
INTRODUCTION TO AI

STRIPS PLANNING

.. and Applications to Video-games!

May 2012Stavros Vassos, University of Athens, Greece stavrosv@di.uoa.gr

2

 Lecture 1: Game-inspired competitions for AI research,

AI decision making for non-player characters in games

 Lecture 2: STRIPS planning, state-space search

 Lecture 3: Planning Domain Definition Language (PDDL),

using an award winning planner to solve Sokoban

 Lecture 4: Planning graphs, domain independent

heuristics for STRIPS planning

 Lecture 5: Employing STRIPS planning in games:

SimpleFPS, iThinkUnity3D, SmartWorkersRTS

 Lecture 6: Planning beyond STRIPS

Course overview

STRIPS planning
3

 STRIPS! So why do we like this formalism?

STRIPS planning
4

 STRIPS! So why do we like this formalism?

 Simple formalism for representing planning problems

 Easy to compute applicable actions

 Check whether the list of preconditions is a subset of the

state description: PRECONDITIONS  S

 Easy to compute the successor states

 Add the list of positive effects to the state description and

remove the list of negative effects:
S’ = (S / NEGATIVE-EFFECTS)  POSITIVE-EFFECTS

 Easy to check if the goal is satisfied

 Check whether the goal is a subset of the state description:

G  S

STRIPS planning
5

 STRIPS! So why do we like this formalism?

 It can already describe difficult and complex problems

(in more challenging domains than the example we saw)

…let’s see how we can solve this kind of problems

STRIPS planning: state-based search
6

 Finding a solution to the planning problem following

a state-based search

Init(On(Α,Table)  On(Β,Table)  …)

Goal(On(Α,Β)  …)

Action(Move(b,x,y),

PRECONDITIONS: On(b,x)  …

EFFECTS: On(b,y)  …)

Action(MoveToTable(b,x),

PRECONDITIONS: On(b,x)  …

EFFECTS: On(b,Table)  …)

STRIPS planning: state-based search
7

 Finding a solution to the planning problem following

a state-based search

Init(where to start from)

Goal(when to stop searching)

Action(how to generate

the “graph”)

 Progression planning: forward state-based search

 Regression planning: backward state-based search

88

 Start from the initial state

 Check if the current state satisfies the

goal

 Compute applicable actions to the

current state

 Compute the successor states

 Pick one of the successor states as the

current state

 Repeat until a solution is found or the

state space is exhausted

Progression planning

9

 Start from the initial state

Α Β C

On(Α,Table)
On(Β,Table)
On(C,Table)

Clear(Α)
Clear(Β)
Clear(C)

Progression planning

Progression planning
10

 Check if the current state satisfies the goal

 No

Α Β C

On(Α,Β)
On(Β,C)

On(Α,Table)
On(Β,Table)
On(C,Table)

Clear(Α)
Clear(Β)
Clear(C)

Progression planning
11

 Compute applicable actions to the current state

 Action(Move(b,x,y),

PRECONDITIONS: On(b,x)  Clear(b)  Clear(y))

 Action(MoveToTable(b,x),

PRECONDITIONS: On(b,x)  Clear(b))

Α Β C

On(Α,Table)
On(Β,Table)
On(C,Table)

Clear(Α)
Clear(Β)
Clear(C)

Progression planning
12

 Compute applicable actions to the current state

 Action(Move(b,x,y),

PRECONDITIONS: On(b,x)  Clear(b)  Clear(y))

 Action(MoveToTable(b,x),

PRECONDITIONS: On(b,x)  Clear(b))

Move(Β,Table,C)
Preconditions:

 On(Β,Table)

 Clear(Β)

 Clear(C)

 Applicable action!

Α Β C

On(Α,Table)
On(Β,Table)
On(C,Table)

Clear(Α)
Clear(Β)
Clear(C)

Progression planning
13

 Compute applicable actions to the current state

 Action(Move(b,x,y),

PRECONDITIONS: On(b,x)  Clear(b)  Clear(y))

 Action(MoveToTable(b,x),

PRECONDITIONS: On(b,x)  Clear(b))

 Move(Α,Table,Β)

 Move(Α,Table,C)

 Move(Β,Table,Α)

 Move(Β,Table,C)

 Move(C,Table,Α)

 Move(C,Table,Β)

 All these are applicable actions!

Α Β C

On(Α,Table)
On(Β,Table)
On(C,Table)

Clear(Α)
Clear(Β)
Clear(C)

Progression planning
14

 Compute applicable actions to the current state

 Action(Move(b,x,y),

PRECONDITIONS: On(b,x)  Clear(b)  Clear(y))

 Action(MoveToTable(b,x),

PRECONDITIONS: On(b,x)  Clear(b))

Move(Β,Table,Β)
Preconditions:

 On(Β,Table)

 Clear(Β)

 This is also an applicable action!

Α Β C

On(Α,Table)
On(Β,Table)
On(C,Table)

Clear(Α)
Clear(Β)
Clear(C)

Progression planning
15

 Compute applicable actions to the current state

 Action(Move(b,x,y),

PRECONDITIONS: On(b,x)  Clear(b)  Clear(y))

 Action(MoveToTable(b,x),

PRECONDITIONS: On(b,x)  Clear(b))

MoveTT(Β,Table)
Preconditions:

 On(Β,Table)

 Clear(Β)

 This is also an applicable action!

Α Β C

On(Α,Table)
On(Β,Table)
On(C,Table)

Clear(Α)
Clear(Β)
Clear(C)

Progression planning
16

 Compute applicable actions to the current state

 Action(Move(b,x,y),

PRECONDITIONS: On(b,x)  Clear(b)  Clear(y))

 Action(MoveToTable(b,x),

PRECONDITIONS: On(b,x)  Clear(b))

 Move(Α,Table,Α)

 Move(Β,Table,Β)

 Move(C,Table,C)

 MoveTT(Α,Table)

 MoveTT(Β,Table)

 MoveTT(C,Table)

 All these are applicable also actions!

Α Β C

On(Α,Table)
On(Β,Table)
On(C,Table)

Clear(Α)
Clear(Β)
Clear(C)

Progression planning
17

 Compute the successor states

 Action(Move(b,x,y),
EFFECTS: On(b,y) 

Clear(x) 

On(b,x) 

Clear(y))

Move(Β,Table,C)
Effects:

 On(Β,C)

 Clear(Table)

  On(Β,Table)

 Clear(C)

Α Β C

Α

Β

C

On(Α,Table)
On(Β,Table)
On(C,Table)

Clear(Α)
Clear(Β)
Clear(C)

Progression planning
18

 Compute the successor states

Α Β C

Α

Β

C

Α

CΒ

Α Β

C

Α

ΒC Α

Β

C

Α

C

Β

Move(Α,Table,C)

Move(Α,Table,Β)

Move(C,Table,Β)

Move(Β,Table,C)

Move(Β,Table,Α)

Move(C,Table,Α)

Progression planning
19

 Pick one of the successor states as current..

Α Β C

Α

Β

C

Α

CΒ

Α Β

C

Α

ΒC Α

Β

C

Α

C

Β

Progression planning
20

 ..and repeat!

Α Β C

Α

Β

C

Α

CΒ

Α Β

C

Α

ΒC Α

Β

C

Α

C

Β

Α

Β

C

Progression planning
21

 Pick one of the successor states as current

Α Β C

Α

Β

C

Α

CΒ

Α Β

C

Α

ΒC Α

Β

C

Α

C

Β

Α

Β

C

Progression planning
22

 Is it guaranteed that progressive planning will find

a solution if one exists?

Progression planning
23

 Is it guaranteed that progressive planning will find

a solution if one exists?

Given that the state-space is finite (ground atoms, no

function symbols, finite number of constants)..

 ..Yes! As long as we visit each state only once..

Progression planning
24

 Pick one of the not-visited successor states as current

Α Β C

Α

Β

C

Α

CΒ

Α Β

C

Α

ΒC Α

Β

C

Α

C

Β

Α

Β

C

Progression planning
25

 Is it guaranteed that progressive planning will find

a solution if one exists?

Given that the state-space is finite (ground atoms, no

function symbols, finite number of constants)..

 ..Yes! As long as we visit each state only once..

 But it may have to explore the whole state-space

Progression planning
26

Α Β C

Α

Β

C

Α

Β

C

Α

C

Β

Α

CΒ

Α

Β

C

Α Β

C

Α

Β

C

Α

ΒC

26

Α

Β

C Α

Β

C

Α

C

Β

Α

C

Β

Progression planning
27

 Unlike this simple example, in many problems the state

space is actually huge.

 Even this simple example becomes challenging if we

consider 100 boxes and 1000s of applicable actions

of the form Move(b,x,y) in each state.

 Similar to search problems we can make use of

heuristics that help progression planning pick the most

promising states to investigate first.

28

 A* search

 Evaluation function f(s) = g(s) + h(s)

 g(s): the number of actions needed to reach state s from

the initial state (accurate)

 h(s): the number of actions needed to reach a goal state

from state s (estimated)

 Use f(s) to order the successor states and pick the

most promising one.

Heuristics for progression planning

29

 Consider a heuristic h(s) with the following behavior

Α Β C

Α

Β

C

Α

CΒ

Α Β

C

Α

ΒC Α

Β

C

Α

C

Β

Move(Α,Table,C)

Move(Α,Table,Β)

Move(C,Table,Β)

Move(Β,Table,C)

Move(Β,Table,Α)

Move(C,Table,Α)

g(s)=1

g(s)=1

g(s)=1

g(s)=1

g(s)=1

g(s)=1

h(s)=2

h(s)=1

h(s)=2

h(s)=1

h(s)=2

h(s)=2

Heuristics for progression planning

30

 So why is it different than the usual search problems?
 E.g., in grid-based problems we could define h(s) using a

“relaxed” distance metric such as Manhattan distance.

Heuristics for progression planning

31

 So why is it different than the usual search problems?
 E.g., in grid-based problems we could define h(s) using a

“relaxed” distance metric such as Manhattan distance.

 The action schemas provide valuable information that
can be used to specify domain independent heuristic
functions!

 Moreover they provide a logical specification of

the problem that allows approaches for finding a

solution that are different than search

Heuristics for progression planning

32

 Empty list of preconditions

 h(s) = number of actions needed to achieve the goal if

we assume that all actions are always applicable

 Empty list of negative effects

 h(s) = number of actions needed to achieve the goal if

we disregard the negative effects of actions

 Planning graphs

 Simple example: h(s) = number of literals in the

goal that are missing from s

Heuristics for progression planning

3333

 Start from the initial state

 Check if the current state satisfies the

goal

 Compute applicable actions to the

current state

 Compute the successor states

 Pick one the most promising of the

successor states as the current state

 Repeat until a solution is found or the

state space is exhausted

Heuristics for progression planning

34

 Compute the successor states

Α Β C

Α

Β

C

Α

CΒ

Α Β

C

Α

ΒC Α

Β

C

Α

C

Β

Move(Α,Table,C)

Move(Α,Table,Β)

Move(C,Table,Β)

Move(Β,Table,C)

Move(Β,Table,Α)

Move(C,Table,Α)

g(s)=1

g(s)=1

g(s)=1

g(s)=1

g(s)=1

g(s)=1

h(s)=2

h(s)=1

h(s)=2

h(s)=1

h(s)=2

h(s)=2

Heuristics for progression planning

35

 Compute the successor states

Α Β C

Α

Β

C

Α

CΒ

Α

ΒC Α

Β

C

Α

C

Β

Move(Α,Table,C)

Move(Α,Table,Β)

Move(Β,Table,C)

Move(Β,Table,Α)

Move(C,Table,Α)

g(s)=1

g(s)=1

g(s)=1

g(s)=1

g(s)=1

h(s)=2

h(s)=1

h(s)=1

h(s)=2

h(s)=2Α Β

Cg(s)=1

h(s)=2

Move(C,Table,Β)

Heuristics for progression planning

36

 Pick the most promising successor state wrt f(s)

Α Β C

Α

Β

C

Α

CΒ

Α

ΒC Α

Β

C

Α

C

Β

Move(Α,Table,C)

Move(Α,Table,Β)

Move(Β,Table,C)

Move(Β,Table,Α)

Move(C,Table,Α)

g(s)=1

g(s)=1

g(s)=1

g(s)=1

g(s)=1

h(s)=2

h(s)=1

h(s)=1

h(s)=2

h(s)=2Α Β

Cg(s)=1

h(s)=2

Move(C,Table,Β)

Heuristics for progression planning

37

 Compute the successor states

Α Β C

Α

Β

C

Α

CΒ

Α

ΒC Α

Β

C

Α

C

Β

Move(Β,Table,C)

Move(Β,Table,Α)

Move(C,Table,Α)

g(s)=1 g(s)=1

g(s)=1

g(s)=1

h(s)=2 h(s)=1

h(s)=2

h(s)=2Α Β

Cg(s)=1

h(s)=2

Α

Β

C

Move(C,Table,Α)

g(s)=2

h(s)=1

Move(C,Table,Β)

Move(Α,Table,C)

Heuristics for progression planning

38

 Compute the successor states

Α Β C

Α

Β

C

Α

CΒ

Α

ΒC Α

Β

C

Α

C

Β

Move(Β,Table,C)

Move(Β,Table,Α)

Move(C,Table,Α)

g(s)=1 g(s)=1

g(s)=1

g(s)=1

h(s)=2 h(s)=1

h(s)=2

h(s)=2Α Β

Cg(s)=1

h(s)=2

Α

Β

C

g(s)=2

h(s)=1

Move(C,Table,Β)

Move(Α,Table,C)

Move(C,Table,Α)

Heuristics for progression planning

39

 Pick the most promising successor state wrt f(s)

Α Β C

Α

Β

C

Α

CΒ

Α

ΒC Α

Β

C

Α

C

Β

Move(Β,Table,C)

Move(Β,Table,Α)

Move(C,Table,Α)

g(s)=1 g(s)=1

g(s)=1

g(s)=1

h(s)=2 h(s)=1

h(s)=2

h(s)=2Α Β

Cg(s)=1

h(s)=2

Α

Β

C

g(s)=2

h(s)=1

Move(C,Table,Β)

Move(Α,Table,C)

Move(C,Table,Α)

Heuristics for progression planning

40

 Compute the successor states

Α Β C

Α

Β

C

Α

CΒ

Α

ΒC Α

Β

C

Α

C

Β

Move(Β,Table,Α)

Move(C,Table,Α)

g(s)=1

g(s)=1

g(s)=1

h(s)=2

h(s)=2

h(s)=2Α Β

Cg(s)=1

h(s)=2

Α

Β

C

g(s)=2

h(s)=1

Α

Β

C

g(s)=2

h(s)=0

Move(C,Table,Β)

Move(Α,Table,C)

Move(C,Table,Α)

Move(Α,Table,Β)

Heuristics for progression planning

41

 Compute the successor states

Α Β C

Α

Β

C

Α

CΒ

Α

ΒC Α

Β

C

Α

C

Β

Move(Β,Table,Α)

Move(C,Table,Α)

g(s)=1

g(s)=1

g(s)=1

h(s)=2

h(s)=2

h(s)=2Α Β

Cg(s)=1

h(s)=2

Α

Β

C

g(s)=2

h(s)=1

Α

Β

C

Move(Α,Table,Β)

g(s)=2

h(s)=0

Move(C,Table,Β)

Move(Α,Table,C)

Move(C,Table,Α)

Heuristics for progression planning

42

 Pick the most promising successor state wrt f(s)

Α Β C

Α

Β

C

Α

CΒ

Α

ΒC Α

Β

C

Α

C

Β

Move(Β,Table,Α)

Move(C,Table,Α)

g(s)=1

g(s)=1

g(s)=1

h(s)=2

h(s)=2

h(s)=2Α Β

Cg(s)=1

h(s)=2

Α

Β

C

g(s)=2

h(s)=1

Α

Β

C

Move(C,Table,Β)

Move(Α,Table,C)

Move(C,Table,Α)

Heuristics for progression planning

43

 Start from the goal as current goal

 Check if the initial state satisfies the

current goal

 Compute the relevant and consistent

actions for the current goal

 Compute the predecessor states

 Pick one of the predecessor states as

the current goal

 Repeat until a solution is found or the

state space is exhausted

Regression planning

Research in STRIPS planning
44

 Planning Domain Definition Language (PDDL)

 Formal language for specifying planning problems

 Formal syntax similar to a programming language

 Includes STRIPS and ADL, and many more features

 Provides the ground for performing a direct comparison

between planning techniques and evaluating against

classes of problems

Research in STRIPS planning
45

 Planning Domain Definition Language (PDDL)

 International Planning Competition 1998 – today

 SAT Plan

 TL Plan

 FF

 BlackBox

 SHOP2

 TALPlanner

…

Planning problems in

PDDL, e.g., Blocks

world, Storage, Trucks,

…

Direct comparison between

planning techniques! E.g.,

evaluation of heuristics, …

Research in STRIPS planning
46

 Planning Domain Definition Language (PDDL)

We will see more of PDDL and off-the-shelve planners

in Lecture 3

47

 Lecture 1: Game-inspired competitions for AI research,

AI decision making for non-player characters in games

 Lecture 2: STRIPS planning, state-space search

 Lecture 3: Planning Domain Definition Language (PDDL),

using an award winning planner to solve Sokoban

 Lecture 4: Planning graphs, domain independent

heuristics for STRIPS planning

 Lecture 5: Employing STRIPS planning in games:

SimpleFPS, iThinkUnity3D, SmartWorkersRTS

 Lecture 6: Planning beyond STRIPS

Next lecture

Bibliography
48

Material

 Artificial Intelligence: A Modern Approach 2nd Ed. Stuart Russell,

Peter Norvig. Prentice Hall, 2003 Section 11.2

 References

 PDDL - The Planning Domain Definition Language. Drew

McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin

Ram, Manuela Veloso, Daniel Weld, David Wilkins. Technical

report, Yale Center for Computational Vision and Control, TR-98-

003, 1998.

