Var, and splits the
problem in two: one where Var is true, the other where it is false (case analysis)

DP(clauses)
Unit-resolution(clauses)
if Contradiction, Return False
else if all VARS determined, Return True

* else pick non-determined VAR, and
Return DP(clauses + VAR) OR DP(clauses + NEG VAR)

Currently very large SAT problems can be solved. Criterion for var selection is
critical, as learning from conflicts (not shown).

Hector Geffner, Course on Automated Planning, Rome, 7/2010 10



Planning as SAT (Kautz & Selman)

• Maps planning problem P = 〈F,O, I, G〉 with horizon n into a set of clauses
C(P, n), solved by SAT solver (satz,chaff,. . . ).

• Theory C(P, n) includes vars p0, p1, . . . , pn and a0, a1, . . . , an−1 for each p ∈ F
and a ∈ O

• C(P, n) satisfiable iff there is a parallel plan with length n; in that case, plan
extracted from satisfying assignment

• In parallel plan, non-mutex actions can be executed in parallel; two actions are
mutex if one deletes precs/adds of the other (don’t commute)

• Optimal parallel plans minimize number of time steps; obtained by starting with
optimistic horizon n (lower bound), and increasing it by 1 til C(P, n) satisfiable

Hector Geffner, Course on Automated Planning, Rome, 7/2010 11



Theory C(P, n) for Problem P = 〈A,O, I, G〉

1. Init: p0 for p ∈ I, ¬q0 for q 6∈ I

2. Goal: pn for p ∈ G

3. Actions: For i = 0, 1, . . . , n − 1

ai ⊃ pi for p ∈ Prec(a)

ai ⊃ pi+1 for each p ∈ Add(a)

ai ⊃ ¬pi+1 for each p ∈ Del(a)

4. NO-OPs: For each p, and i = 0, 1, . . . , n − 1, ‘dummy’ NO-OP(p) action added, with

precondition and add list p and empty delete list.

5. Frame: If a1, . . . , am are the actions that add p, then for i = 0, . . . , n − 1:

¬a
1
i ∧ · · · ∧ ¬a

m
i ⊃ ¬pi+1

6. Mutex: If a and a′ mutex, ¬(ai ∧ a′i)

• Current SAT/CSP formulations built on top of planning graph that extracts
implicit mutex relations between action pairs, and between atom pairs.

Hector Geffner, Course on Automated Planning, Rome, 7/2010 12



Other variations in Classical Planning

Only if there is time . . .

• Regression Planning

• Graphplan

• Partial Order Causal Link (POCL) Planning

Hector Geffner, Course on Automated Planning, Rome, 7/2010 13



Regression Planning

Search backward from goal rather than forward from initial state:

• initial state σ0 is G

• a applicable in σ if Add(a) ∩ σ 6= ∅ and Del(a) ∩ σ = ∅
• resulting state is σa = σ − Add(a) + Prec(a)

• terminal states σ if σ ⊆ I

Advantages/Problems:

+ Heuristic h(σ) for any σ can be computed by simple aggregation (max,sum, . . . )
of estimates g(p, s0) for p ∈ σ computed only once from s0

- Spurious states σ not reachable from s0 often generated (e.g., where a block is
on two blocks at the same time). A good h should make h(σ) = ∞ . . .

Hector Geffner, Course on Automated Planning, Rome, 7/2010 14



Variation: Parallel Regression Search

Search backward from goal assuming that non-mutex actions can be done in
parallel

• The regression search is similar, except that sets of non-mutex actions A allowed:
Add(A) = ∪a∈AAdd(a), Del(A) = ∪a∈ADel(a), Prec(A) = ∪a∈APrec(a).

• Resulting state from regression is σA = σ −Add(A) + Prec(a)

Advantages/Problems:

+ Sometimes easier to compute optimal parallel plans than optimal serial plans

+ Some heuristics provide tighter estimates of parallel cost than serial cost (e.g.,
h = h1)

- Branching factor in parallel search (either forward or backward) can be very
large (2n if n applicable actions).

Hector Geffner, Course on Automated Planning, Rome, 7/2010 15



Parallel Regression Search with NO-OPs

• Assumes ‘dummy’ operator NO-OP(p) for each p with Prec = Add = {p} and
Del = ∅

• A set of non-mutex actions A (possibly including NO-OPs) applicable in σ if
σ ⊆ Add(A) and Del(A) ∩ σ = ∅

• Resulting state is σ = Prec(A)

• Starting state σ0 = G and terminal states σ ⊆ I

Advantages/Problems:

- More actions to deal with

+ Enables certain compilation techniques as in Graphplan . . .

Hector Geffner, Course on Automated Planning, Rome, 7/2010 16



Graphplan (Blum & Furst): First Version

• Graphplan does an IDA* parallel regression search with NO-OPs over planning
graph containing propositional and action layers Pi and Ai, i = 0, . . . , n

• P0 contains the atoms true in I

• Ai contains the actions whose precs are true in Pi

• Pi+1 contains the positive effects of the actions in Ai

• planning graph built til layer Pn where G appears, then search for plans with
horizon n− 1 invoked with Solve(G, n) where

• Solve(G, 0) succeds if G ⊆ I and fails otherwise, and

• Solve(G, n) mapped into Solve(Prec(A), n − 1), where A is a set of non-mutex
actions in layer in An−1 that covers G, i.e., G ⊆ Add(A).

• If search fails, n increased by 1, and process is repeated

Hector Geffner, Course on Automated Planning, Rome, 7/2010 17



Graphplan: Real version

• The IDA* search is implicit; heuristic h(σ) encoded in planning graph as index
of first layer Pi that contains σ

• This heuristic, as defined above, corresponds to the hmax = h1 heuristic;
Graphplan actually uses a more powerful admissible heuristic akin to h2 . . .

• Basic idea: extend mutex relations to pairs of actions and propositions in each
layer i > 0 as follows:

• p and q mutex in Pi if p and q are in Pi and the actions in Ai−1 that support p and q are

mutex in Ai−1;

• a and a′ mutex in Ai if a and a′ are in Ai, and they are mutex or Prec(a) ∪ Prec(a′)

contains a mutex in Pi

• The index of first layer in planning graph that contains a set of atoms P or
actions A without a mutex, is a lower bound

• Thus, search can be started at level in which G appears without a mutex, and
Solve(P, i) needs to consider only sets of actions A in Ai−1 that do not contain
a mutex.

Hector Geffner, Course on Automated Planning, Rome, 7/2010 18



Partial Order Planning: Regression + Decomposition. Intuition

1. recursively decompose regression with goal p1, . . . , pn into n regressions with
goals pi, i = 1, . . . , n;

2. combine resulting plans so that they do not interfere with each other

E.g.: let G = {p, q}, I = {r}, and two actions

a1: Prec(a1) = {r}, Add(a1) = {p}, Del(a1) = {r}

a2: Prec(a2) = {r}, Add(a2) = {q}, Del(a2) = {}

– P1 = {a1} is a plan for p, and P2 = {a2} a plan for q

– Yet a1 in P1 deletes a precondition of a2

– This ‘threat’ can be solved by forcing a1 after a2, i.e., a2 ≺ a1.

Partial Order Causal Link planning is a formulation of POP that pursues 1 and 2
concurrently

Hector Geffner, Course on Automated Planning, Rome, 7/2010 19



Partial Plans and Causal Links

A partial plan P in POCL is a triple (Steps,O, CLs) where

– Steps is a set of actions ai

– O is a set of precedence constraints ai ≺ aj

– CLs is a set of causal links (a1, p, a2) meaning that that precondition p of a2
is achieved by action a1

• POCL extends partial plans til they become complete (to be defined)

• States σ in the search are partial plans

• Initial state (partial plan) is P0 = ({Start, End}, {Start ≺ End}, {}), where
Start and End are actions that summarize I and G: Add(Start) = I,
Prec(End) = G

Hector Geffner, Course on Automated Planning, Rome, 7/2010 20



POCL Planning Algorithm

• A partial plan P = (Steps,O, CLs) is complete when ordering O is consistent
and there is no flaw of the form:

. unsupported precondition: a precond p ∈ Prec(a) for a ∈ Steps s.t. no
CL (a′, p, a) in CLs

. threatened causal link: a CL (a′, p, a) for b ∈ Steps s.t. p ∈ Del(b) and
a′ ≺ b ≺ a is consistent with O

• POCL search starts with the plan P = P0 above, selecting a flaw in P , and
trying each one of the repairs:

. Flaw #1: fixed by selecting an action a′, p ∈ Add(a), and adding a′ to
Steps, a′ ≺ a to O, and (a′, p, a) to CLs

. Flaw #2: fixed by adding b ≺ a′ or a ≺ b to O

• The terminal states in search are the complete plans (solutions) or the incon-
sistent ones (dead ends)

Hector Geffner, Course on Automated Planning, Rome, 7/2010 21



Status of POCL Planning

• POP/POCL dominated planning research for 10-15 years, until Graphplan

• Unlike other approaches, can work with action schemas

• In recent years lost favor to Graphplan/SAT/CSP/HSP

• Recent comeback combined with heuristics in RePOP and CPT

• Holds promise as branching scheme for temporal planning

Hector Geffner, Course on Automated Planning, Rome, 7/2010 22


