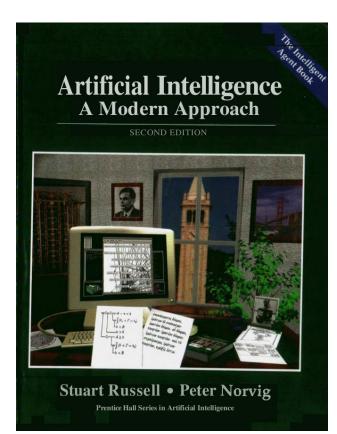
INTRODUCTION TO AI STRIPS PLANNING

.. and Applications to Video-games!

This course aims to

- Provide an introduction to the Al techniques currently used for the decision making of non-player characters (NPCs) in commercial video games
- Show how a simple AI technique from academic research (STRIPS planning) can be employed to advance the state-of-the art.


This course aims to

- Get you started with doing a research/programming project related to Al and video games!
 - Using AI tools for STRIPS planning
 - Using state-of-the-art game engines such as Unity3D and Source Engine (Half-life, Counter Strike, ...)

- 4
- Lecture 1: Game-inspired competitions for AI research,
 AI decision making for non-player characters in games
- Lecture 2: STRIPS planning, state-space search
- Lecture 3: Planning Domain Definition Language (PDDL), using an award winning planner to solve Sokoban
- Lecture 4: Planning graphs, domain independent heuristics for STRIPS planning
- Lecture 5: Employing STRIPS planning in games: SimpleFPS, iThinkUnity3D, SmartWorkersRTS
- Lecture 6: Planning beyond STRIPS

5

Material based on the following textbooks, research papers, and student projects at University of Athens:

- Lecture 1: Game-inspired competitions for Al research, Al decision making for non-player characters in games
- Lecture 2: STRIPS planning, state-space search
- Lecture 3: Planning Domain Definition Language (PDDL), using an award winning planner to solve Sokoban
- Lecture 4: Planning graphs, domain independent heuristics for STRIPS planning
- Lecture 5: Employing STRIPS planning in games: SimpleFPS, iThinkUnity3D, SmartWorkersRTS
- Lecture 6: Planning beyond STRIPS

□ Is academic AI useful to (commercial) video games?

□ Are (commercial) video games useful to academic Al?

- □ Is academic AI useful to (commercial) video games?
 - Academics say: Yes! ...
 - Game developers say: No! ...
- □ Are (commercial) video games useful to academic Al?

- □ Is academic AI useful to (commercial) video games?
 - Academics say: Yes! ...
 - Game developers say: No! ...
- □ Are (commercial) video games useful to academic Al?
 - Puzzle games: complex logical problems
 - Strategy games: complex resource management and decision making problems
 - First-person games: non-player characters as autonomous agents

- □ Are (commercial) video games useful to academic Al?
 - Often, the real-world problems are too difficult/complex to handle
 - Video games offer a level of abstraction that allows the Al academic community to experiment focusing on one aspect of the problem each time
 - E.g., think of an autonomous robotic bartender
 - In a bar in Rome
 - In a controlled environment specifically for this purpose
 - In a MMORPG (massively multiplayer online RPG)

11

Performing simple actions in the real world is difficult

Acting (and sensing) in video-game worlds is easy!



13

Acting (and sensing) in video-game worlds is easy! ..and Al can focus on, e.g., decision making

Video-game worlds feature common objects and realistic physics

Video-game worlds feature realistic navigation characteristics

Video-game worlds feature interaction with other characters!

17

Non Player Characters (NPCs)

□ Are video games useful to academic Al?

Al Competitions for research problems of academic Al based on commercial video games

Annual Starcraft Competition at AIIDE

http://webdocs.cs.ualberta.ca/~cdavid/starcraftaicomp

 Artificial Intelligence & Interactive Digital Entertainment

19

Starcraft
 Real-time
 Strategy game

Annual Starcraft Competition at AIIDE

http://webdocs.cs.ualberta.ca/~cdavid/starcraftaicomp

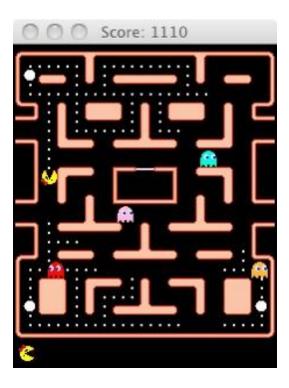
Brood War Application Programming Interface

- C++ API
- Retrieve information about the state of the game
- Control units and buildings

<u>http://code.google.com/p/bwapi/</u>

Registration deadline: 1 July

Annual Starcraft Competition at AIIDE


Krasi0 vs Skynet (2011): <u>youtube link</u>

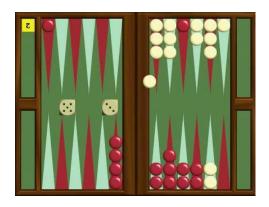
Ms Pac-Man vs Ghost Team Competition

http://www.pacman-vs-ghosts.net

- Build a program that controls Ms Pac-Man or one of the ghosts
- The game server transmits the state of the game as an image, 15 times per second

🗖 Java API

Registration deadline: 27 May


General Game Playing Competition

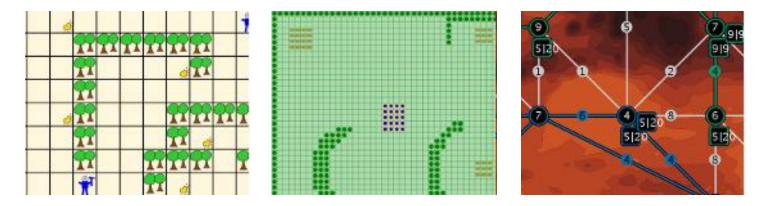
<u>http://games.stanford.edu/</u>

You build a program that plays chess

So, it's smart! Can it play backgammon then?

General Game Playing Competition

<u>http://games.stanford.edu/</u>


Build a program that plays board games.. all of them!

In the beginning of each match the program receives a description of the game to play in a language that resembles PDDL

C++, Java, Prolog API, ...

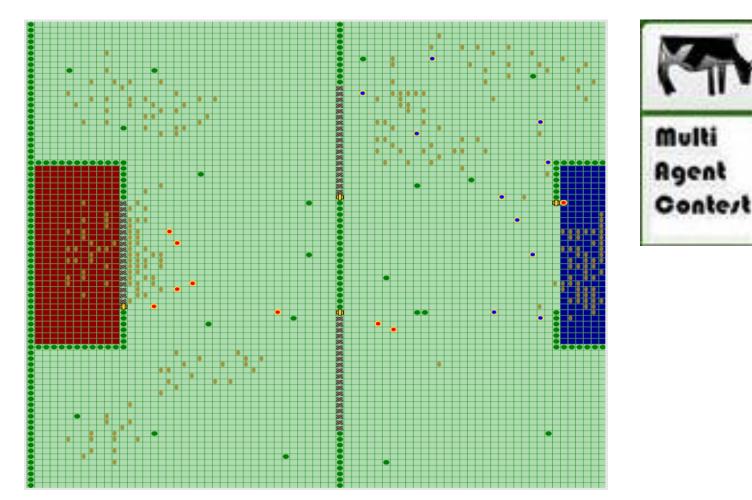
Multi-agent programming contest

http://www.multiagentcontest.org/

- Emphasis on multi-agent systems
- Since 2005 with different scenarios every year that force agents to work as a team

Multi-agent programming contest

26


http://www.multiagentcontest.org/

*							+			1								+	-	-							_		_	7							
			2			11			00		Ť,		F	F				+		-		_	00								K						
-		-	Â		A A		41	11						+	-		1	+	-	+	-	99	71 *	0	Ģ	1 11	-		\neg		Γ.						
19.19			¢	<u>p</u>		+	+	0	**				8	\vdash		1	-	+			22	**	×			5 0	-		-								
			Ŷ	2	+			H	77	97	11			1			9		1	_	-	-					_	H	-						_		
	+		Ŷ	2	+		ľ	P.	-								f	-		d				_				H									
			Ŷ	2	t	1	7		T	1	11	11	m		1		7				4														T I		
			1	Ŧ		Ĩ	9	0									f		2)	2							_	\square							\mathbf{P}		
			1			Ĩ	2	-								6	1	1		T																	
			7	2	1	A	7			22	11	11		1	1			T			11	11	11	-	11			0									
			I	2		9	9			91	11					I		4			4																
		ĺ.	7			I	7			-						-		1	1	I	11	T		-	11												
			1	2		1	7						5								0																
				-		I	7			-						T				1																	
			1	2	1	r 1				M	0					1																				(
	ø		7	2		10		- 2		n	II	11		1	11	1			5	I	۵.															- L	
			1	2		1	7											1																			-
			T	2		9	1	LI.				11	11	12	11	1	1	11	1	L.																- 1	
			7	2					11		Ť	11		1		1						a	1								~		~				
				1	0				II			11		HI I		I.					4										ſ	- 1					
	-		7	IT	II	II	1	II	II	T		11	-	D		T															£.	ړ _	~	_			
							0		11	11	11	I1	1						-	0																	
																													1					7			
						-5																									-	_					
		_	-	<u>ó</u>	-	_	+	_										+	-	_																	
		-	-				-			-			-						-	_						4											
					1		_												_																		
6													1																								

3-

Multi-agent programming contest

http://www.multiagentcontest.org/

People do Al research (e.g., M.Sc., Ph.D.) based on techniques and results on such competitions

□ Is academic AI useful to (commercial) video games?

□ Is academic AI useful to (commercial) video games?

- Path finding
- Realistic motion
- Models of emotion
- Decision making
- Learning
- Nonlinear story telling

••••

- □ Is academic AI useful to (commercial) video games?
- Let's focus on
 Games with non-player characters (NPCs)
 E.g., First-Person Shooter (FPS) games
 - The decision making process of an NPC

- Video Games:
 - Finite State Machines
 - Decision Diagrams
 - Behavior Trees
 - Goal Oriented Action Planning
- Academic AI on agents:
 - Knowledge representation, First-order logic, Classical planning, Planning with preferences, ...
 - Belief-Desire-Intention architecture, Agent-based programming, ...
 - Probabilistic reasoning, Bayesian networks, Utility theory, Markov Decision Processes, ...

- Video Games:
 - Finite State Machines
 - Decision Diagrams
 - Behavior Trees
 - Goal Oriented Action Planning
- Academic AI on agents:
 - Knowledge representation, First-order logic, Classical planning, Planning with preferences, ...
 - Belief-Desire-Intention architecture, Agent-based programming, ...
 - Probabilistic reasoning, Bayesian networks, Utility theory, Markov Decision Processes, ...

□ Next:

Finite State Machines (FSMs)

Behavior Trees (BTs)

Goal Oriented Action Planning (GOAP)