
INTRODUCTION TO AI

STRIPS PLANNING

.. and Applications to Video-games!

May 2012Stavros Vassos, University of Athens, Greece stavrosv@di.uoa.gr

2

 Lecture 1: Game-inspired competitions for AI research,

AI decision making for non-player characters in games

 Lecture 2: STRIPS planning, state-space search

 Lecture 3: Planning Domain Definition Language (PDDL),

using an award winning planner to solve Sokoban

 Lecture 4: Planning graphs, domain independent

heuristics for STRIPS planning

 Lecture 5: Employing STRIPS planning in games:

SimpleFPS, iThinkUnity3D, SmartWorkersRTS

 Lecture 6: Planning beyond STRIPS

Course overview

Artificial Intelligence and Video Games
3

 Video Games:

 Finite State Machines

 Decision Diagrams

 Behavior Trees

 Goal Oriented Action Planning

 Academic AI on agents:

 Knowledge representation, First-order logic,

Classical planning, Planning with preferences, …

 Belief-Desire-Intention architecture, Agent-based

programming, …

 Probabilistic reasoning, Bayesian networks,

Utility theory, Markov Decision Processes, …

Artificial Intelligence and Video Games
4

 Game engine:

 C++

 Creates game-world objects with (x,y,z) coordinates and

calculates what happens to them on every frame

 E.g., a crate is up in the air on frame1. On frame 2 the

game engine will calculate the new position, etc

Artificial Intelligence and Video Games
5

 Game engine:

 C++

 Creates game-world objects with (x,y,z) coordinates and

calculates what happens to them on every frame

 E.g., a crate is up in the air on frame1. On frame 2 the

game engine will calculate the new position, etc

 Same for non-player characters (NPCs)!

Finite State Machines (FSMs)
6

 Video Games:

 Finite State Machines

 Decision Diagrams

 Behavior Trees

 Goal Oriented Action Planning

 Academic AI on agents:

 Knowledge representation, First-order logic,

Classical planning, Planning with preferences, …

 Belief-Desire-Intention architecture, Agent-based

programming, …

 Probabilistic reasoning, Bayesian networks,

Utility theory, Markov Decision Processes, …

Finite State Machines (FSMs)
7

 Recognize a formal language

Finite State Machines (FSMs)
8

 NPC behavior based on high-level states

On Guard Fight

Run away

See small enemy

Losing fight

Energy OK

Finite State Machines (FSMs)
9

 Traditionally one of the first techniques for NPC

behavior

 Very simple to understand

 Very simple to implement

 E.g., directly using if-then-else statements

int NPC::think(){

if (state==ONGUARD && seeSmallEnemy()){

state=FIGHT;

makeScarySound();

}

else if (state==FIGHT && energy>30){

...

}

else if ...

}

Finite State Machines (FSMs)
10

Finite State Machines (FSMs)
11

 Let’s see some code from a commercial game

 HL2-SDK, npc_BaseZombie.cpp

 lines 1828-1870

switch (m_NPCState)

{

case NPC_STATE_COMBAT:

…

case NPC_STATE_ALERT:

…

}

Finite State Machines (FSMs)
12

 Traditionally one of the first techniques for NPC

behavior

 Very simple to understand

 Very simple to implement

 E.g., directly using if-then-else statements

 Separation between the work of the programmer

and the game designers

 But also simplistic in the behaviors that can be

expressed…

Behavior Trees (BTs)
13

 Video Games:

 Finite State Machines

 Decision Diagrams

 Behavior Trees

 Goal Oriented Action Planning

 Academic AI on agents:

 Knowledge representation, First-order logic,

Classical planning, Planning with preferences, …

 Belief-Desire-Intention architecture, Agent-based

programming, …

 Probabilistic reasoning, Bayesian networks,

Utility theory, Markov Decision Processes, …

Behavior Trees (BTs)
14

 NPC behavior based on more refined conditions and

strategies

 Tasks have a common basic structure: they are given

CPU time to do something and return success or failure

 Leaf tasks: check a condition or execute some code

 Composite tasks: return value depend on child tasks

Behavior Trees (BTs)
15

 NPC behavior based on more refined conditions and

strategies

 Tasks have a common basic structure: they are given

CPU time to do something and return success or failure

 Leaf tasks: check a condition or execute some code

 Composite tasks: return value depend on child tasks

E.g., succeed if the

door in front of the

NPC is open

E.g., kick the door

in front of the NPC

Behavior Trees (BTs)
16

 NPC behavior based on more refined conditions and

strategies

 Tasks have a common basic structure: they are given

CPU time to do something and return success or failure

 Leaf tasks: check a condition or execute some code

 Composite tasks: return value depend on child tasks

E.g., succeed if any

of the child tasks

succeed

?

Behavior Trees (BTs)
17

 NPC behavior based on more refined conditions and

strategies

 Tasks have a common basic structure: they are given

CPU time to do something and return success or failure

 Leaf tasks: check a condition or execute some code

 Composite tasks: return value depend on child tasks



E.g., succeed if all

of the child tasks

succeed

Behavior Trees (BTs)
18

 NPC behavior based on more refined conditions

and strategies

 Sequence task and Selector task

?→



?

Behavior Trees (BTs)
19

 NPC behavior based on more refined conditions

and strategies

→

Door

open?

Move

into room

Behavior Trees (BTs)
20

 NPC behavior based on more refined conditions

and strategies

→

?

→

?Door

open?

Move

into room

Move

to door

Move

into room

Behavior Trees (BTs)
21

 NPC behavior based on more refined conditions

and strategies

→

?

→

?

→ →

Door

open?

Move

into room

Move

to door

Move

into room

Door

locked?

Unlock

door

Kick

door

Door

open?

Behavior Trees (BTs)
22

 NPC behavior based on more refined conditions

and strategies

→

?

→

?

→ →

Door

open?

Move

into room

Move

to door

Move

into room

Door

locked?

Unlock

door

Kick

door

Door

open?

Note that no search is involved in this paradigm: the behavior

tree is traversed as a kind of pre-defined program

Behavior Trees (BTs)
23

 NPC behavior based on more refined conditions

and strategies

→

?

→

?

→ →

Door

open?

Move

into room

Move

to door

Move

into room

Door

locked?

Unlock

door

Kick

door

Door

open?

The way the tree is traversed depends on the implementation,

e.g., always start over, keep track of the current node, etc

Behavior Trees (BTs)
24

 NPC behavior based on more refined conditions

and strategies

 Non-deterministic sequence task and selector task

~?~→

~

~?

Behavior Trees (BTs)
25

 NPC behavior based on more refined conditions

and strategies

→

?

→

~?

→ →

Door

open?

Move

into room

Move

to door

Move

into room

Door

locked?

Unlock

door

Kick

door

Door

open?

Behavior Trees (BTs)
26

 NPC behavior based on more refined conditions

and strategies

 Parallel sequence task (similar to sequence)


E.g., perform move actions

while also shooting at target

Also used to simulate

“state-like” behavior by

ensuring that a condition holds

Behavior Trees (BTs)
27

 NPC behavior based on more refined conditions

and strategies

 Decorator tasks (wrap objects with same interface)

Until

fail
Invert

Behavior Trees (BTs)
28

 NPC behavior based on more refined conditions

and strategies



?



Enemy

in sight

Until

fail

Attack

enemy

Until

fail

InvertEnemy

in sight

Look

around

Behavior Trees (BTs)
29

 One of the first commercial

video games that used BTs

is Halo2 (2004)

 Simple to understand

 Simple to implement

…

 Separation between the work of the programmer

and the game designers

 Offers the specification of fine-grained behaviors

Reactive Behavior
30

 Both FSMs and BTs are reactive techniques

 The NPC follows a pre-programmed strategy that

specifies how the NPC should react in the game

depending on the current state/node and conditions

that currently hold in the game-world

 A sequence of actions that may be executed in the

game, e.g., [move to door, kick door, move into room],

need to be represented explicitly in the structure of

the FSMs or BTs

Reactive Behavior
31

 Historically, the vast amount of video games with

NPCs use FSMs and BTs for NPC decision making

 Simple to understand/implement

 Separation between programmers and game designers

 Any extensions needed can be handled effectively

using programming tricks

 The behavior is strengthened by extra information in

the game world that is carefully prepared for NPCs

Reactive Behavior
32

 A game level from the eyes of an NPC

Reactive Behavior
33

 A game level from the eyes of an NPC

Reactive Behavior

 The situation today

Open worlds with increasing available interactions

 NPCs need to be autonomous, with their own agenda,

goals, personality

34

Reactive Behavior
35

 The situation today

Reactive Behavior

 The situation today

 Under these circumstances, maintaining the possible and

applicable interactions using reactive techniques

becomes complex and difficult

 The need for more flexible techniques arises

36

Reactive Behavior

 The situation today

37

youtube link

http://www.youtube.com/watch?v=bmI799kEOSk
http://www.youtube.com/watch?v=bmI799kEOSk
http://www.youtube.com/watch?v=bmI799kEOSk

Goal Oriented Action Planning (GOAP)
38

 Video Games:

 Finite State Machines

 Decision Diagrams

 Behavior Trees

 Goal Oriented Action Planning

 Academic AI on agents:

 Knowledge representation, First-order logic,

Classical planning, Planning with preferences, …

 Belief-Desire-Intention architecture, Agent-based

programming, …

 Probabilistic reasoning, Bayesian networks,

Utility theory, Markov Decision Processes, …

Goal Oriented Action Planning (GOAP)
39

 Replace the pre-defined strategies with a

description of goals and available actions

→

?

→

?

→ →

Door

open?

Move

into room

Move

to door

Move

into room

Door

locked?

Unlock

door

Kick

door

Door

open?

Goal Oriented Action Planning (GOAP)
40

 Replace the pre-defined strategies with a

description of goals and available actions

Move

into room

Move

to door

Move

into room

Unlock

door

Kick

door

Goal Oriented Action Planning (GOAP)
41

 Replace the pre-defined strategies with a

description of goals and available actions

Move

into room

Move

to door

Unlock

door

Kick

door

Preconditions: Door open

Effects: In room

Preconditions: -

Effects: At door

Preconditions: Hold key

Effects: Door open

Preconditions: -

Effects: Door open

Goal Oriented Action Planning (GOAP)
42

 Replace the pre-defined strategies with a

description of goals and available actions

Move

into room

Move

to door

Unlock

door

Kick

door

Preconditions: Door open

Effects: In room

Preconditions: -

Effects: At door

Preconditions: Hold key

Effects: Door open

Preconditions: -

Effects: Door open

In room

Goal Oriented Action Planning (GOAP)
43

 Search in real-time for a strategy that achieves the

goal in the current state

Move

into room

Move

to door

Unlock

door

Kick

door

Preconditions: Door open

Effects: In room

Preconditions: -

Effects: At door

Preconditions: Hold key

Effects: Door open

Preconditions: -

Effects: Door open

In room

Goal Oriented Action Planning (GOAP)
44

 Advantages

 Easy to manage a large number of generated

behaviors

 Able to achieve different behaviors that satisfy the

given requirements under different conditions without

explicitly listing the resulting strategies

 But it needs to solve planning problems in a few

frames!

Behavior Trees (BTs)
45

 One of the first commercial

video games that used BTs

is Halo2 (2004)

 Simple to understand

 Simple to implement

…

 Separation between the work of the programmer

and the game designers

 Offers the specification of fine-grained behaviors

Goal Oriented Action Planning (GOAP)
46

 One of the first commercial

video games that used GOAP

is FEAR (2005)

 Not so simple to understand

 Not so simple to implement

…

 Not so clear separation between the work of the

programmer and the game designers

 The specification of fine-grained behaviors is

actually tricky

Goal Oriented Action Planning (GOAP)
47

 Some details about GOAP in

FEAR:

One AI programmer

responsible for NPC behavior

 Idea: Different behaviors can

be achieved among characters

by using GOAP and providing

each character with same goals

but a different set of available

actions

Goal Oriented Action Planning (GOAP)
48

Goal Oriented Action Planning (GOAP)
49

 Simplifying STRIPS planning:

 Literals are stored as variables

(essentially having one argument)

 The state is stored as an array of

a fixed size

 Search goes up to depth …3

 A* for path finding…

 A* also for planning!

Reactive Planning Vs. Classical Planning
50

 HALO2 (2004)

 Since then BTs have

become a standard

for NPC behavior

 FEAR (2005)

 Since then GOAP has

not picked up much

speed

Reactive Planning Vs. Classical Planning
51

Behavior Trees Goal Oriented

Action Planning

Reactive Planning Vs. Classical Planning
52

Behavior Trees Goal Oriented

Action Planning

 A combination of these techniques?

 BTs for reactive decision making

GOAP for tactical decision making

Artificial Intelligence and Video Games
53

 Amazing tools available for (indie) game developers!

Artificial Intelligence and Video Games
54

 Source available!

Bibliography
55

Material

 Artificial Intelligence for Games, Second Edition. Ian Millington,

John Funge. Morgan Kaufmann Publishers Inc., 2009.

 Sections 5.3, 5.4

