Course on Automated Planning: MDP & POMDP Planning; Reinforcement Learning

Hector Geffner ICREA & Universitat Pompeu Fabra Barcelona, Spain

H. Geffner, Course on Automated Planning, Rome, 7/2010

Models, Languages, and Solvers

• A **planner** is a **solver over a class of models;** it takes a model description, and computes the corresponding controller

$$Model \Longrightarrow | Planner | \Longrightarrow Controller$$

- Many models, many solution forms: uncertainty, feedback, costs, . . .
- Models described in suitable planning languages (Strips, PDDL, PPDDL, ...) where states represent interpretations over the language.

Planning with Markov Decision Processes: Goal MDPs

MDPs are fully observable, probabilistic state models:

- $\bullet\,$ a state space S
- initial state $s_0 \in S$
- a set $G \subseteq S$ of goal states
- actions $A(s) \subseteq A$ applicable in each state $s \in S$
- transition probabilities $P_a(s'|s)$ for $s \in S$ and $a \in A(s)$
- action costs c(a,s) > 0
- Solutions are functions (policies) mapping states into actions
- Optimal solutions minimize expected cost from s_0 to goal

Discounted Reward Markov Decision Processes

Another common formulation of MDPs . . .

- \bullet a state space S
- initial state $s_0 \in S$
- actions $A(s) \subseteq A$ applicable in each state $s \in S$
- transition probabilities $P_a(s'|s)$ for $s \in S$ and $a \in A(s)$
- rewards r(a, s) positive or negative
- a discount factor $0 < \gamma < 1$; there is no goal
- Solutions are functions (policies) mapping states into actions
- Optimal solutions max expected discounted accumulated reward from s_0

Partially Observable MDPs: Goal POMDPs

POMDPs are **partially observable**, **probabilistic** state models:

- states $s \in S$
- actions $A(s) \subseteq A$
- transition probabilities $P_a(s'|s)$ for $s \in S$ and $a \in A(s)$
- initial **belief state** b_0
- set of **observable target** states S_G
- action costs c(a,s) > 0
- sensor model given by probabilities $P_a(o|s)$, $o \in Obs$
- Belief states are probability distributions over ${\cal S}$
- Solutions are policies that map belief states into actions
- **Optimal** policies minimize **expected** cost to go from b_0 to target bel state.

Discounted Reward POMDPs

A common alternative formulation of POMDPs:

- states $s \in S$
- actions $A(s) \subseteq A$
- transition probabilities $P_a(s'|s)$ for $s \in S$ and $a \in A(s)$
- initial **belief state** b_0
- sensor model given by probabilities $P_a(o|s)$, $o \in Obs$
- rewards r(a, s) positive or negative
- discount factor $0 < \gamma < 1$; there is no goal
- Solutions are policies mapping states into actions
- Optimal solutions max expected discounted accumulated reward from b_0

Example: Omelette

• Representation in GPT (incomplete):

Action:	$\mathbf{grab} - \mathbf{egg}()$
Precond:	$\neg holding$
Effects:	$holding := \mathbf{true}$
	$good? := (true \ 0.5 \ ; \ false \ 0.5)$
Action:	clean (bowl:BOWL)
Precond:	$\neg holding$
Effects:	ngood(bowl):=0 , $nbad(bowl):=0$
Action:	$\mathbf{inspect}(bowl:BOWL)$
Effect:	obs(nbad(bowl) > 0)

• Performance of resulting controller (2000 trials in 192 sec)

Example: Hell or Paradise; Info Gathering

- initial position is 6
- goal and penalty at either 0 or 4; which one not known

• noisy *map* at position 9

Action: Precond: Effects:	$\mathbf{go} - \mathbf{up}()$; same for down,left,right FREE(UP(pos)) pos := UP(pos)
Action: Effects:	* $pos = pos9 \rightarrow \mathbf{obs}(ptr)$ $pos = goal \rightarrow \mathbf{obs}(goal)$
Costs:	$pos = penalty \rightarrow 50.0$
Ramif: Init:	true $\rightarrow ptr = (goal \ p \ ; \ penalty \ 1 - p)$ $pos = pos6 \ ; \ goal = pos0 \ \lor \ goal = pos4$ $penalty = pos0 \ \lor \ penalty = pos4 \ ; \ goal \neq penalty$
Goal:	pos = qoal

Examples: Robot Navigation as a POMDP

- states: $[x, y; \theta]$
- actions rotate + 90 and -90, move
- **costs:** uniform except when hitting walls
- transitions: e.g, $P_{move}([2,3;90] | [2,2;90]) = .7$, if [2,3] is empty, . . .

- initial b_0 : e.g., uniform over set of states
- goal G: cell marked G
- **observations:** presence or absence of wall with probs that depend on position of robot, walls, etc

Expected Cost/Reward of Policy (MDPs)

• In Goal MDPs, expected cost of policy π starting in s, denoted as $V^{\pi}(s)$, is

$$V^{\pi}(s) = E_{\pi}\left[\sum_{s_i} c(a_i, s_i) \mid s_0 = s, a_i = \pi(s_i)\right]$$

where expectation is weighted sum of cost of possible state trajectories times their probability given π

• In Discounted Reward MDPs, expected discounted reward from s is

$$V^{\pi}(s) = E_{\pi}\left[\sum_{s_i} \gamma^i r(a_i, s_i) \mid s_0 = s, a_i = \pi(s_i)\right]$$

Equivalence of (PO)MDPs

- Let the **sign** of a POMDP be **positive** if cost-based and **negative** if reward-based
- Let $V_M^{\pi}(b)$ be expected cost (reward) from b in positive (negative) POMDP M
- Define **equivalence** of any two POMDPs as follows; assuming goal states are absorbing, cost-free, and observable:

Definition 1. POMDPs R and M equivalent if have same set of non-goal states, and there are constants α and β s.t. for every π and non-target bel b,

 $V_R^{\pi}(b) = \alpha V_M^{\pi}(b) + \beta$

with $\alpha > 0$ if R and M have same sign, and $\alpha < 0$ otherwise.

Intuition: If R and M are equivalent, they have same optimal policies and same 'preferences' over policies

Equivalence Preserving Transformations

• A transformation that maps a POMDP M into M' is **equivalence-preserving** if M and M' are equivalent.

• Three equivalence-preserving transformation among POMDP's

- 1. $R \mapsto R + C$: addition of C (+ or -) to all rewards/costs
- 2. $R \mapsto kR$: multiplication by $k \neq 0$ (+ or -) of rewards/costs
- 3. $R \mapsto \overline{R}$: elimination of discount factor by adding goal state t s.t.

$$P_a(t|s) = 1 - \gamma$$
, $P_a(s'|s) = \gamma P_a^R(s'|s)$; $O_a(t|t) = 1$, $O_a(s|t) = 0$

Theorem 1. Let R be a discounted reward-based POMDP, and C a constant that bounds all rewards in R from above; i.e. $C > \max_{a,s} r(a,s)$. Then, $M = \overline{-R + C}$ is a goal POMDP equivalent to R.

Computation: Solving MDPs

Conditions that ensure **existence** of optimal policies and **correctness** (convergence) of some of the methods we'll see:

• For discounted MDPs, $0 < \gamma < 1$, none needed as everything is bounded; e.g. discounted cumulative reward no greater than $C/1 - \gamma$, if $r(a, s) \leq C$ for all a, s

• For goal MDPs, absence of dead-ends assumed so that $V^*(s) \neq \infty$ for all s

Basic Dynamic Programming Methods: Value Iteration (1)

• Greedy policy π_V for $V = V^*$ is optimal:

$$\pi_V(s) = \arg \min_{a \in A(s)} [c(s, a) + \sum_{s' \in S} P_a(s'|s)V(s')]$$

• Optimal V^* is unique solution to **Bellman's optimality equation** for MDPs

$$V(s) = \min_{a \in A(s)} [c(s, a) + \sum_{s' \in S} P_a(s'|s)V(s')]$$

where V(s) = 0 for goal states s

• For discounted reward MDPs, Bellman equation is

$$V(s) = \max_{a \in A(s)} [r(s, a) + \gamma \sum_{s' \in S} P_a(s'|s)V(s')]$$

Basic DP Methods: Value Iteration (2)

- Value Iteration finds V^* solving Bellman eq. by iterative procedure:
 - ▷ Set V₀ to arbitrary value function; e.g., V₀(s) = 0 for all s
 ▷ Set V_{i+1} to result of Bellman's **right hand side** using V_i in place of V:

$$V_{i+1}(s) := \min_{a \in A(s)} [c(s,a) + \sum_{s' \in S} P_a(s'|s)V_i(s')]$$

- $V_i\mapsto V^*$ as $i\mapsto\infty$
- $V_0(s)$ must be initialized to 0 for all goal states s

(Parallel) Value Iteration and Asynchronous Value Iteration

- Value Iteration (VI) converges to **optimal value function** V^* asympotically
- Bellman eq. for discounted reward MDPs similar, but with max instead of min, and sum multiplied by γ
- In practice, VI stopped when residual $R = \max_{s} |V_{i+1}(s) V_i(s)|$ is small enough
- Resulting greedy policy π_V has **loss** bounded by $2\gamma R/1 \gamma$
- Asynchronous Value Iteration is asynchronous version of VI, where states updated in any order
- Asynchronous VI also converges to V* when all states updated infinitely often; it can be implemented with single V vector

Policy Evaluation

- Expected cost of policy π from s to goal, $V^{\pi}(s)$, is weighted avg of cost of state trajectories $\tau : s_0, s_1, \ldots$, times their probability given π
- Trajectory cost is $\sum_{i=0,\infty} cost(\pi(s_i), s_i)$ and probability $\prod_{i=0,\infty} P_{\pi(s_i)}(s_{i+1}|s_i)$
- Expected costs $V^{\pi}(s)$ can also be characterized as solution to Bellman equation

$$V^{\pi}(s) = c(a,s) + \sum_{s' \in S} P_a(s'|s) V^{\pi}(s')$$

where $a=\pi(s),$ and $V^{\pi}(s)=0$ for goal states

- This set of **linear equations** can be solved analytically, or by VI-like procedure
- Optimal expected cost $V^*(s)$ is $\min_{\pi} V^{\pi}(s)$ and optimal policy is the arg min
- For discounted reward MDPs, all similar but with r(s,a) instead of c(a,s), max instead of min, and sum discounted by γ

Policy Iteration (Howard)

• Let $Q^{\pi}(a,s)$ be **expected cost** from s when doing a first and then π

$$Q^{\pi}(a,s) = c(a,s) + \sum_{s' \in S} P_a(s'|s) V^{\pi}(s')$$

- When $Q^{\pi}(a,s) < Q^{\pi}(\pi(s),s)$, π strictly improved by changing $\pi(s)$ to a
- Policy Iteration (PI) computes π^* by seq. of evaluations and improvements
 - 1. Starting with arbitrary policy π
 - 2. Compute $V^{\pi}(s)$ for all s (evaluation)
 - 3. Improve π by setting $\pi(s)$ to $a = \arg \min_{a \in A(s)} Q^{\pi}(a, s)$ (improvement)
 - 4. If π changed in 3, go back to 2, else **finish**
- PI finishes with π^* after **finite** number of iterations, as # of policies is **finite**

Dynamic Programming: The Curse of Dimensionality

- **VI** and **PI** need to deal with value vectors V of size |S|
- Linear programming can also be used to get V^* but O(|A||S|) constraints:

$$\max_V \sum_s V(s) \text{ subject to } V(s) \leq c(a,s) + \sum_{s'} P_a(s'|s) V(s') \text{ for all } a,s$$
 with $V(s)=0$ for goal states

- MDP problem is thus **polynomial** in S but **exponential** in # vars
- Moreover, this is not worst case; vectors of size |S| needed to get started!

Question: Can we do better?

Dynamic Programming and Heuristic Search

- Heuristic search algorithms like A* and IDA* manage to solve optimally problems with more than 10^{20} states, like Rubik's Cube and the 15-puzzle
- For this, admissible heuristics (lower bounds) used to focus/prune search
- Can admissible heuristics be used for **focusing updates** in DP methods?
- Often states reachable with optimal policy from s_0 much smaller than S
- Then convergence to V^* over all s not needed for optimality from s_0

Theorem 2. If V is an admissible value function s.t. the residuals over the states reachable with π_V from s_0 are all zero, then π_V is an optimal policy from s_0 (i.e. it minimizes $V^{\pi}(s_0)$)

Learning Real Time A* (LRTA*) Revisited

- 1. Evaluate each action a in s as: Q(a,s) = c(a,s) + V(s')
- 2. Apply action a that minimizes $Q(\mathbf{a},s)$
- 3. Update V(s) to $Q(\mathbf{a}, s)$
- 4. **Exit** if s' is goal, else go to 1 with s := s'
- LRTA* can be seen as **asynchronous value iteration** algorithm for **deterministic** actions that takes advantage of theorem above (i.e. updates = DP updates)
- Convergence of LRTA* to V implies residuals along π_V reachable states from s_0 are all zero
- Then 1) $V = V^*$ along such states, 2) $\pi_V = \pi^*$ from s_0 , but 3) $V \neq V^*$ and $\pi_V \neq \pi^*$ over other states; yet this is irrelevant given s_0

Real Time Dynamic Programming (RTDP) for MDPs

RTDP is a generalization of LRTA* to MDPs due to (Barto et al 95); just adapt Bellman equation used in the **Eval** step

Same properties as LRTA* but over MDPs: after repeated trials, greedy policy eventually becomes optimal if V(s) initialized to admissible h(s)

Find-and-Revise: A General DP + HS Scheme

- Let $Res_V(s)$ be residual for s given admissible value function V
- **Optimal** π for MDPs from s_0 can be obtained for sufficiently small $\epsilon > 0$:
 - 1. Start with admissible V; i.e. $V \leq V^*$
 - 2. **Repeat:** find s reachable from $\pi_V \& s_0$ with $Res_V(s) > \epsilon$, and **Update** it
 - 3. Until no such states left
- V remains admissible (lower bound) after updates
- Number of iterations until convergence bounded by $\sum_{s \in S} [V^*(s) V(s)]/\epsilon$
- Like in **heuristic search**, convergence achieved **without visiting or updating** many of the states in S; LRTDP, LAO*, ILAO*, HDP, LDFS, etc. are algorithms of this type

POMDPs are MDPs over Belief Space

- Beliefs b are **probability distributions** over S
- An action $a \in A(b)$ maps b into b_a

$$b_a(s) = \sum_{s' \in S} P_a(s|s')b(s')$$

• The probability of observing *o* then is:

$$b_a(o) = \sum_{s \in S} P_a(o|s)b_a(s)$$

• . . . and the new belief is

$$b_a^o(s) = P_a(o|s)b_a(s)/b_a(o)$$

RTDP for POMDPs

Since POMDPs are MDPs over belief space algorithm for POMDPs becomes

- Evaluate each action a applicable in b as
 Q(a, b) = c(a, b) + ∑_{o∈O} b_a(o)V(b^o_a)
 2. Apply action a that minimizes Q(a, b)
 3. Update V(b) to Q(a, b)
 4. Observe o
 5. Compute new belief state b^o_a
 6. Exit if b^o_a is a final belief state, else set b to b^o_a and go to 1
- Resulting algorithm, called RTDP-Bel, **discretizes** beliefs b for writing to and reading from hash table
- RTDP-Bel competitive in quality and performance with Point-based POMDP based algorithms that do not (see paper at IJCAI-09)

Variations on RTDP : Reinforcement Learning

Q-learning is a **model-free** version of RTDP; Q-values initialized arbitrarily and **learned by experience**

- 1. Apply action a that minimizes $Q(\mathbf{a}, s)$ with probability 1ϵ , with probability ϵ , choose a randomly
- 2. **Observe** resulting state s' and collect cost c
- 3. Update $Q(\mathbf{a},s)$ to

 $Q(\mathbf{a},s) + \alpha[c + \min_a Q(a,s') - Q(\mathbf{a},s)]$

4. **Exit** if s' is goal, else with s := s' go to 1

- Q-learning converges asympotically to optimal Q-values, when all actions and states visited infinitely often
- Q-learning solves MDPs optimally without model parameters (probabilities, costs)

Variations on RTDP : Reinforcement Learning (2)

More familiar **Q-learning** algorithm formulated for **discounted reward MDPs**:

- 1. Apply action a that maximizes $Q(\mathbf{a}, s)$ with probability 1ϵ , with probability ϵ , choose a randomly
- 2. **Observe** resulting state s' and collect reward r
- 3. Update $Q(\mathbf{a},s)$ to

$$Q(\mathbf{a}, s) + \alpha [r + \gamma \max_{a} Q(a, s') - Q(a, s)]$$

4. **Exit** if s' is goal, else with s := s' go to 1

- Q-values initialized arbitrarily
- This version solves discounted reward MDPs

Why RL works? Intuitions

N-armed bandit problem: simpler problem without **state**:

- Choose repeatedly one of n actions a (levers)
- Get 'stochastic' reward r_t at time t that depends on action chosen
- How to play to maximize reward in long term; e.g. 10000 plays?
- Need to find out value of actions (exploration) and then play best (exploitation)
- For this, choose 'greedy' a that maximizes $Q_t(a)$ with probability 1ϵ , where
 - ▷ Average: $Q_{t+1}(a) = r_1 + r_2 + \ldots + r_{t+1}/t + 1$
 - ▷ Incremental: $Q_{t+1}(a) = Q_t(a) + [r_{t+1} Q_t(a)]/(t+1)$
 - ▷ Recency Weighted Avg: $Q_{t+1}(a) = Q_t(a) + \alpha [r_{t+1} Q_t(a)]$
- Last expression similar to the one for Q-learning, except for states . . .

Monte Carlo RL Prediction and Learning

Assuming underlying **discounted reward MDP** with **unknown pars**:

- Eval policy π by sampling executions s_0 , s_1 , . . . ,
- For each state s_t visited, collect return $R_t = \sum_{k>0} \gamma^k r(a_{t+k}, s_{t+k})$
- Approximate $V^{\pi}(s_t)$ to **average** of returns R_t)
- In order to learn **control** not just **values**, approx $Q^{\pi}(a, s_t)$

Monte Carlo vs. TD Predictions (Sutton & Barto)

• Incremental Monte Carlo updates for prediction are

$$V(s_t) := V(s_t) + \alpha [R_t - V(s_t)]$$

• **TD Methods** as used in Q-learning, **bootstrap**:

$$V(s_t) := V(s_t) + \alpha [r_t + \gamma V(s_{t+1}) - V(s_t)]$$

• Other types of **returns** can be used as well; e.g. *n*-step return R_t^n

$$V(s_t) := V(s_t) + \alpha [r_t + \gamma r_{t+1} + \dots + \gamma r_{t+n-1} + \gamma^n V(s_{t+n}) - V(s_t)]$$

• $TD(\lambda)$, $0 \le \lambda \le 1$, uses linear combination of returns R_t^n for all n

$$V(s_t) := V(s_t) + \alpha [R_t^{\lambda} - V(s_t)]$$

where $R_t^{\lambda} = (1 - \lambda) \sum_{n=1,\infty} \lambda^{n-1} R_t^n$