Course on Automated Planning: Transformations

Hector Geffner ICREA & Universitat Pompeu Fabra Barcelona, Spain

AI Planning: Status

- The good news: classical planning works!
 - Large problems solved very fast (non-optimally)
- Model simple but useful
 - > Operators not primitive; can be policies themselves
 - Fast closed-loop replanning able to cope with uncertainty sometimes
- Not so good; **limitations:**
 - ▷ Does not model Uncertainty (no probabilities)
 - Does not deal with Incomplete Information (no sensing)
 - Does not accommodate Preferences (simple cost structure)
 - ▷ ...

Beyond Classical Planning: Two Strategies

- Top-down: Develop solver for more general class of models; e.g., Markov Decision Processes (MDPs), Partial Observable MDPs (POMDPs), . . .
 - +: generality
 - -: complexity
- Bottom-up: Extend the scope of current 'classical' solvers
 - +: efficiency
 - -: generality
- We'll do both, starting with **transformations** for
 - compiling soft goals away (planning with preferences)
 - compiling uncertainty away (conformant planning)
 - compiling sensing away (planning with sensing)
 - doing plan recognition (as opposed to plan generation)

Compilation of Soft Goals

• Planning with **soft goals** aimed at plans π that maximize **utility**

$$u(\pi) = \sum_{p \in do(\pi, s_0)} u(p) \quad - \quad \sum_{a \in \pi} c(a)$$

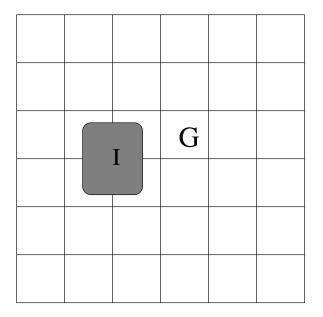
- Actions have **cost** c(a), and soft goals **utility** u(p)
- Best plans achieve best tradeoff between action costs and utilities
- Model used in recent planning competitions; **net-benefit track** 2008 IPC
- Yet it turns that soft goals do not add expressive power, and can be compiled away

Compilation of Soft Goals (cont'd)

- For each soft goal p, create **new hard goal** p' initially false, and **two new actions**:
 - \triangleright collect(p) with precondition p, effect p' and cost 0, and
 - ▷ forgo(p) with an empty precondition, effect p' and **cost** u(p)
- Plans π maximize $u(\pi)$ iff minimize $c(\pi) = \sum_{a \in \pi} c(a)$ in resulting problem
- Compilation yields better results that native soft goal planners in recent IPC (Keyder & G. 07,09)

	IPC6 Net-Benefit Track			Compiled Problems			
Domain	Gamer	HSP^*_P	Mips-XXL	Gamer	HSP^*_F	HSP^*_0	Mips-XXL
crewplanning(30)	4	16	8	-	8	21	8
elevators (30)	11	5	4	18	8	8	3
openstacks (30)	7	5	2	6	4	6	1
pegsol (30)	24	0	23	22	26	14	22
transport (30)	12	12	9	-	15	15	9
woodworking (30)	13	11	9	-	23	22	7
total	71	49	55		84	86	50

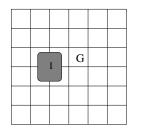
Incomplete Information: Conformant Planning



Problem: A robot must move from an **uncertain** I into G with **certainty**, one cell at a time, in a grid $n \times n$

- Problem very much like a classical planning problem except for uncertain I
- Plans, however, quite different: best conformant plan must move the robot to a corner first (localization)

Conformant Planning: Belief State Formulation



- call a **set** of possible states, a **belief state**
- actions then map a belief state b into a bel state $b_a = \{s' \mid s' \in F(a,s) \ \& \ s \in b\}$
- conformant problem becomes a path-finding problem in belief space

Problem: number of belief state is doubly exponential in number of variables.

- effective representation of belief states b
- effective heuristic h(b) for estimating cost in belief space

Recent alternative: translate into classical planning . . .

Basic Translation: Move to the 'Knowledge Level'

Given conformant problem $P = \langle F, O, I, G \rangle$

- F stands for the fluents in P
- O for the operators with effects $C \rightarrow L$
- I for the initial situation (**clauses** over F-literals)
- G for the goal situation (set of F-literals)

Define classical problem $K_0(P) = \langle F', O', I', G' \rangle$ as

•
$$F' = \{KL, K \neg L \mid L \in F\}$$

- $I' = \{KL \mid \text{ clause } L \in I\}$
- $G' = \{KL \mid L \in G\}$
- O' = O but preconds L replaced by KL, and effects $C \to L$ replaced by $KC \to KL$ (supports) and $\neg K \neg C \to \neg K \neg L$ (cancellation)

 $K_0(P)$ is **sound** but **incomplete**: every classical plan that solves $K_0(P)$ is a conformant plan for P, but not vice versa.

Key elements in Complete Translation $K_{T,M}(P)$

• A set T of tags t: consistent sets of assumptions (literals) about the initial situation I

$$I \not\models \neg t$$

• A set M of merges m: valid subsets of tags (= DNF)

$$I \models \bigvee_{t \in m} t$$

• New (tagged) literals KL/t meaning that L is true if t true initially

A More General Translation $K_{T,M}(P)$

Given conformant problem $P = \langle F, O, I, G \rangle$

- F stands for the fluents in P
- O for the operators with effects $C \to L$
- I for the initial situation (clauses over F-literals)
- G for the goal situation (set of F-literals)

define classical problem $K_{T,M}(P) = \langle F', O', I', G' \rangle$ as

t

•
$$F' = \{KL/t, K\neg L/t \mid L \in F \text{ and } t \in T\}$$

•
$$I' = \{KL/t \mid \text{if } I \models t \supset L\}$$

- $G' = \{KL \mid L \in G\}$
- O' = O but preconds L replaced by KL, and effects $C \to L$ replaced by $KC/t \to KL/t$ (supports) and $\neg K \neg C/t \to \neg K \neg L/t$ (cancellation), and new merge actions

$$\bigwedge_{\in m,m\in M} KL/t \to KL$$

The two **parameters** T and M are the set of **tags** (assumptions) and the set of **merges** (valid sets of assumptions) . . .

Compiling Uncertainty Away: Properties

- General translation scheme $K_{T,M}(P)$ is always **sound**, and for suitable choice of the sets of **tags** and **merges**, it is **complete**.
- $K_{S0}(P)$ is complete instance of $K_{T,M}(P)$ obtained by setting T to the set of possible initial states of P
- $K_i(P)$ is a **polynomial instance** of $K_{T,M}(P)$ that is **complete** for problems with **width** bounded by *i*.
 - \triangleright Merges for each L in $K_i(P)$ chosen to satisfy i clauses in I relevant to L
- The width of most benchmarks **bounded** and equal 1!
- This means that such problems can be solved with a classical planner after a polynomial translation (Palacios & G. 07, 09)

Planning with Sensing: Models and Solutions

Problem: Starting in one of two rightmost cells, get to *B*; *A* & *B* **observable**

$$\begin{tabular}{|c|c|c|c|} \hline A & & & B \end{tabular}$$

• Contingent Planning

▷ A contingent plan is a tree of possible executions, all leading to the goal
 ▷ A contingent plan for the problem: R(ight), R, R, if ¬B then R

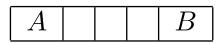
POMDP planning

▷ A **POMDP policy** is mapping of belief states to actions, leading to goal ▷ A POMDP policy for problem: If $Bel \neq B$, then R $(2^5 - 1 Bel$'s)

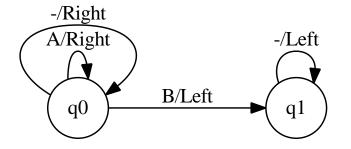
I'll focus on different solution form: finite state controllers

Finite State Controllers: Example 1

• Starting in A, move to B and back to A; marks A and B observable.



• This **finite-state controller** solves the problem



- FSC is **compact** and **general**: can add noise, vary distance, etc.
- Heavily used in practice, e.g. video-games and robotics, but written by hand
- The Challenge: How to get these controllers automatically

Finite State Controllers: Example 2

- **Problem** *P*: find **green block** using visual-marker (circle) that can move around one cell at a time (à la Chapman and Ballard)
- Observables: Whether cell marked contains a green block (G), non-green block (B), or neither (C); and whether on table (T) or not (-)



- Controller on the right solves the problem, and not only that, it's compact and general: it applies to any number of blocks and any configuration!
- Controller obtained by running a **classical planner** over **transformed problem** (Bonet, Palacios, G. 2009)

Some notation: Problem and Finite State Controllers

- Target problem P is like a classical problem with incomplete initial situation I and some observable fluents
- Finite State Controller C is a set of tuples $t = \langle q, o, a, q' \rangle$

tuple $t = \langle q, o, a, q' \rangle$, depicted $q \xrightarrow{o/a} q'$, tells to do action awhen o is observed in controller state q and then to switch to q'

• Finite State Controller ${\cal C}$ solves P if all state trajectories compatible with P and ${\cal C}$ reach the goal

Question: how to derive FSC for solving P?

Idea: Finite State Controllers as Conformant Plans

- Consider set of possible tuples $t = \langle q, o, a, q' \rangle$
- Let P' be a problem that is like P but with
 - 1. no observable fluents
 - 2. **new fluents** o and q representing possible joint observations o and q's
 - 3. actions b(t) replacing the actions a in P, where for $t = \langle q, o, a, q' \rangle$, b(t) is like a but conditional on both q and o being true, and resulting in q'.

Theorem: The finite state controller C solves P iff C is the set of tuples t in the actions b(t) of a stationary conformant plan for P'

- Corollary: The finite state controller for P can be obtained with classical planner from further transformation of P'.
- Plan π is stationary when for b(t) and b(t') in π for $t = \langle q, o, a, q' \rangle$ and $t' = \langle q, o, a', q'' \rangle$, then a = a' and q' = q''

Intuition: Memoryless Controllers

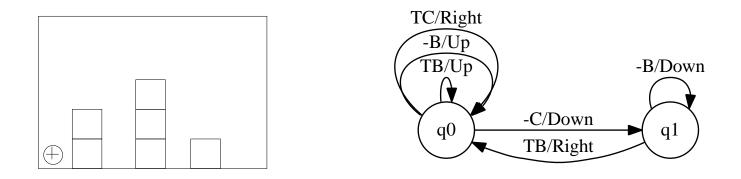
- For simplicity, consider **memoryless** controllers where tuples are $t = \langle o, a \rangle$, meaning to do a when o observed
- In transformed problem P' the actions a in P replaced by a(o) where

a(o) is like a when o is true, else is a NO-OP

Claim: If the memoryless controller $C = \{ \langle o_i, a_i \rangle | i = 1, n \}$ solves P in m steps, the sequence $a_1[o_1], ..., a_n[o_n]$ repeated m times is a conformant plan for P'

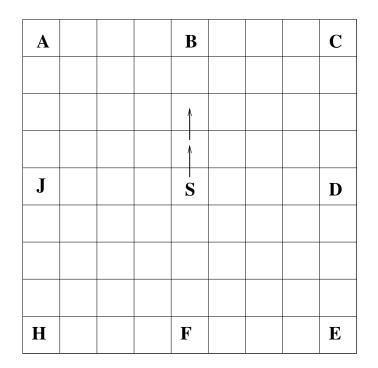
Example: FSC for Visual Marker Problem

- **Problem** *P*: find **green block** using visual-marker (circle) that can move around one cell at a time (à la Chapman or Ballard)
- Observables: Whether cell marked contains a green block (G), non-green block (B), or neither (C); and whether on table (T) or not (-)



- **Controller** obtained using a **classical planner** from translation that assumes 2 controller states.
- Controller is compact and general: it applies to any number of blocks and any configuration

Plan Recognition



- Agent can **move** one unit in the four directions
- Possible targets are A, B, C, . . .
- Starting in S, he is **observed** to move up twice
- Where is he going?

Standard Plan Recognition over Libraries (Abstract View)

• A plan recognition problem defined by triplet $T = \langle \mathcal{G}, \Pi, O \rangle$ where

- ▷ \mathcal{G} is the set of **possible goals** G, ▷ $\Pi(G)$ is the set of **possible plans** π for G, $G \subseteq \mathcal{G}$,
- \triangleright O is an observation sequence a_1, \ldots, a_n where each a_i is an action

- A possible goal $G \in \mathcal{G}$ is **plausible** if \exists plan π in $\Pi(G)$ that **satisfies** O
- An action sequence π satisfies O if O is a subsequence of π

(Classical) Plan Recognition over Action Theories

PR over action theories similar but with set of plans $\Pi(G)$ defined implicitly:

- A plan recognition problem is a triplet $T = \langle P, \mathcal{G}, O \rangle$ where
 - ▷ $P = \langle F, A, I \rangle$ is planning domain: fluents F, actions A, init I, no goal ▷ \mathcal{G} is a set of possible goals G, $G \subseteq F$ ▷ O is the observation sequence a_1, \ldots, a_n , all a_i in A

If $\Pi(G)$ stands for 'good plans' for G in P (to be defined), then as before:

- A possible goal $G \in \mathcal{G}$ is **plausible** if there is a plan π in $\Pi(G)$ that **satisfies** O
- An action sequence π satisfies O if O is a subsequence of π

Our goal: define the good plans and solve the problem with a classical planner

Compiling Observations Away

We get rid of obs. O by transforming $P=\langle F,I,A\rangle$ into $P'=\langle F',I',A\rangle$ so that

 π is a plan for G in P that satisfies O iff π is a plan for G + O in P'

and

 π is a plan for G in P that **doesn't satisfy** O **iff** π is a plan for $G + \overline{O}$ in P'

The transformation from P into P' is actually very simple . . .

Compiling Observations Away (cont'd)

• Given $P = \langle F, I, A \rangle$, the transformed problem is $P' = \langle F', I', A' \rangle$:

$$F' = F \cup \{ p_a \mid a \in O \},$$

$$I' = I$$

$$A' = A$$

where p_a is **new fluent** for the observed action a in A' with **extra effect**:

▷ p_a , if a is the first observation in O, and ▷ $p_b \rightarrow p_a$, if b is the action that immediately precedes a in O.

- The 'goals' O and \overline{O} in P' are p_a and $\neg p_a$ for the last action a in O
- The plans π for G in P that satisfy/don't satisfy O are the plans in P' for $G + O/G + \overline{O}$ respectively

Planning Recognition as Planning: First Formulation

Define the set $\Pi(G)$ of 'good plans' for G in P, as the **optimal plans** for G in P.

• Then $G \in \mathcal{G}$ is a **plausible goal** given observations O

iff there is an optimal plan π for G in P that satisfies O; iff there is an optimal plan π for G in P that is a plan for G + O in P'; iff cost of G in P equal to cost of G + O in P' abbreviated

$$c_{P'}(G+O) = c_P(G)$$

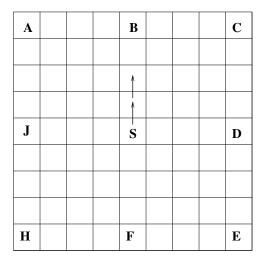
- It follows that plausibility of G can be computed exactly by calling an optimal planner twice: one for computing $c_{P'}(G+O)$, one for computing $c_P(G)$.
- In turn, this can be approximated by calling suboptimal planner just once (Ramirez & G. 2009). We pursue a more general approach here . . .

Plan Recognition as Planning: A More General Formulation

- Don't filter goals G as plausible/implausible,
- Rather rank them with a probability distribution P(G|O), $G \in \mathcal{G}$
- From Bayes Rule $P(G|O) = \alpha P(O|G) P(G)$, where
 - $\triangleright \alpha$ is a normalizing constant
 - \triangleright P(G) assumed to be **given** in problem specification
 - P(O|G) defined in terms of extra cost to pay for not complying with the observations O:

$$P(O|G) = \mathbf{function}(c(G + \overline{O}) - c(G + O))$$

Example: Navigation in a Grid Revisited



If
$$\Delta(G, O) \stackrel{\text{def}}{=} c(G + \overline{O}) - c(G + O)$$
:

• For
$$G = B$$
, $c(B + O) = c(B) = 4$; $c(B + \overline{O}) = 6$; thus $\Delta(B, O) = 2$

• For
$$G = C$$
 or A , $c(C + O) = c(C + \overline{O}) = c(C) = 8$; thus $\Delta(C, O) = 0$

• For all others $G,\,c(G+O)=8\,$; $\,c(G+\overline{O})=c(G)=4;\,$ thus $\Delta(G,O)=-4$

If P(O|G) is a monotonic function of $\Delta(G, O)$, then

$$P(O|B) > P(O|C) = P(O|A) > P(G) \ , \ \text{for} \ G \not\in \{A, B, C\}$$

Defining the Likelihoods P(O|G)

• Assuming Boltzmann distribution and writing $exp\{x\}$ for e^x , likelihoods become

$$P(O|G) \stackrel{\text{def}}{=} \alpha \exp\{-\beta c(G+O)\}$$
$$P(\overline{O}|G) \stackrel{\text{def}}{=} \alpha \exp\{-\beta c(G+\overline{O})\}$$

where α is a normalizing constant, and β is a positive constant.

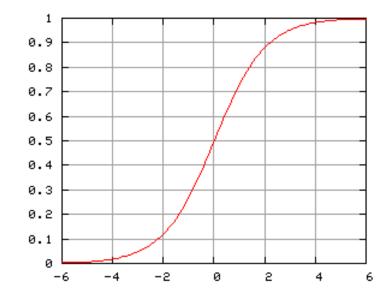
• Taking ratio of two equations, it follows that

$$P(O|G)/P(\overline{O}|G) = \exp\{\beta \, \Delta(G,O)\}$$

and hence

$$P(O|G) = 1/(1 + exp\{-\beta \Delta(G, O)\}) = sigmoid(\beta \Delta(G, O))$$

Defining Likelihoods P(O|G) (cont'd)



$$P(O|G) = sigmoid(\beta \Delta(G, O))$$

$$\Delta(G, O) = c(G + \overline{O}) - c(G + O)$$

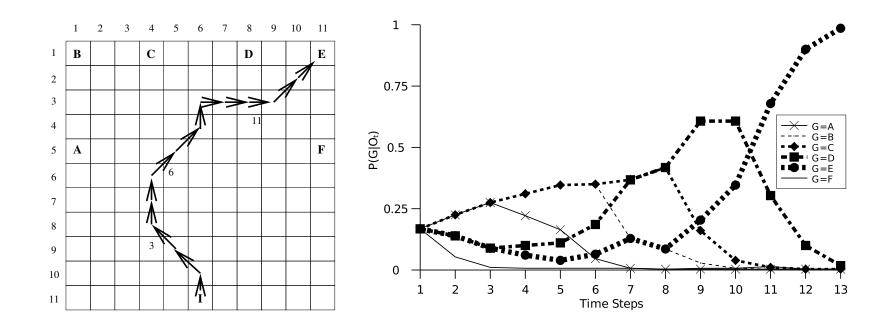
E.g.,

$$\begin{split} P(O|G) &< P(\overline{O}|G) & \text{ if } c(G + \overline{O}) < c(G + O) \\ P(O|G) &= 1 & \text{ if } c(G + O) < c(G + \overline{O}) = \infty \end{split}$$

Probabilistic Plan Recognition as Planning: Summary

- A plan recognition problem is a tuple $T = \langle P, \mathcal{G}, O, Prob \rangle$ where
 - \triangleright *P* is a planning domain *P* = $\langle F, I, A \rangle$
 - $\triangleright \mathcal{G}$ is a set of **possible goals** $G, G \subseteq F$
 - \triangleright O is the observation sequence a_1, \ldots, a_n , $a_i \in O$
 - ▷ Prob is prior distribution over G
- **Posterior distribution** P(G|O) obtained from
 - ▶ Bayes Rule $P(G|O) = \alpha P(O|G) Prob(G)$ and ▶ Likelihood $P(O|G) = sigmoid\{\beta [c(G + \overline{O}) - c(G + O)]\}$
- Distribution P(G|O) computed exactly or approximately:
 - ▷ exactly using **optimal planner** for determining c(G + O) and $c(G + \overline{O})$, ▷ approximately using **suboptimal planner** for c(G + O) and $c(G + \overline{O})$
- In either case, $2 \cdot |\mathcal{G}|$ planner calls are needed.

Example: Noisy Walk



Graph on the left shows 'noisy walk' and possible targets; curves on the right show **posterior** P(G|O) of each possible target G as a **function of time**

Summary: Transformations

- Classical Planning solved as path-finding in state state
 - Most used techniques are heuristic search and SAT
- Beyond classical planning: two approaches
 - **Top-down:** solvers for richer models like MDPs and POMDPs
 - **Bottom-up:** compile non-classical features away
- We have follow second approach with transformations to eliminate
 - soft goals when planning with preferences
 - uncertainty in conformant planning)
 - sensing for deriving finite-state controllers
 - observations for plan recognition
- Other transformations used for LTL plan constraints, control knowledge, etc.