Course on Automated Planning: MDP & POMDP Planning;
Reinforcement Learning

Hector Geffner

ICREA & Universitat Pompeu Fabra
Barcelona, Spain

H. Geffner, Course on Automated Planning, Rome, 7/2010

Models, Languages, and Solvers

e A planner is a solver over a class of models; it takes a model description, and
computes the corresponding controller

Model —> | Planner | =—> Controller

e Many models, many solution forms: uncertainty, feedback, costs, . . .

e Models described in suitable planning languages (Strips, PDDL, PPDDL, . . .)
where states represent interpretations over the language.

H. Geffner, Course on Automated Planning, Rome, 7/2010 2

Planning with Markov Decision Processes: Goal MDPs

MDPs are fully observable, probabilistic state models:

e a state space S

e initial state sp € S

e aset G C 5 of goal states

e actions A(s) C A applicable in each state s € S

e transition probabilities P,(s’|s) for s € S and a € A(s)

e action costs c(a,s) > 0

— Solutions are functions (policies) mapping states into actions

— Optimal solutions minimize expected cost from s, to goal

H. Geffner, Course on Automated Planning, Rome, 7/2010

Discounted Reward Markov Decision Processes

Another common formulation of MDPs . . .

e a state space S

e initial state sp € S

e actions A(s) C A applicable in each state s € S

e transition probabilities P,(s’|s) for s € S and a € A(s)
e rewards r(a, s) positive or negative

e a discount factor 0 < v < 1 ; there is no goal

— Solutions are functions (policies) mapping states into actions

— Optimal solutions max expected discounted accumulated reward from s,

H. Geffner, Course on Automated Planning, Rome, 7/2010

Partially Observable MDPs: Goal POMDPs

POMDPs are partially observable, probabilistic state models:

e states s € S

e actions A(s) C A

e transition probabilities P,(s’|s) for s € S and a € A(s)
e initial belief state b,

e set of observable target states Sg

e action costs c(a,s) > 0

o sensor model given by probabilities P,(0|s), o € Obs

— Belief states are probability distributions over .S
— Solutions are policies that map belief states into actions

— Optimal policies minimize expected cost to go from b, to target bel state.

H. Geffner, Course on Automated Planning, Rome, 7/2010

Discounted Reward POMDPs

A common alternative formulation of POMDPs:

o states s € S

e actions A(s) C A

e transition probabilities P,(s’|s) for s € S and a € A(s)
e initial belief state b,

e sensor model given by probabilities P,(o|s), o € Obs
e rewards r(a, s) positive or negative

e discount factor 0 < v < 1 ; there is no goal

— Solutions are policies mapping states into actions

— Optimal solutions max expected discounted accumulated reward from b

H. Geffner, Course on Automated Planning, Rome, 7/2010

Example: Omelette

e Representation in GPT (incomp

Action:
Precond:
Effects:

Action:
Precond:
Effects:

Action:
Effect:

lete):

grab — egg()

—holding

holding := true

good? := (true 0.5 ; false 0.5)

clean(bowl:BOWL)
—holding
ngood(bowl) := 0 , nbad(bowl) := 0

inspect(bowl : BOW L)
obs(nbad(bowl) > 0)

e Performance of resulting controller (2000 trials in 192 sec)

Omelette Problem

T T T T
automatic controller ——
manual controller ------- 1

200

H. Geffner, Course on Automated Planning, Rome, 7/2010

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Learning Trials

Example: Hell or Paradise; Info Gathering

e initial position is 6

e goal and penalty at either 0 or 4; which one not known

® noisy map at posAiEion 9
ction:
Precond:
Effects:

Action:
Effects:

Costs:

Ramif:
Init:

Goal:

\nm‘mw

go — up() ; same for down,left,right
FREE(UP(pos))
pos := UP(pos)

*
pos = pos9 — obs(ptr)
pos = goal — obs(goal)
pos = penalty — 50.0

true — ptr = (goal p ; penalty 1 — p)

pos = pos6 ; goal = posO V goal = pos4

penalty = posO V penalty = posd ; goal # penalty
pos = goal

Information Gathering Problem
100 T T T T

90
80
70
60

TTTT
niaan

30 -
20
10 F

10 20 30 40 50 60 70 80 90
Learning Trials

H. Geffner, Course on Automated Planning, Rome, 7/2010

Examples: Robot Navigation as a POMDP

e states: [x,y;0)]
e actions rotate +90 and —90, move

e costs: uniform except when hitting walls

e transitions: e.g, P..c([2,3;90]|[2,2;90]) = .7, if [2,3] is empty, . . .

e initial by: e.g,, uniform over set of states
e goal GG: cell marked G

e observations: presence or absence of wall with probs that depend on position of
robot, walls, etc

H. Geffner, Course on Automated Planning, Rome, 7/2010 9

Expected Cost/Reward of Policy (MDPs)

e In Goal MDPs, expected cost of policy 7 starting in s, denoted as V" (s), is

V7T(s) = EW[ZC(CLZ', s;) | so=s,a; =m(s;)]

Sq

where expectation is weighted sum of cost of possible state trajectories times
their probability given 7

e In Discounted Reward MDPs, expected discounted reward from s is

V7T(s) = EW[ZWir(ai, si) | so =s,a; = mw(s;)]

H. Geffner, Course on Automated Planning, Rome, 7/2010 10

Equivalence of (PO)MDPs

e Let the sign of a POMDP be positive if cost-based and negative if reward-based
o Let V[, (b) be expected cost (reward) from b in positive (negative) POMDP M

e Define equivalence of any two POMDPs as follows; assuming goal states are
absorbing, cost-free, and observable:

Definition 1. POMDPs R and M equivalent if have same set of non-goal states, and there are
constants o and 3 s.t. for every and non-target bel b,

Ve (b) = aVy (b) + 8

with o« > 0 if R and M have same sign, and o < O otherwise.

Intuition: If R and M are equivalent, they have same optimal policies and same
‘preferences’ over policies

H. Geffner, Course on Automated Planning, Rome, 7/2010 11

Equivalence Preserving Transformations

e A transformation that maps a POMDP M into M’ is equivalence-preserving if
M and M’ are equivalent.

e Three equivalence-preserving transformation among POMDP's

1. R— R+ C: addition of C' (4 or —) to all rewards/costs

2. R+ kR: multiplication by k # 0 (+ or —) of rewards/costs
3. R — R: elimination of discount factor by adding goal state ¢ s.t.

P,(tls) =1 —~, P,(s'|s) = vPE(s'|s) ; Ou(t|t) =1, Ou(s|t) =0

Theorem 1. Let R be a discounted reward-based PoMDP, and C a constant that

bounds all rewards in R from above; i.e. C' > max, s7(a,s). Then, M = —-R+C
Is a goal POMDP equivalent to R.

H. Geffner, Course on Automated Planning, Rome, 7/2010 12

Computation: Solving MDPs

Conditions that ensure existence of optimal policies and correctness (convergence)
of some of the methods we'll see:

e For discounted MDPs, 0 < v < 1, none needed as everything is bounded; e.g.
discounted cumulative reward no greater than C'/1 —~, if r(a,s) < C for all a, s

e For goal MDPs, absence of dead-ends assumed so that V*(s) # oo for all s

H. Geffner, Course on Automated Planning, Rome, 7/2010 13

Basic Dynamic Programming Methods: Value Iteration (1)

e Greedy policy 7y for V = V* is optimal:

Ty (s) = arg min, e 4, [c(s, a) + Z P,(s'|s)V(s")]
s'eS

e Optimal V* is unique solution to Bellman’s optimality equation for MDPs

Vis) = ag}j?s)[C(S» a) + ; Fo(s'|s)V (s')]

where V' (s) = 0 for goal states s

e For discounted reward MDPs, Bellman equation is

V(e) = i r(s.0) +7 3 RV ()

H. Geffner, Course on Automated Planning, Rome, 7/2010

14

Basic DP Methods: Value Iteration (2)

e Value lteration finds V* solving Bellman eq. by iterative procedure:

> Set V| to arbitrary value function; e.g., Vi(s) = 0 for all s

> Set V;1 to result of Bellman's right hand side using V; in place of V:

Vi = mi : P, (s'|s)V;(s'
41(s) = min [e(s a>+£ (']s)Vi(s')

o Vi—V*¥asi— o0

e V5(s) must be initialized to O for all goal states s

H. Geffner, Course on Automated Planning, Rome, 7/2010

15

(Parallel) Value Iteration and Asynchronous Value lteration

e Value Iteration (VI) converges to optimal value function V* asympotically

e Bellman eq. for discounted reward MDPs similar, but with max instead of min,
and sum multiplied by ~y

e In practice, VI stopped when residual R = max; |V;1(s) — V;(s)| is small enough
e Resulting greedy policy 7y has loss bounded by 2vR/1 — ~

e Asynchronous Value lteration is asynchronous version of VI, where states
updated in any order

e Asynchronous VI also converges to VV* when all states updated infinitely often;
it can be implemented with single V' vector

H. Geffner, Course on Automated Planning, Rome, 7/2010 16

Policy Evaluation

o Expected cost of policy 7 from s to goal, V7 (s), is weighted avg of cost of
state trajectories 7 : sg, S1, ..., times their probability given 7

e Trajectory costis) ,_, cost(m(s;),s;) and probability [[,_, . Pr(s,)(Si+1]si)

e Expected costs V™ (s) can also be characterized as solution to Bellman equation

VT(s) = cla,s) + > Pa(s']s)V7(s")

s'es
where a = 7(s), and V™ (s) = 0 for goal states
e This set of linear equations can be solved analytically, or by VI-like procedure
e Optimal expected cost VV*(s) is min, V™ (s) and optimal policy is the arg min

e For discounted reward MDPs, all similar but with (s, a) instead of ¢(a, s), max
instead of min, and sum discounted by

H. Geffner, Course on Automated Planning, Rome, 7/2010 17

Policy Iteration (Howard)

o Let Q™ (a,s) be expected cost from s when doing a first and then 7

Q" (a,s) = ca,s) + Y _ Pa(s'|s)V7(s)

s'eS

e When Q™ (a,s) < Q™(w(s),s), m strictly improved by changing 7(s) to a

e Policy Iteration (Pl) computes 7* by seq. of evaluations and improvements

Starting with arbitrary policy 7

Compute V™ (s) for all s (evaluation)

Improve 7 by setting 7(s) to a = arg min, ¢ 45 Q" (a, s) (improvement)
If = changed in 3, go back to 2, else finish

==

e Pl finishes with 7* after finite number of iterations, as # of policies is finite

H. Geffner, Course on Automated Planning, Rome, 7/2010 18

Dynamic Programming: The Curse of Dimensionality

e VI and PI need to deal with value vectors V' of size |S]

e Linear programming can also be used to get V* but O(|A||S|) constraints:

j < ’ ") for all
m‘;gxz; V(s) subjectto V(s) < c(a,s) + Z P,(s|s)V (s') for all a, s

S

with V' (s) = 0 for goal states
e MDP problem is thus polynomial in .S but exponential in # vars

e Moreover, this is not worst case; vectors of size |S| needed to get started!

Question: Can we do better?

H. Geffner, Course on Automated Planning, Rome, 7/2010

19

Dynamic Programming and Heuristic Search

e Heuristic search algorithms like A* and IDA* manage to solve optimally
problems with more than 10?° states, like Rubik's Cube and the 15-puzzle

e For this, admissible heuristics (lower bounds) used to focus/prune search

e Can admissible heuristics be used for focusing updates in DP methods?

e Often states reachable with optimal policy from sy much smaller than S

e Then convergence to VV* over all s not needed for optimality from s
Theorem 2. [f V is an admissible value function s.t. the residuals over the

states reachable with my from sq are all zero, then my is an optimal policy from
so (i.e. it minimizes V™ (sq))

H. Geffner, Course on Automated Planning, Rome, 7/2010 20

Learning Real Time A* (LRTA*) Revisited

1. Evaluate each action a in s as: Q(a,s) = c(a,s) + V(s')
2. Apply action a that minimizes Q(a, s)
3. Update V(s) to Q(a, s)

4. Exit if s’ is goal, else go to 1 with s:= s’

e LRTA* can be seen as asynchronous value iteration algorithm for deterministic
actions that takes advantage of theorem above (i.e. updates = DP updates)

e Convergence of LRTA* to V implies residuals along 7y reachable states from
so are all zero

e Then 1) V = V* along such states, 2) my = 7* from sg, but 3) V £ V* and
my # 7 over other states; yet this is irrelevant given s

H. Geffner, Course on Automated Planning, Rome, 7/2010 21

Real Time Dynamic Programming (RTDP) for MDPs

RTDP is a generalization of LRTA* to MDPs due to (Barto et al 95); just adapt
Bellman equation used in the Eval step

1. Evaluate each action a applicable in s as

Q(a,s) =c(a,s) + Y Pu(s'|s)V(s)

s'es

Apply action a that minimizes Q(a, s)
Update V (s) to Q(a, s)
Observe resulting state s’

ok

Exit if s’ is goal, else go to 1 with s := s’

Same properties as LRTA* but over MDPs: after repeated trials, greedy policy
eventually becomes optimal if V' (s) initialized to admissible A(s)

H. Geffner, Course on Automated Planning, Rome, 7/2010 22

Find-and-Revise: A General DP + HS Scheme

o Let Resy(s) be residual for s given admissible value function V

e Optimal 7 for MDPs from sy can be obtained for sufficiently small ¢ > 0:

1. Start with admissible V:ie. V < V*
2. Repeat: find s reachable from 7y & sg with Resy(s) > €, and Update it
3. Until no such states left

e V remains admissible (lower bound) after updates
e Number of iterations until convergence bounded by > . _o[V*(s) — V(s)]/e

e Like in heuristic search, convergence achieved without visiting or updating
many of the states in S; LRTDP, LAO*, ILAO*, HDP, LDFS, etc. are algorithms
of this type

H. Geffner, Course on Automated Planning, Rome, 7/2010 23

POMDPs are MDPs over Belief Space

e Beliefs b are probability distributions over S

e An action a € A(b) maps b into b,

ba(s) = > Pu(s|s")b(s")

s'es
e The probability of observing o then is:

ba(0) = Z P,(0|s)ba(s)

seS

e ...and the new belief is

ba(s) = Pa(0]s)ba(s)/ba(0)

H. Geffner, Course on Automated Planning, Rome, 7/2010

24

RTDP for POMDPs
Since POMDPs are MDPs over belief space algorithm for POMDPs becomes

1. Evaluate each action a applicable in b as

Q(a,b) = c(a,b) +) ba(0)V(by)

ocO

Apply action a that minimizes Q(a, b)
Update V (b) to Q(a, b)

Observe o

Compute new belief state b

oG A W N

Exit if b) is a final belief state, else set b to b}, and go to 1

e Resulting algorithm, called RTDP-Bel, discretizes beliefs b for writing to and

reading from hash table

e RTDP-Bel competitive in quality and performance with Point-based POMDP

based algorithms that do not (see paper at 1JCAI-09)

H. Geffner, Course on Automated Planning, Rome, 7/2010

25

Variations on RTDP : Reinforcement Learning

Q-learning is a model-free version of RTDP; Q-values initialized arbitrarily and
learned by experience

1. Apply action a that minimizes Q(a, s) with probability 1 — e,
with probability €, choose a randomly

2. Observe resulting state s’ and collect cost ¢

3. Update Q(a, s) to

Q(a,s) + alc+ min,Q(a, s') — Q(a, s)]

4. Exit if s’ is goal, else with s := s’ goto 1

e Q-learning converges asympotically to optimal Q-values, when all actions and
states visited infinitely often

o Q-learning solves MDPs optimally without model parameters (probabilities, costs)

H. Geffner, Course on Automated Planning, Rome, 7/2010 26

Variations on RTDP : Reinforcement Learning (2)

More familiar Q-learning algorithm formulated for discounted reward MDPs:

1. Apply action a that maximizes Q(a, s) with probability 1 — e,
with probability €, choose a randomly

2. Observe resulting state s’ and collect reward r

3. Update Q(a,s) to

Q(a,s) + afr + ymax,Q(a,s’) — Q(a,s)]

4. Exit if s’ is goal, else with s := s’ goto 1

e Q-values initialized arbitrarily

e This version solves discounted reward MDPs

H. Geffner, Course on Automated Planning, Rome, 7/2010

27

Why RL works? Intuitions

N-armed bandit problem: simpler problem without state:

o Choose repeatedly one of n actions a (levers)
e Get ‘stochastic’ reward r; at time ¢ that depends on action chosen

e How to play to maximize reward in long term; e.g. 10000 plays?

e Need to find out value of actions (exploration) and then play best (exploitation)

e For this, choose 'greedy’ a that maximizes Q;(a) with probability 1 — ¢, where

> Average: Q¢i1(a) =r1+ro+...+11/t+1
> Incremental: Q;11(a) = Q¢(a) + [rev1 — Qe(a)]/(t+ 1)
> Recency Weighted Avg: Q;11(a) = Q¢(a) + alriii — Qia)]

e Last expression similar to the one for Q-learning, except for states . . .

H. Geffner, Course on Automated Planning, Rome, 7/2010

28

Monte Carlo RL Prediction and Learning

Assuming underlying discounted reward MDP with unknown pars:

e Eval policy m by sampling executions sg, sq, .. .,
o For each state s; visited, collect return Ry = >, < o V"1 (ai1r, St+k)
o Approximate V7 (s;) to average of returns R;)

e In order to learn control not just values, approx Q™ (a, s¢)

H. Geffner, Course on Automated Planning, Rome, 7/2010

29

Monte Carlo vs. TD Predictions (Sutton & Barto)
e Incremental Monte Carlo updates for prediction are

V(St) = V(St) —+ Oé[Rt — V(St)]

e TD Methods as used in Q-learning, bootstrap:

Vi(se) :=V(se) + alre + vV (se11) — V(se)]

e Other types of returns can be used as well; e.g. n-step return R}

V(s) ==V (se) +alri +yripr + - +7pn—1 + 7"V (St4n) — V(s4)]

o TD(X), 0 <\ <1, uses linear combination of returns R} for all n
V(s = V(se) + a[R) — V(sy)]

where R = (1 —\) 3" An—1Rn

n=1,00

H. Geffner, Course on Automated Planning, Rome, 7/2010

30

