
Course on Automated Planning: MDP & POMDP Planning;
Reinforcement Learning

Hector Geffner
ICREA & Universitat Pompeu Fabra

Barcelona, Spain

H. Geffner, Course on Automated Planning, Rome, 7/2010 1

Models, Languages, and Solvers

• A planner is a solver over a class of models; it takes a model description, and
computes the corresponding controller

Model =⇒ Planner =⇒ Controller

• Many models, many solution forms: uncertainty, feedback, costs, . . .

• Models described in suitable planning languages (Strips, PDDL, PPDDL, . . .)
where states represent interpretations over the language.

H. Geffner, Course on Automated Planning, Rome, 7/2010 2

Planning with Markov Decision Processes: Goal MDPs

MDPs are fully observable, probabilistic state models:

• a state space S

• initial state s0 ∈ S

• a set G ⊆ S of goal states

• actions A(s) ⊆ A applicable in each state s ∈ S

• transition probabilities Pa(s′|s) for s ∈ S and a ∈ A(s)

• action costs c(a, s) > 0

– Solutions are functions (policies) mapping states into actions

– Optimal solutions minimize expected cost from s0 to goal

H. Geffner, Course on Automated Planning, Rome, 7/2010 3

Discounted Reward Markov Decision Processes

Another common formulation of MDPs . . .

• a state space S

• initial state s0 ∈ S

• actions A(s) ⊆ A applicable in each state s ∈ S

• transition probabilities Pa(s′|s) for s ∈ S and a ∈ A(s)

• rewards r(a, s) positive or negative

• a discount factor 0 < γ < 1 ; there is no goal

– Solutions are functions (policies) mapping states into actions

– Optimal solutions max expected discounted accumulated reward from s0

H. Geffner, Course on Automated Planning, Rome, 7/2010 4

Partially Observable MDPs: Goal POMDPs

POMDPs are partially observable, probabilistic state models:

• states s ∈ S

• actions A(s) ⊆ A

• transition probabilities Pa(s′|s) for s ∈ S and a ∈ A(s)

• initial belief state b0

• set of observable target states SG

• action costs c(a, s) > 0

• sensor model given by probabilities Pa(o|s), o ∈ Obs

– Belief states are probability distributions over S

– Solutions are policies that map belief states into actions

– Optimal policies minimize expected cost to go from b0 to target bel state.

H. Geffner, Course on Automated Planning, Rome, 7/2010 5

Discounted Reward POMDPs

A common alternative formulation of POMDPs:

• states s ∈ S

• actions A(s) ⊆ A

• transition probabilities Pa(s′|s) for s ∈ S and a ∈ A(s)

• initial belief state b0

• sensor model given by probabilities Pa(o|s), o ∈ Obs

• rewards r(a, s) positive or negative

• discount factor 0 < γ < 1 ; there is no goal

– Solutions are policies mapping states into actions

– Optimal solutions max expected discounted accumulated reward from b0

H. Geffner, Course on Automated Planning, Rome, 7/2010 6

Example: Omelette

• Representation in GPT (incomplete):

Action: grab− egg()
Precond: ¬holding
Effects: holding := true

good? := (true 0.5 ; false 0.5)

Action: clean(bowl:BOWL)
Precond: ¬holding
Effects: ngood(bowl) := 0 , nbad(bowl) := 0

Action: inspect(bowl : BOWL)
Effect: obs(nbad(bowl) > 0)

• Performance of resulting controller (2000 trials in 192 sec)

15

20

25

30

35

40

45

50

55

60

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Learning Trials

Omelette Problem

automatic controller
manual controller

H. Geffner, Course on Automated Planning, Rome, 7/2010 7

Example: Hell or Paradise; Info Gathering

• initial position is 6

• goal and penalty at either 0 or 4; which one not known

• noisy map at position 9

0 1 2 43

5

6

7 8 9

Action: go− up() ; same for down,left,right
Precond: free(up(pos))
Effects: pos := up(pos)

Action: ∗
Effects: pos = pos9 → obs(ptr)

pos = goal → obs(goal)
Costs: pos = penalty → 50.0

Ramif: true → ptr = (goal p ; penalty 1− p)
Init: pos = pos6 ; goal = pos0 ∨ goal = pos4

penalty = pos0 ∨ penalty = pos4 ; goal 6= penalty
Goal: pos = goal

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90
Learning Trials

Information Gathering Problem

p = 1.0
p = 0.9
p = 0.8
p = 0.7

H. Geffner, Course on Automated Planning, Rome, 7/2010 8

Examples: Robot Navigation as a POMDP

• states: [x, y; θ]

• actions rotate +90 and −90, move

• costs: uniform except when hitting walls

• transitions: e.g, Pmove([2, 3; 90] | [2, 2; 90]) = .7, if [2, 3] is empty, . . .

G

• initial b0: e.g,, uniform over set of states

• goal G: cell marked G

• observations: presence or absence of wall with probs that depend on position of
robot, walls, etc

H. Geffner, Course on Automated Planning, Rome, 7/2010 9

Expected Cost/Reward of Policy (MDPs)

• In Goal MDPs, expected cost of policy π starting in s, denoted as V π(s), is

V π(s) = Eπ[
∑
si

c(ai, si) | s0 = s, ai = π(si)]

where expectation is weighted sum of cost of possible state trajectories times
their probability given π

• In Discounted Reward MDPs, expected discounted reward from s is

V π(s) = Eπ[
∑
si

γi r(ai, si) | s0 = s, ai = π(si)]

H. Geffner, Course on Automated Planning, Rome, 7/2010 10

Equivalence of (PO)MDPs

• Let the sign of a pomdp be positive if cost-based and negative if reward-based

• Let V πM(b) be expected cost (reward) from b in positive (negative) pomdp M

• Define equivalence of any two POMDPs as follows; assuming goal states are
absorbing, cost-free, and observable:

Definition 1. POMDPs R and M equivalent if have same set of non-goal states, and there are

constants α and β s.t. for every π and non-target bel b,

V
π
R (b) = αV

π
M(b) + β

with α > 0 if R and M have same sign, and α < 0 otherwise.

Intuition: If R and M are equivalent, they have same optimal policies and same
‘preferences’ over policies

H. Geffner, Course on Automated Planning, Rome, 7/2010 11

Equivalence Preserving Transformations

• A transformation that maps a pomdp M into M ′ is equivalence-preserving if
M and M ′ are equivalent.

• Three equivalence-preserving transformation among pomdp’s

1. R 7→ R+ C: addition of C (+ or −) to all rewards/costs
2. R 7→ kR: multiplication by k 6= 0 (+ or −) of rewards/costs
3. R 7→ R: elimination of discount factor by adding goal state t s.t.

Pa(t|s) = 1− γ , Pa(s′|s) = γPRa (s′|s) ; Oa(t|t) = 1 , Oa(s|t) = 0

Theorem 1. Let R be a discounted reward-based pomdp, and C a constant that
bounds all rewards in R from above; i.e. C > maxa,s r(a, s). Then, M = −R+ C
is a goal pomdp equivalent to R.

H. Geffner, Course on Automated Planning, Rome, 7/2010 12

Computation: Solving MDPs

Conditions that ensure existence of optimal policies and correctness (convergence)
of some of the methods we’ll see:

• For discounted MDPs, 0 < γ < 1, none needed as everything is bounded; e.g.
discounted cumulative reward no greater than C/1− γ, if r(a, s) ≤ C for all a, s

• For goal MDPs, absence of dead-ends assumed so that V ∗(s) 6=∞ for all s

H. Geffner, Course on Automated Planning, Rome, 7/2010 13

Basic Dynamic Programming Methods: Value Iteration (1)

• Greedy policy πV for V = V ∗ is optimal:

πV (s) = arg mina∈A(s)[c(s, a) +
∑
s′∈S

Pa(s′|s)V (s′)]

• Optimal V ∗ is unique solution to Bellman’s optimality equation for MDPs

V (s) = min
a∈A(s)

[c(s, a) +
∑
s′∈S

Pa(s′|s)V (s′)]

where V (s) = 0 for goal states s

• For discounted reward MDPs, Bellman equation is

V (s) = max
a∈A(s)

[r(s, a) + γ
∑
s′∈S

Pa(s′|s)V (s′)]

H. Geffner, Course on Automated Planning, Rome, 7/2010 14

Basic DP Methods: Value Iteration (2)

• Value Iteration finds V ∗ solving Bellman eq. by iterative procedure:

. Set V0 to arbitrary value function; e.g., V0(s) = 0 for all s

. Set Vi+1 to result of Bellman’s right hand side using Vi in place of V :

Vi+1(s) := min
a∈A(s)

[c(s, a) +
∑
s′∈S

Pa(s′|s)Vi(s′)]

• Vi 7→ V ∗ as i 7→ ∞

• V0(s) must be initialized to 0 for all goal states s

H. Geffner, Course on Automated Planning, Rome, 7/2010 15

(Parallel) Value Iteration and Asynchronous Value Iteration

• Value Iteration (VI) converges to optimal value function V ∗ asympotically

• Bellman eq. for discounted reward MDPs similar, but with max instead of min,
and sum multiplied by γ

• In practice, VI stopped when residual R = maxs |Vi+1(s)−Vi(s)| is small enough

• Resulting greedy policy πV has loss bounded by 2γR/1− γ

• Asynchronous Value Iteration is asynchronous version of VI, where states
updated in any order

• Asynchronous VI also converges to V ∗ when all states updated infinitely often;
it can be implemented with single V vector

H. Geffner, Course on Automated Planning, Rome, 7/2010 16

Policy Evaluation

• Expected cost of policy π from s to goal, V π(s), is weighted avg of cost of
state trajectories τ : s0, s1, . . . , times their probability given π

• Trajectory cost is
∑
i=0,∞ cost(π(si), si) and probability

∏
i=0,∞Pπ(si)(si+1|si)

• Expected costs V π(s) can also be characterized as solution to Bellman equation

V π(s) = c(a, s) +
∑
s′∈S

Pa(s′|s)V π(s′)

where a = π(s), and V π(s) = 0 for goal states

• This set of linear equations can be solved analytically, or by VI-like procedure

• Optimal expected cost V ∗(s) is minπ V π(s) and optimal policy is the arg min

• For discounted reward MDPs, all similar but with r(s, a) instead of c(a, s), max
instead of min, and sum discounted by γ

H. Geffner, Course on Automated Planning, Rome, 7/2010 17

Policy Iteration (Howard)

• Let Qπ(a, s) be expected cost from s when doing a first and then π

Qπ(a, s) = c(a, s) +
∑
s′∈S

Pa(s′|s)V π(s′)

• When Qπ(a, s) < Qπ(π(s), s), π strictly improved by changing π(s) to a

• Policy Iteration (PI) computes π∗ by seq. of evaluations and improvements

1. Starting with arbitrary policy π

2. Compute V π(s) for all s (evaluation)

3. Improve π by setting π(s) to a = arg mina∈A(s)Q
π(a, s) (improvement)

4. If π changed in 3, go back to 2, else finish

• PI finishes with π∗ after finite number of iterations, as # of policies is finite

H. Geffner, Course on Automated Planning, Rome, 7/2010 18

Dynamic Programming: The Curse of Dimensionality

• VI and PI need to deal with value vectors V of size |S|

• Linear programming can also be used to get V ∗ but O(|A||S|) constraints:

max
V

∑
s

V (s) subject to V (s) ≤ c(a, s) +
∑
s′
Pa(s

′|s)V (s
′
) for all a, s

with V (s) = 0 for goal states

• MDP problem is thus polynomial in S but exponential in # vars

• Moreover, this is not worst case; vectors of size |S| needed to get started!

Question: Can we do better?

H. Geffner, Course on Automated Planning, Rome, 7/2010 19

Dynamic Programming and Heuristic Search

• Heuristic search algorithms like A* and IDA* manage to solve optimally
problems with more than 1020 states, like Rubik’s Cube and the 15-puzzle

• For this, admissible heuristics (lower bounds) used to focus/prune search

• Can admissible heuristics be used for focusing updates in DP methods?

• Often states reachable with optimal policy from s0 much smaller than S

• Then convergence to V ∗ over all s not needed for optimality from s0

Theorem 2. If V is an admissible value function s.t. the residuals over the
states reachable with πV from s0 are all zero, then πV is an optimal policy from
s0 (i.e. it minimizes V π(s0))

H. Geffner, Course on Automated Planning, Rome, 7/2010 20

Learning Real Time A* (LRTA*) Revisited

1. Evaluate each action a in s as: Q(a, s) = c(a, s) + V (s′)

2. Apply action a that minimizes Q(a, s)

3. Update V (s) to Q(a, s)

4. Exit if s′ is goal, else go to 1 with s := s′

• LRTA* can be seen as asynchronous value iteration algorithm for deterministic
actions that takes advantage of theorem above (i.e. updates = DP updates)

• Convergence of LRTA* to V implies residuals along πV reachable states from
s0 are all zero

• Then 1) V = V ∗ along such states, 2) πV = π∗ from s0, but 3) V 6= V ∗ and
πV 6= π∗ over other states; yet this is irrelevant given s0

H. Geffner, Course on Automated Planning, Rome, 7/2010 21

Real Time Dynamic Programming (RTDP) for MDPs

RTDP is a generalization of LRTA* to MDPs due to (Barto et al 95); just adapt
Bellman equation used in the Eval step

1. Evaluate each action a applicable in s as

Q(a, s) = c(a, s) +
∑
s′∈S

Pa(s
′|s)V (s

′
)

2. Apply action a that minimizes Q(a, s)
3. Update V (s) to Q(a, s)
4. Observe resulting state s′

5. Exit if s′ is goal, else go to 1 with s := s′

Same properties as LRTA* but over MDPs: after repeated trials, greedy policy
eventually becomes optimal if V (s) initialized to admissible h(s)

H. Geffner, Course on Automated Planning, Rome, 7/2010 22

Find-and-Revise: A General DP + HS Scheme

• Let ResV (s) be residual for s given admissible value function V

• Optimal π for MDPs from s0 can be obtained for sufficiently small ε > 0:

1. Start with admissible V ; i.e. V ≤ V ∗
2. Repeat: find s reachable from πV & s0 with ResV (s) > ε, and Update it

3. Until no such states left

• V remains admissible (lower bound) after updates

• Number of iterations until convergence bounded by
∑
s∈S[V ∗(s)− V (s)]/ε

• Like in heuristic search, convergence achieved without visiting or updating
many of the states in S; LRTDP, LAO*, ILAO*, HDP, LDFS, etc. are algorithms
of this type

H. Geffner, Course on Automated Planning, Rome, 7/2010 23

POMDPs are MDPs over Belief Space

• Beliefs b are probability distributions over S

• An action a ∈ A(b) maps b into ba

ba(s) =
∑
s′∈S

Pa(s|s′)b(s′)

• The probability of observing o then is:

ba(o) =
∑
s∈S

Pa(o|s)ba(s)

• . . . and the new belief is

boa(s) = Pa(o|s)ba(s)/ba(o)

H. Geffner, Course on Automated Planning, Rome, 7/2010 24

RTDP for POMDPs

Since POMDPs are MDPs over belief space algorithm for POMDPs becomes

1. Evaluate each action a applicable in b as

Q(a, b) = c(a, b) +
∑
o∈O

ba(o)V (b
o
a)

2. Apply action a that minimizes Q(a, b)

3. Update V (b) to Q(a, b)
4. Observe o

5. Compute new belief state boa
6. Exit if boa is a final belief state, else set b to boa and go to 1

• Resulting algorithm, called RTDP-Bel, discretizes beliefs b for writing to and
reading from hash table

• RTDP-Bel competitive in quality and performance with Point-based POMDP
based algorithms that do not (see paper at IJCAI-09)

H. Geffner, Course on Automated Planning, Rome, 7/2010 25

Variations on RTDP : Reinforcement Learning

Q-learning is a model-free version of RTDP; Q-values initialized arbitrarily and
learned by experience

1. Apply action a that minimizes Q(a, s) with probability 1 − ε,
with probability ε, choose a randomly

2. Observe resulting state s′ and collect cost c

3. Update Q(a, s) to

Q(a, s) + α[c+ minaQ(a, s′)−Q(a, s)]

4. Exit if s′ is goal, else with s := s′ go to 1

• Q-learning converges asympotically to optimal Q-values, when all actions and
states visited infinitely often

• Q-learning solves MDPs optimally without model parameters (probabilities, costs)

H. Geffner, Course on Automated Planning, Rome, 7/2010 26

Variations on RTDP : Reinforcement Learning (2)

More familiar Q-learning algorithm formulated for discounted reward MDPs:

1. Apply action a that maximizes Q(a, s) with probability 1 − ε,
with probability ε, choose a randomly

2. Observe resulting state s′ and collect reward r

3. Update Q(a, s) to

Q(a, s) + α[r + γmaxaQ(a, s′) − Q(a, s)]

4. Exit if s′ is goal, else with s := s′ go to 1

• Q-values initialized arbitrarily

• This version solves discounted reward MDPs

H. Geffner, Course on Automated Planning, Rome, 7/2010 27

Why RL works? Intuitions

N-armed bandit problem: simpler problem without state:

• Choose repeatedly one of n actions a (levers)

• Get ‘stochastic’ reward rt at time t that depends on action chosen

• How to play to maximize reward in long term; e.g. 10000 plays?

• Need to find out value of actions (exploration) and then play best (exploitation)

• For this, choose ’greedy’ a that maximizes Qt(a) with probability 1− ε, where

. Average: Qt+1(a) = r1 + r2 + . . .+ rt+1/t+ 1

. Incremental: Qt+1(a) = Qt(a) + [rt+1 −Qt(a)]/(t+ 1)

. Recency Weighted Avg: Qt+1(a) = Qt(a) + α [rt+1 −Qt(a)]

• Last expression similar to the one for Q-learning, except for states . . .

H. Geffner, Course on Automated Planning, Rome, 7/2010 28

Monte Carlo RL Prediction and Learning

Assuming underlying discounted reward MDP with unknown pars:

• Eval policy π by sampling executions s0, s1, . . . ,

• For each state st visited, collect return Rt =
∑
k≥0 γ

kr(at+k, st+k)

• Approximate V π(st) to average of returns Rt)

• In order to learn control not just values, approx Qπ(a, st)

H. Geffner, Course on Automated Planning, Rome, 7/2010 29

Monte Carlo vs. TD Predictions (Sutton & Barto)

• Incremental Monte Carlo updates for prediction are

V (st) := V (st) + α[Rt − V (st)]

• TD Methods as used in Q-learning, bootstrap:

V (st) := V (st) + α[rt + γV (st+1)− V (st)]

• Other types of returns can be used as well; e.g. n-step return Rnt

V (st) := V (st) + α[rt + γrt+1 + · · ·+ γrt+n−1 + γnV (st+n)− V (st)]

• TD(λ), 0 ≤ λ ≤ 1, uses linear combination of returns Rnt for all n

V (st) := V (st) + α[Rλt − V (st)]

where Rλt = (1− λ)
∑
n=1,∞ λ

n−1Rnt

H. Geffner, Course on Automated Planning, Rome, 7/2010 30

