
Course on Automated Planning: Transformations

Hector Geffner
ICREA & Universitat Pompeu Fabra

Barcelona, Spain

H. Geffner, Course on Automated Planning, Rome, 7/2010 1

AI Planning: Status

• The good news: classical planning works!

. Large problems solved very fast (non-optimally)

• Model simple but useful

. Operators not primitive; can be policies themselves

. Fast closed-loop replanning able to cope with uncertainty sometimes

• Not so good; limitations:

. Does not model Uncertainty (no probabilities)

. Does not deal with Incomplete Information (no sensing)

. Does not accommodate Preferences (simple cost structure)

. . . .

H. Geffner, Course on Automated Planning, Rome, 7/2010 2

Beyond Classical Planning: Two Strategies

• Top-down: Develop solver for more general class of models; e.g., Markov
Decision Processes (MDPs), Partial Observable MDPs (POMDPs), . . .

+: generality
−: complexity

• Bottom-up: Extend the scope of current ’classical’ solvers

+: efficiency
−: generality

• We’ll do both, starting with transformations for

. compiling soft goals away (planning with preferences)

. compiling uncertainty away (conformant planning)

. compiling sensing away (planning with sensing)

. doing plan recognition (as opposed to plan generation)

H. Geffner, Course on Automated Planning, Rome, 7/2010 3

Compilation of Soft Goals

• Planning with soft goals aimed at plans π that maximize utility

u(π) =
∑

p∈do(π,s0)

u(p) −
∑
a∈π

c(a)

• Actions have cost c(a), and soft goals utility u(p)

• Best plans achieve best tradeoff between action costs and utilities

• Model used in recent planning competitions; net-benefit track 2008 IPC

• Yet it turns that soft goals do not add expressive power, and can be compiled
away

H. Geffner, Course on Automated Planning, Rome, 7/2010 4

Compilation of Soft Goals (cont’d)

• For each soft goal p, create new hard goal p′ initially false, and two new
actions:

. collect(p) with precondition p, effect p′ and cost 0, and

. forgo(p) with an empty precondition, effect p′ and cost u(p)

• Plans π maximize u(π) iff minimize c(π) =
∑

a∈π c(a) in resulting problem

• Compilation yields better results that native soft goal planners in recent IPC
(Keyder & G. 07,09)

IPC6 Net-Benefit Track Compiled Problems

Domain Gamer HSP*
P Mips-XXL Gamer HSP*

F HSP*
0 Mips-XXL

crewplanning(30) 4 16 8 - 8 21 8
elevators (30) 11 5 4 18 8 8 3

openstacks (30) 7 5 2 6 4 6 1
pegsol (30) 24 0 23 22 26 14 22

transport (30) 12 12 9 - 15 15 9
woodworking (30) 13 11 9 - 23 22 7

total 71 49 55 84 86 50

H. Geffner, Course on Automated Planning, Rome, 7/2010 5

Incomplete Information: Conformant Planning

G
I

Problem: A robot must move from an uncertain I into G with certainty, one cell
at a time, in a grid nxn

• Problem very much like a classical planning problem except for uncertain I

• Plans, however, quite different: best conformant plan must move the robot
to a corner first (localization)

H. Geffner, Course on Automated Planning, Rome, 7/2010 6

Conformant Planning: Belief State Formulation

G
I

• call a set of possible states, a belief state

• actions then map a belief state b into a bel state ba = {s′ |s′ ∈ F (a, s) & s ∈ b}

• conformant problem becomes a path-finding problem in belief space

Problem: number of belief state is doubly exponential in number of variables.

– effective representation of belief states b

– effective heuristic h(b) for estimating cost in belief space

Recent alternative: translate into classical planning . . .

H. Geffner, Course on Automated Planning, Rome, 7/2010 7

Basic Translation: Move to the ’Knowledge Level’

Given conformant problem P = 〈F,O, I, G〉

• F stands for the fluents in P

• O for the operators with effects C → L

• I for the initial situation (clauses over F -literals)

• G for the goal situation (set of F -literals)

Define classical problem K0(P) = 〈F ′, O′, I ′, G′〉 as

• F ′ = {KL, K¬L | L ∈ F}
• I ′ = {KL | clause L ∈ I}
• G′ = {KL | L ∈ G}
• O′ = O but preconds L replaced by KL, and effects C → L replaced by KC → KL

(supports) and ¬K¬C → ¬K¬L (cancellation)

K0(P) is sound but incomplete: every classical plan that solves K0(P) is a
conformant plan for P , but not vice versa.

H. Geffner, Course on Automated Planning, Rome, 7/2010 8

Key elements in Complete Translation KT,M(P)

• A set T of tags t: consistent sets of assumptions (literals) about the initial
situation I

I 6|= ¬t

• A set M of merges m: valid subsets of tags (= DNF)

I |=
∨
t∈m

t

• New (tagged) literals KL/t meaning that L is true if t true initially

H. Geffner, Course on Automated Planning, Rome, 7/2010 9

A More General Translation KT,M(P)

Given conformant problem P = 〈F,O, I, G〉

• F stands for the fluents in P

• O for the operators with effects C → L

• I for the initial situation (clauses over F -literals)

• G for the goal situation (set of F -literals)

define classical problem KT,M(P) = 〈F ′, O′, I ′, G′〉 as

• F ′ = {KL/t , K¬L/t | L ∈ F and t ∈ T}
• I ′ = {KL/t | if I |= t ⊃ L}
• G′ = {KL | L ∈ G}
• O′ = O but preconds L replaced by KL, and effects C → L replaced by KC/t → KL/t

(supports) and ¬K¬C/t → ¬K¬L/t (cancellation), and new merge actions^
t∈m,m∈M

KL/t → KL

The two parameters T and M are the set of tags (assumptions) and the set of merges (valid sets

of assumptions) . . .

H. Geffner, Course on Automated Planning, Rome, 7/2010 10

Compiling Uncertainty Away: Properties

• General translation scheme KT,M(P) is always sound, and for suitable choice of
the sets of tags and merges, it is complete.

• KS0(P) is complete instance of KT,M(P) obtained by setting T to the set of
possible initial states of P

• Ki(P) is a polynomial instance of KT,M(P) that is complete for problems
with width bounded by i.

. Merges for each L in Ki(P) chosen to satisfy i clauses in I relevant to L

• The width of most benchmarks bounded and equal 1!

• This means that such problems can be solved with a classical planner after a
polynomial translation (Palacios & G. 07, 09)

H. Geffner, Course on Automated Planning, Rome, 7/2010 11

Planning with Sensing: Models and Solutions

Problem: Starting in one of two rightmost cells, get to B; A & B observable

A B

• Contingent Planning

. A contingent plan is a tree of possible executions, all leading to the goal

. A contingent plan for the problem: R(ight), R, R, if ¬B then R

• POMDP planning

. A POMDP policy is mapping of belief states to actions, leading to goal

. A POMDP policy for problem: If Bel 6= B, then R (25 − 1 Bel’s)

I’ll focus on different solution form: finite state controllers

H. Geffner, Course on Automated Planning, Rome, 7/2010 12

Finite State Controllers: Example 1

• Starting in A, move to B and back to A; marks A and B observable.

A B

• This finite-state controller solves the problem

q0

A/Right
-/Right

q1
B/Left

-/Left

• FSC is compact and general: can add noise, vary distance, etc.

• Heavily used in practice, e.g. video-games and robotics, but written by hand

• The Challenge: How to get these controllers automatically

H. Geffner, Course on Automated Planning, Rome, 7/2010 13

Finite State Controllers: Example 2

• Problem P : find green block using visual-marker (circle) that can move around
one cell at a time (à la Chapman and Ballard)

• Observables: Whether cell marked contains a green block (G), non-green block
(B), or neither (C); and whether on table (T) or not (–)

q0

TB/Up
-B/Up

TC/Right

q1
-C/Down

TB/Right

-B/Down

• Controller on the right solves the problem, and not only that, it’s compact and
general: it applies to any number of blocks and any configuration!

• Controller obtained by running a classical planner over transformed problem
(Bonet, Palacios, G. 2009)

H. Geffner, Course on Automated Planning, Rome, 7/2010 14

Some notation: Problem and Finite State Controllers

• Target problem P is like a classical problem with incomplete initial situation
I and some observable fluents

• Finite State Controller C is a set of tuples t = 〈q, o, a, q′〉

tuple t = 〈q, o, a, q′〉, depicted q
o/a→ q′, tells to do action a

when o is observed in controller state q and then to switch to q′

• Finite State Controller C solves P if all state trajectories compatible with P and
C reach the goal

Question: how to derive FSC for solving P?

H. Geffner, Course on Automated Planning, Rome, 7/2010 15

Idea: Finite State Controllers as Conformant Plans

• Consider set of possible tuples t = 〈q, o, a, q′〉

• Let P ′ be a problem that is like P but with

1. no observable fluents
2. new fluents o and q representing possible joint observations o and q’s
3. actions b(t) replacing the actions a in P , where for t = 〈q, o, a, q′〉,

b(t) is like a but conditional on both q and o being true, and resulting in q′.

Theorem: The finite state controller C solves P iff C is the set of tuples
t in the actions b(t) of a stationary conformant plan for P ′

• Corollary: The finite state controller for P can be obtained with classical
planner from further transformation of P ′.

• Plan π is stationary when for b(t) and b(t′) in π for t = 〈q, o, a, q′〉 and
t′ = 〈q, o, a′, q′′〉, then a = a′ and q′ = q′′

H. Geffner, Course on Automated Planning, Rome, 7/2010 16

Intuition: Memoryless Controllers

• For simplicity, consider memoryless controllers where tuples are t = 〈o, a〉,
meaning to do a when o observed

• In transformed problem P ′ the actions a in P replaced by a(o) where

a(o) is like a when o is true, else is a NO-OP

Claim: If the memoryless controller C = {〈oi, ai〉 | i = 1, n} solves P in m
steps, the sequence a1[o1], ..., an[on] repeated m times is a conformant
plan for P ′

H. Geffner, Course on Automated Planning, Rome, 7/2010 17

Example: FSC for Visual Marker Problem

• Problem P : find green block using visual-marker (circle) that can move around
one cell at a time (à la Chapman or Ballard)

• Observables: Whether cell marked contains a green block (G), non-green block
(B), or neither (C); and whether on table (T) or not (–)

q0

TB/Up
-B/Up

TC/Right

q1
-C/Down

TB/Right

-B/Down

• Controller obtained using a classical planner from translation that assumes 2
controller states.

• Controller is compact and general: it applies to any number of blocks and
any configuration

H. Geffner, Course on Automated Planning, Rome, 7/2010 18

Plan Recognition

S

A B C

D

F EH

J

• Agent can move one unit in the four directions

• Possible targets are A, B, C, . . .

• Starting in S, he is observed to move up twice

• Where is he going?

H. Geffner, Course on Automated Planning, Rome, 7/2010 19

Standard Plan Recognition over Libraries (Abstract View)

• A plan recognition problem defined by triplet T = 〈G,Π, O〉 where

. G is the set of possible goals G,

. Π(G) is the set of possible plans π for G, G ⊆ G,

. O is an observation sequence a1, . . . , an where each ai is an action

• A possible goal G ∈ G is plausible if ∃ plan π in Π(G) that satisfies O

• An action sequence π satisfies O if O is a subsequence of π

H. Geffner, Course on Automated Planning, Rome, 7/2010 20

(Classical) Plan Recognition over Action Theories

PR over action theories similar but with set of plans Π(G) defined implicitly:

• A plan recognition problem is a triplet T = 〈P,G, O〉 where

. P = 〈F,A, I〉 is planning domain: fluents F , actions A, init I, no goal

. G is a set of possible goals G, G ⊆ F

. O is the observation sequence a1, . . . , an, all ai in A

If Π(G) stands for ’good plans’ for G in P (to be defined), then as before:

• A possible goal G ∈ G is plausible if there is a plan π in Π(G) that satisfies O

• An action sequence π satisfies O if O is a subsequence of π

Our goal: define the good plans and solve the problem with a classical planner

H. Geffner, Course on Automated Planning, Rome, 7/2010 21

Compiling Observations Away

We get rid of obs. O by transforming P = 〈F, I, A〉 into P ′ = 〈F ′, I ′, A〉 so that

π is a plan for G in P that satisfies O iff π is a plan for G + O in P ′

and

π is a plan for G in P that doesn’t satisfy O iff π is a plan for G + O in P ′

The transformation from P into P ′ is actually very simple . . .

H. Geffner, Course on Automated Planning, Rome, 7/2010 22

Compiling Observations Away (cont’d)

• Given P = 〈F, I, A〉, the transformed problem is P ′ = 〈F ′, I ′, A′〉:

. F ′ = F ∪ { pa | a ∈ O},

. I ′ = I

. A′ = A

where pa is new fluent for the observed action a in A′ with extra effect:

. pa, if a is the first observation in O, and

. pb → pa, if b is the action that immediately precedes a in O.

• The ‘goals’ O and O in P ′ are pa and ¬pa for the last action a in O

• The plans π for G in P that satisfy/don’t satisfy O are the plans in P ′ for
G + O/G + O respectively

H. Geffner, Course on Automated Planning, Rome, 7/2010 23

Planning Recognition as Planning: First Formulation

Define the set Π(G) of ‘good plans’ for G in P , as the optimal plans for G in P .

• Then G ∈ G is a plausible goal given observations O

iff there is an optimal plan π for G in P that satisfies O;
iff there is an optimal plan π for G in P that is a plan for G + O in P ′;
iff cost of G in P equal to cost of G + O in P ′ abbreviated

cP ′(G + O) = cP (G)

• It follows that plausibility of G can be computed exactly by calling an optimal
planner twice: one for computing cP ′(G + O), one for computing cP (G).

• In turn, this can be approximated by calling suboptimal planner just once
(Ramirez & G. 2009). We pursue a more general approach here . . .

H. Geffner, Course on Automated Planning, Rome, 7/2010 24

Plan Recognition as Planning: A More General Formulation

• Don’t filter goals G as plausible/implausible,

• Rather rank them with a probability distribution P (G|O), G ∈ G

• From Bayes Rule P (G|O) = α P (O|G) P (G), where

. α is a normalizing constant

. P (G) assumed to be given in problem specification

. P (O|G) defined in terms of extra cost to pay for not complying with the
observations O:

P (O|G) = function(c(G + O) − c(G + O))

H. Geffner, Course on Automated Planning, Rome, 7/2010 25

Example: Navigation in a Grid Revisited

S

A B C

D

F EH

J

If ∆(G, O)
def
= c(G + O)− c(G + O):

• For G = B, c(B + O) = c(B) = 4 ; c(B + O) = 6; thus ∆(B, O) = 2

• For G = C or A, c(C + O) = c(C + O) = c(C) = 8; thus ∆(C, O) = 0

• For all others G, c(G + O) = 8 ; c(G + O) = c(G) = 4; thus ∆(G, O) = −4

If P (O|G) is a monotonic function of ∆(G, O), then

P (O|B) > P (O|C) = P (O|A) > P (G) , for G 6∈ {A, B, C}

H. Geffner, Course on Automated Planning, Rome, 7/2010 26

Defining the Likelihoods P (O|G)

• Assuming Boltzmann distribution and writing exp{x} for ex, likelihoods become

P (O|G) def= α exp{−β c(G + O)}

P (O|G) def= α exp{−β c(G + O)}

where α is a normalizing constant, and β is a positive constant.

• Taking ratio of two equations, it follows that

P (O|G)/P (O|G) = exp{β ∆(G, O)}

and hence

P (O|G) = 1/(1 + exp{−β ∆(G, O)}) = sigmoid(β ∆(G, O))

H. Geffner, Course on Automated Planning, Rome, 7/2010 27

Defining Likelihoods P (O|G) (cont’d)

P (O|G) = sigmoid(β ∆(G, O))

∆(G, O) = c(G + O)− c(G + O)

E.g.,

P (O|G) < P (O|G) if c(G + O) < c(G + O)
P (O|G) = 1 if c(G + O) < c(G + O) = ∞

H. Geffner, Course on Automated Planning, Rome, 7/2010 28

Probabilistic Plan Recognition as Planning: Summary

• A plan recognition problem is a tuple T = 〈P,G, O, Prob〉 where

. P is a planning domain P = 〈F, I, A〉

. G is a set of possible goals G, G ⊆ F

. O is the observation sequence a1, . . . , an, ai ∈ O

. Prob is prior distribution over G

• Posterior distribution P (G|O) obtained from

. Bayes Rule P (G|O) = α P (O|G) Prob(G) and

. Likelihood P (O|G) = sigmoid{β [c(G + O)− c(G + O)]}

• Distribution P (G|O) computed exactly or approximately:

. exactly using optimal planner for determining c(G + O) and c(G + O),

. approximately using suboptimal planner for c(G + O) and c(G + O)

• In either case, 2 · |G| planner calls are needed.

H. Geffner, Course on Automated Planning, Rome, 7/2010 29

Example: Noisy Walk

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

A

B C D E

F

I

6

11

3

Time Steps
P(

G|
O t

)

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.25

0.5

0.75

1

G=A
G=B
G=C
G=D
G=E
G=F

Graph on the left shows ‘noisy walk’ and possible targets; curves on the right show
posterior P (G|O) of each possible target G as a function of time

H. Geffner, Course on Automated Planning, Rome, 7/2010 30

Summary: Transformations

• Classical Planning solved as path-finding in state state

. Most used techniques are heuristic search and SAT

• Beyond classical planning: two approaches

. Top-down: solvers for richer models like MDPs and POMDPs

. Bottom-up: compile non-classical features away

• We have follow second approach with transformations to eliminate

. soft goals when planning with preferences

. uncertainty in conformant planning)

. sensing for deriving finite-state controllers

. observations for plan recognition

• Other transformations used for LTL plan constraints, control knowledge, etc.

H. Geffner, Course on Automated Planning, Rome, 7/2010 31

