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Models, Languages, and Solvers

• A planner is a solver over a class of models; it takes a model description, and
computes the corresponding controller

Model =⇒ Planner =⇒ Controller

• Many models, many solution forms: uncertainty, feedback, costs, . . .

• Models described in suitable planning languages (Strips, PDDL, PPDDL, . . . )
where states represent interpretations over the language.
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Planning with Markov Decision Processes: Goal MDPs

MDPs are fully observable, probabilistic state models:

• a state space S

• initial state s0 ∈ S

• a set G ⊆ S of goal states

• actions A(s) ⊆ A applicable in each state s ∈ S

• transition probabilities Pa(s′|s) for s ∈ S and a ∈ A(s)

• action costs c(a, s) > 0

– Solutions are functions (policies) mapping states into actions

– Optimal solutions minimize expected cost from s0 to goal
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Discounted Reward Markov Decision Processes

Another common formulation of MDPs . . .

• a state space S

• initial state s0 ∈ S

• actions A(s) ⊆ A applicable in each state s ∈ S

• transition probabilities Pa(s′|s) for s ∈ S and a ∈ A(s)

• rewards r(a, s) positive or negative

• a discount factor 0 < γ < 1 ; there is no goal

– Solutions are functions (policies) mapping states into actions

– Optimal solutions max expected discounted accumulated reward from s0
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Partially Observable MDPs: Goal POMDPs

POMDPs are partially observable, probabilistic state models:

• states s ∈ S

• actions A(s) ⊆ A

• transition probabilities Pa(s′|s) for s ∈ S and a ∈ A(s)

• initial belief state b0

• set of observable target states SG

• action costs c(a, s) > 0

• sensor model given by probabilities Pa(o|s), o ∈ Obs

– Belief states are probability distributions over S

– Solutions are policies that map belief states into actions

– Optimal policies minimize expected cost to go from b0 to target bel state.
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Discounted Reward POMDPs

A common alternative formulation of POMDPs:

• states s ∈ S

• actions A(s) ⊆ A

• transition probabilities Pa(s′|s) for s ∈ S and a ∈ A(s)

• initial belief state b0

• sensor model given by probabilities Pa(o|s), o ∈ Obs

• rewards r(a, s) positive or negative

• discount factor 0 < γ < 1 ; there is no goal

– Solutions are policies mapping states into actions

– Optimal solutions max expected discounted accumulated reward from b0
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Example: Omelette

• Representation in GPT (incomplete):

Action: grab− egg()
Precond: ¬holding
Effects: holding := true

good? := (true 0.5 ; false 0.5)

Action: clean(bowl:BOWL)
Precond: ¬holding
Effects: ngood(bowl) := 0 , nbad(bowl) := 0

Action: inspect(bowl : BOWL)
Effect: obs(nbad(bowl) > 0)

• Performance of resulting controller (2000 trials in 192 sec)
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Example: Hell or Paradise; Info Gathering

• initial position is 6

• goal and penalty at either 0 or 4; which one not known

• noisy map at position 9
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Action: go− up() ; same for down,left,right
Precond: free(up(pos))
Effects: pos := up(pos)

Action: ∗
Effects: pos = pos9 → obs(ptr)

pos = goal → obs(goal)
Costs: pos = penalty → 50.0

Ramif: true → ptr = (goal p ; penalty 1− p)
Init: pos = pos6 ; goal = pos0 ∨ goal = pos4

penalty = pos0 ∨ penalty = pos4 ; goal 6= penalty
Goal: pos = goal
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Examples: Robot Navigation as a POMDP

• states: [x, y; θ]

• actions rotate +90 and −90, move

• costs: uniform except when hitting walls

• transitions: e.g, Pmove([2, 3; 90] | [2, 2; 90]) = .7, if [2, 3] is empty, . . .

G

• initial b0: e.g,, uniform over set of states

• goal G: cell marked G

• observations: presence or absence of wall with probs that depend on position of
robot, walls, etc
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Expected Cost/Reward of Policy (MDPs)

• In Goal MDPs, expected cost of policy π starting in s, denoted as V π(s), is

V π(s) = Eπ[
∑
si

c(ai, si) | s0 = s, ai = π(si) ]

where expectation is weighted sum of cost of possible state trajectories times
their probability given π

• In Discounted Reward MDPs, expected discounted reward from s is

V π(s) = Eπ[
∑
si

γi r(ai, si) | s0 = s, ai = π(si)]
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Equivalence of (PO)MDPs

• Let the sign of a pomdp be positive if cost-based and negative if reward-based

• Let V πM(b) be expected cost (reward) from b in positive (negative) pomdp M

• Define equivalence of any two POMDPs as follows; assuming goal states are
absorbing, cost-free, and observable:

Definition 1. POMDPs R and M equivalent if have same set of non-goal states, and there are

constants α and β s.t. for every π and non-target bel b,

V
π
R (b) = αV

π
M(b) + β

with α > 0 if R and M have same sign, and α < 0 otherwise.

Intuition: If R and M are equivalent, they have same optimal policies and same
‘preferences’ over policies
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Equivalence Preserving Transformations

• A transformation that maps a pomdp M into M ′ is equivalence-preserving if
M and M ′ are equivalent.

• Three equivalence-preserving transformation among pomdp’s

1. R 7→ R+ C: addition of C (+ or −) to all rewards/costs
2. R 7→ kR: multiplication by k 6= 0 (+ or −) of rewards/costs
3. R 7→ R: elimination of discount factor by adding goal state t s.t.

Pa(t|s) = 1− γ , Pa(s′|s) = γPRa (s′|s) ; Oa(t|t) = 1 , Oa(s|t) = 0

Theorem 1. Let R be a discounted reward-based pomdp, and C a constant that
bounds all rewards in R from above; i.e. C > maxa,s r(a, s). Then, M = −R+ C
is a goal pomdp equivalent to R.
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Computation: Solving MDPs

Conditions that ensure existence of optimal policies and correctness (convergence)
of some of the methods we’ll see:

• For discounted MDPs, 0 < γ < 1, none needed as everything is bounded; e.g.
discounted cumulative reward no greater than C/1− γ, if r(a, s) ≤ C for all a, s

• For goal MDPs, absence of dead-ends assumed so that V ∗(s) 6=∞ for all s
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Basic Dynamic Programming Methods: Value Iteration (1)

• Greedy policy πV for V = V ∗ is optimal:

πV (s) = arg mina∈A(s)[c(s, a) +
∑
s′∈S

Pa(s′|s)V (s′)]

• Optimal V ∗ is unique solution to Bellman’s optimality equation for MDPs

V (s) = min
a∈A(s)

[c(s, a) +
∑
s′∈S

Pa(s′|s)V (s′)]

where V (s) = 0 for goal states s

• For discounted reward MDPs, Bellman equation is

V (s) = max
a∈A(s)

[r(s, a) + γ
∑
s′∈S

Pa(s′|s)V (s′)]
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Basic DP Methods: Value Iteration (2)

• Value Iteration finds V ∗ solving Bellman eq. by iterative procedure:

. Set V0 to arbitrary value function; e.g., V0(s) = 0 for all s

. Set Vi+1 to result of Bellman’s right hand side using Vi in place of V :

Vi+1(s) := min
a∈A(s)

[c(s, a) +
∑
s′∈S

Pa(s′|s)Vi(s′)]

• Vi 7→ V ∗ as i 7→ ∞

• V0(s) must be initialized to 0 for all goal states s
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(Parallel) Value Iteration and Asynchronous Value Iteration

• Value Iteration (VI) converges to optimal value function V ∗ asympotically

• Bellman eq. for discounted reward MDPs similar, but with max instead of min,
and sum multiplied by γ

• In practice, VI stopped when residual R = maxs |Vi+1(s)−Vi(s)| is small enough

• Resulting greedy policy πV has loss bounded by 2γR/1− γ

• Asynchronous Value Iteration is asynchronous version of VI, where states
updated in any order

• Asynchronous VI also converges to V ∗ when all states updated infinitely often;
it can be implemented with single V vector
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Policy Evaluation

• Expected cost of policy π from s to goal, V π(s), is weighted avg of cost of
state trajectories τ : s0, s1, . . . , times their probability given π

• Trajectory cost is
∑
i=0,∞ cost(π(si), si) and probability

∏
i=0,∞Pπ(si)(si+1|si)

• Expected costs V π(s) can also be characterized as solution to Bellman equation

V π(s) = c(a, s) +
∑
s′∈S

Pa(s′|s)V π(s′)

where a = π(s), and V π(s) = 0 for goal states

• This set of linear equations can be solved analytically, or by VI-like procedure

• Optimal expected cost V ∗(s) is minπ V π(s) and optimal policy is the arg min

• For discounted reward MDPs, all similar but with r(s, a) instead of c(a, s), max
instead of min, and sum discounted by γ
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Policy Iteration (Howard)

• Let Qπ(a, s) be expected cost from s when doing a first and then π

Qπ(a, s) = c(a, s) +
∑
s′∈S

Pa(s′|s)V π(s′)

• When Qπ(a, s) < Qπ(π(s), s), π strictly improved by changing π(s) to a

• Policy Iteration (PI) computes π∗ by seq. of evaluations and improvements

1. Starting with arbitrary policy π

2. Compute V π(s) for all s (evaluation)

3. Improve π by setting π(s) to a = arg mina∈A(s)Q
π(a, s) (improvement)

4. If π changed in 3, go back to 2, else finish

• PI finishes with π∗ after finite number of iterations, as # of policies is finite

H. Geffner, Course on Automated Planning, Rome, 7/2010 18



Dynamic Programming: The Curse of Dimensionality

• VI and PI need to deal with value vectors V of size |S|

• Linear programming can also be used to get V ∗ but O(|A||S|) constraints:

max
V

∑
s

V (s) subject to V (s) ≤ c(a, s) +
∑
s′
Pa(s

′|s)V (s
′
) for all a, s

with V (s) = 0 for goal states

• MDP problem is thus polynomial in S but exponential in # vars

• Moreover, this is not worst case; vectors of size |S| needed to get started!

Question: Can we do better?
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Dynamic Programming and Heuristic Search

• Heuristic search algorithms like A* and IDA* manage to solve optimally
problems with more than 1020 states, like Rubik’s Cube and the 15-puzzle

• For this, admissible heuristics (lower bounds) used to focus/prune search

• Can admissible heuristics be used for focusing updates in DP methods?

• Often states reachable with optimal policy from s0 much smaller than S

• Then convergence to V ∗ over all s not needed for optimality from s0

Theorem 2. If V is an admissible value function s.t. the residuals over the
states reachable with πV from s0 are all zero, then πV is an optimal policy from
s0 (i.e. it minimizes V π(s0))
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Learning Real Time A* (LRTA*) Revisited

1. Evaluate each action a in s as: Q(a, s) = c(a, s) + V (s′)

2. Apply action a that minimizes Q(a, s)

3. Update V (s) to Q(a, s)

4. Exit if s′ is goal, else go to 1 with s := s′

• LRTA* can be seen as asynchronous value iteration algorithm for deterministic
actions that takes advantage of theorem above (i.e. updates = DP updates)

• Convergence of LRTA* to V implies residuals along πV reachable states from
s0 are all zero

• Then 1) V = V ∗ along such states, 2) πV = π∗ from s0, but 3) V 6= V ∗ and
πV 6= π∗ over other states; yet this is irrelevant given s0
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Real Time Dynamic Programming (RTDP) for MDPs

RTDP is a generalization of LRTA* to MDPs due to (Barto et al 95); just adapt
Bellman equation used in the Eval step

1. Evaluate each action a applicable in s as

Q(a, s) = c(a, s) +
∑
s′∈S

Pa(s
′|s)V (s

′
)

2. Apply action a that minimizes Q(a, s)
3. Update V (s) to Q(a, s)
4. Observe resulting state s′

5. Exit if s′ is goal, else go to 1 with s := s′

Same properties as LRTA* but over MDPs: after repeated trials, greedy policy
eventually becomes optimal if V (s) initialized to admissible h(s)
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Find-and-Revise: A General DP + HS Scheme

• Let ResV (s) be residual for s given admissible value function V

• Optimal π for MDPs from s0 can be obtained for sufficiently small ε > 0:

1. Start with admissible V ; i.e. V ≤ V ∗
2. Repeat: find s reachable from πV & s0 with ResV (s) > ε, and Update it

3. Until no such states left

• V remains admissible (lower bound) after updates

• Number of iterations until convergence bounded by
∑
s∈S[V ∗(s)− V (s)]/ε

• Like in heuristic search, convergence achieved without visiting or updating
many of the states in S; LRTDP, LAO*, ILAO*, HDP, LDFS, etc. are algorithms
of this type
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POMDPs are MDPs over Belief Space

• Beliefs b are probability distributions over S

• An action a ∈ A(b) maps b into ba

ba(s) =
∑
s′∈S

Pa(s|s′)b(s′)

• The probability of observing o then is:

ba(o) =
∑
s∈S

Pa(o|s)ba(s)

• . . . and the new belief is

boa(s) = Pa(o|s)ba(s)/ba(o)
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RTDP for POMDPs

Since POMDPs are MDPs over belief space algorithm for POMDPs becomes

1. Evaluate each action a applicable in b as

Q(a, b) = c(a, b) +
∑
o∈O

ba(o)V (b
o
a)

2. Apply action a that minimizes Q(a, b)

3. Update V (b) to Q(a, b)
4. Observe o

5. Compute new belief state boa
6. Exit if boa is a final belief state, else set b to boa and go to 1

• Resulting algorithm, called RTDP-Bel, discretizes beliefs b for writing to and
reading from hash table

• RTDP-Bel competitive in quality and performance with Point-based POMDP
based algorithms that do not (see paper at IJCAI-09)
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Variations on RTDP : Reinforcement Learning

Q-learning is a model-free version of RTDP; Q-values initialized arbitrarily and
learned by experience

1. Apply action a that minimizes Q(a, s) with probability 1 − ε,
with probability ε, choose a randomly

2. Observe resulting state s′ and collect cost c

3. Update Q(a, s) to

Q(a, s) + α[c+ minaQ(a, s′)−Q(a, s)]

4. Exit if s′ is goal, else with s := s′ go to 1

• Q-learning converges asympotically to optimal Q-values, when all actions and
states visited infinitely often

• Q-learning solves MDPs optimally without model parameters (probabilities, costs)
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Variations on RTDP : Reinforcement Learning (2)

More familiar Q-learning algorithm formulated for discounted reward MDPs:

1. Apply action a that maximizes Q(a, s) with probability 1 − ε,
with probability ε, choose a randomly

2. Observe resulting state s′ and collect reward r

3. Update Q(a, s) to

Q(a, s) + α[r + γmaxaQ(a, s′) − Q(a, s)]

4. Exit if s′ is goal, else with s := s′ go to 1

• Q-values initialized arbitrarily

• This version solves discounted reward MDPs
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Why RL works? Intuitions

N-armed bandit problem: simpler problem without state:

• Choose repeatedly one of n actions a (levers)

• Get ‘stochastic’ reward rt at time t that depends on action chosen

• How to play to maximize reward in long term; e.g. 10000 plays?

• Need to find out value of actions (exploration) and then play best (exploitation)

• For this, choose ’greedy’ a that maximizes Qt(a) with probability 1− ε, where

. Average: Qt+1(a) = r1 + r2 + . . .+ rt+1/t+ 1

. Incremental: Qt+1(a) = Qt(a) + [rt+1 −Qt(a)]/(t+ 1)

. Recency Weighted Avg: Qt+1(a) = Qt(a) + α [rt+1 −Qt(a)]

• Last expression similar to the one for Q-learning, except for states . . .
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Monte Carlo RL Prediction and Learning

Assuming underlying discounted reward MDP with unknown pars:

• Eval policy π by sampling executions s0, s1, . . . ,

• For each state st visited, collect return Rt =
∑
k≥0 γ

kr(at+k, st+k)

• Approximate V π(st) to average of returns Rt)

• In order to learn control not just values, approx Qπ(a, st)
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Monte Carlo vs. TD Predictions (Sutton & Barto)

• Incremental Monte Carlo updates for prediction are

V (st) := V (st) + α[Rt − V (st)]

• TD Methods as used in Q-learning, bootstrap:

V (st) := V (st) + α[rt + γV (st+1)− V (st)]

• Other types of returns can be used as well; e.g. n-step return Rnt

V (st) := V (st) + α[rt + γrt+1 + · · ·+ γrt+n−1 + γnV (st+n)− V (st)]

• TD(λ), 0 ≤ λ ≤ 1, uses linear combination of returns Rnt for all n

V (st) := V (st) + α[Rλt − V (st)]

where Rλt = (1− λ)
∑
n=1,∞ λ

n−1Rnt
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