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 Lecture 1: Game-inspired competitions for AI research,

AI decision making for non-player characters in games

 Lecture 2: STRIPS planning, state-space search

 Lecture 3: Planning Domain Definition Language (PDDL), 

using an award winning planner to solve Sokoban

 Lecture 4: Planning graphs, domain independent 

heuristics for STRIPS planning

 Lecture 5: Employing STRIPS planning in games: 

SimpleFPS, iThinkUnity3D, SmartWorkersRTS

 Lecture 6: Planning beyond STRIPS

Course overview



STRIPS planning
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 STRIPS! So why do we like this formalism?
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 STRIPS! So why do we like this formalism?

 Simple formalism for representing planning problems

 Easy to compute applicable actions

 Check whether the list of preconditions is a subset of the 

state description: PRECONDITIONS  S

 Easy to compute the successor states

 Add the list of positive effects to the state description and 

remove the list of negative effects:
S’ = (S / NEGATIVE-EFFECTS)  POSITIVE-EFFECTS

 Easy to check if the goal is satisfied

 Check whether the goal is a subset of the state description:

G  S
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 STRIPS! So why do we like this formalism?

 It can already describe difficult and complex problems 

(in more challenging domains than the example we saw)

…let’s see how we can solve this kind of problems



STRIPS planning: state-based search
6

 Finding a solution to the planning problem following 

a state-based search

Init( On(Α,Table)  On(Β,Table)  … )

Goal( On(Α,Β)  …)

Action( Move(b,x,y),

PRECONDITIONS: On(b,x)  …

EFFECTS: On(b,y)  … )

Action( MoveToTable(b,x),

PRECONDITIONS: On(b,x)  …

EFFECTS: On(b,Table)  …)



STRIPS planning: state-based search
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 Finding a solution to the planning problem following 

a state-based search

Init( where to start from )

Goal( when to stop searching )

Action( how to generate 

the “graph” )

 Progression planning: forward state-based search

 Regression planning: backward state-based search
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 Start from the initial state

 Check if the current state satisfies the 

goal

 Compute applicable actions to the 

current state

 Compute the successor states

 Pick one of the successor states as the 

current state

 Repeat until a solution is found or the 

state space is exhausted

Progression planning
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 Start from the initial state

Α Β C

On(Α,Table)
On(Β,Table)
On(C,Table)

Clear(Α)
Clear(Β)
Clear(C)

Progression planning



Progression planning
10

 Check if the current state satisfies the goal 

 No

Α Β C

On(Α,Β)
On(Β,C)

On(Α,Table)
On(Β,Table)
On(C,Table)

Clear(Α)
Clear(Β)
Clear(C)



Progression planning
11

 Compute applicable actions to the current state

 Action( Move(b,x,y),

PRECONDITIONS: On(b,x)  Clear(b)  Clear(y))

 Action( MoveToTable(b,x),

PRECONDITIONS: On(b,x)  Clear(b))

Α Β C

On(Α,Table)
On(Β,Table)
On(C,Table)

Clear(Α)
Clear(Β)
Clear(C)
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 Compute applicable actions to the current state 

 Action( Move(b,x,y),

PRECONDITIONS: On(b,x)  Clear(b)  Clear(y))

 Action( MoveToTable(b,x),

PRECONDITIONS: On(b,x)  Clear(b))

Move(Β,Table,C)
Preconditions:

 On(Β,Table)

 Clear(Β)

 Clear(C)

 Applicable action!

Α Β C

On(Α,Table)
On(Β,Table)
On(C,Table)

Clear(Α)
Clear(Β)
Clear(C)
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 Compute applicable actions to the current state 

 Action( Move(b,x,y),

PRECONDITIONS: On(b,x)  Clear(b)  Clear(y))

 Action( MoveToTable(b,x),

PRECONDITIONS: On(b,x)  Clear(b))

 Move(Α,Table,Β)

 Move(Α,Table,C) 

 Move(Β,Table,Α)

 Move(Β,Table,C)

 Move(C,Table,Α)

 Move(C,Table,Β)

 All these are applicable actions!

Α Β C

On(Α,Table)
On(Β,Table)
On(C,Table)

Clear(Α)
Clear(Β)
Clear(C)
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 Compute applicable actions to the current state 

 Action( Move(b,x,y),

PRECONDITIONS: On(b,x)  Clear(b)  Clear(y))

 Action( MoveToTable(b,x),

PRECONDITIONS: On(b,x)  Clear(b))

Move(Β,Table,Β)
Preconditions:

 On(Β,Table)

 Clear(Β)

 This is also an applicable action!

Α Β C

On(Α,Table)
On(Β,Table)
On(C,Table)

Clear(Α)
Clear(Β)
Clear(C)
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 Compute applicable actions to the current state 

 Action( Move(b,x,y),

PRECONDITIONS: On(b,x)  Clear(b)  Clear(y))

 Action( MoveToTable(b,x),

PRECONDITIONS: On(b,x)  Clear(b))

MoveTT(Β,Table)
Preconditions:

 On(Β,Table)

 Clear(Β)

 This is also an applicable action!

Α Β C

On(Α,Table)
On(Β,Table)
On(C,Table)

Clear(Α)
Clear(Β)
Clear(C)



Progression planning
16

 Compute applicable actions to the current state 

 Action( Move(b,x,y),

PRECONDITIONS: On(b,x)  Clear(b)  Clear(y))

 Action( MoveToTable(b,x),

PRECONDITIONS: On(b,x)  Clear(b))

 Move(Α,Table,Α)

 Move(Β,Table,Β) 

 Move(C,Table,C)

 MoveTT(Α,Table)

 MoveTT(Β,Table)

 MoveTT(C,Table)

 All these are applicable also actions!

Α Β C

On(Α,Table)
On(Β,Table)
On(C,Table)

Clear(Α)
Clear(Β)
Clear(C)
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 Compute the successor states

 Action( Move(b,x,y),
EFFECTS: On(b,y) 

Clear(x) 

On(b,x) 

Clear(y) )

Move(Β,Table,C)
Effects:

 On(Β,C)

 Clear(Table)

  On(Β,Table)

 Clear(C)

Α Β C

Α

Β

C

On(Α,Table)
On(Β,Table)
On(C,Table)

Clear(Α)
Clear(Β)
Clear(C)
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 Compute the successor states

Α Β C

Α

Β

C

Α

CΒ

Α Β

C

Α

ΒC Α

Β

C

Α

C

Β

Move(Α,Table,C)

Move(Α,Table,Β)

Move(C,Table,Β)

Move(Β,Table,C)

Move(Β,Table,Α)

Move(C,Table,Α)
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 Pick one of the successor states as current..

Α Β C

Α

Β

C

Α

CΒ

Α Β

C

Α

ΒC Α

Β

C

Α

C

Β
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 ..and repeat!

Α Β C

Α

Β

C

Α

CΒ

Α Β

C

Α

ΒC Α

Β

C

Α

C

Β

Α

Β

C
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 Pick one of the successor states as current

Α Β C

Α

Β

C

Α

CΒ

Α Β

C

Α

ΒC Α

Β

C

Α

C

Β

Α

Β

C
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 Is it guaranteed that progressive planning will find 

a solution if one exists?
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 Is it guaranteed that progressive planning will find 

a solution if one exists?

Given that the state-space is finite (ground atoms, no 

function symbols, finite number of constants)..

 ..Yes! As long as we visit each state only once..



Progression planning
24

 Pick one of the not-visited successor states as current

Α Β C

Α

Β

C

Α

CΒ

Α Β

C

Α

ΒC Α

Β

C

Α

C

Β

Α

Β

C
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 Is it guaranteed that progressive planning will find 

a solution if one exists?

Given that the state-space is finite (ground atoms, no 

function symbols, finite number of constants)..

 ..Yes! As long as we visit each state only once..

 But it may have to explore the whole state-space



Progression planning
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Α Β C

Α

Β

C

Α

Β

C

Α

C

Β

Α

CΒ

Α

Β

C

Α Β

C

Α

Β

C

Α

ΒC

26

Α

Β

C Α

Β

C

Α

C

Β

Α

C

Β
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 Unlike this simple example, in many problems the state 

space is actually huge.

 Even this simple example becomes challenging if we 

consider 100 boxes and 1000s of applicable actions 

of the form Move(b,x,y) in each state.

 Similar to search problems we can make use of 

heuristics that help progression planning pick the most 

promising states to investigate first.
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 A* search

 Evaluation function f(s) = g(s) + h(s)

 g(s): the number of actions needed to reach state s from 

the initial state (accurate)

 h(s): the number of actions needed to reach a goal state 

from state s (estimated)

 Use f(s) to order the successor states and pick the 

most promising one.

Heuristics for progression planning
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 Consider a heuristic h(s) with the following behavior

Α Β C

Α

Β

C

Α

CΒ

Α Β

C

Α

ΒC Α

Β

C

Α

C

Β

Move(Α,Table,C)

Move(Α,Table,Β)

Move(C,Table,Β)

Move(Β,Table,C)

Move(Β,Table,Α)

Move(C,Table,Α)

g(s)=1

g(s)=1

g(s)=1

g(s)=1

g(s)=1

g(s)=1

h(s)=2

h(s)=1

h(s)=2

h(s)=1

h(s)=2

h(s)=2

Heuristics for progression planning
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 So why is it different than the usual search problems?
 E.g., in grid-based problems we could define h(s) using a 

“relaxed” distance metric such as Manhattan distance.

Heuristics for progression planning
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 So why is it different than the usual search problems?
 E.g., in grid-based problems we could define h(s) using a 

“relaxed” distance metric such as Manhattan distance.

 The action schemas provide valuable information that 
can be used to specify domain independent heuristic 
functions!

 Moreover they provide a logical specification of   

the problem that allows approaches for finding a 

solution that are different than search  

Heuristics for progression planning
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 Empty list of preconditions

 h(s) = number of actions needed to achieve the goal if 

we assume that all actions are always applicable

 Empty list of negative effects

 h(s) = number of actions needed to achieve the goal if 

we disregard the negative effects of actions

 Planning graphs

 Simple example: h(s) = number of literals in the 

goal that are missing from s

Heuristics for progression planning
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 Start from the initial state

 Check if the current state satisfies the 

goal

 Compute applicable actions to the 

current state

 Compute the successor states

 Pick one the most promising of the 

successor states as the current state

 Repeat until a solution is found or the 

state space is exhausted

Heuristics for progression planning
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 Compute the successor states

Α Β C

Α

Β

C

Α

CΒ

Α Β

C

Α

ΒC Α

Β

C

Α

C

Β

Move(Α,Table,C)

Move(Α,Table,Β)

Move(C,Table,Β)

Move(Β,Table,C)

Move(Β,Table,Α)

Move(C,Table,Α)

g(s)=1

g(s)=1

g(s)=1

g(s)=1

g(s)=1

g(s)=1

h(s)=2

h(s)=1

h(s)=2

h(s)=1

h(s)=2

h(s)=2

Heuristics for progression planning
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 Compute the successor states

Α Β C

Α

Β

C

Α

CΒ

Α

ΒC Α

Β

C

Α

C

Β

Move(Α,Table,C)

Move(Α,Table,Β)

Move(Β,Table,C)

Move(Β,Table,Α)

Move(C,Table,Α)

g(s)=1

g(s)=1

g(s)=1

g(s)=1

g(s)=1

h(s)=2

h(s)=1

h(s)=1

h(s)=2

h(s)=2Α Β

Cg(s)=1

h(s)=2

Move(C,Table,Β)

Heuristics for progression planning
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 Pick the most promising successor state wrt f(s) 

Α Β C

Α

Β

C

Α

CΒ

Α

ΒC Α

Β

C

Α

C

Β

Move(Α,Table,C)

Move(Α,Table,Β)

Move(Β,Table,C)

Move(Β,Table,Α)

Move(C,Table,Α)

g(s)=1

g(s)=1

g(s)=1

g(s)=1

g(s)=1

h(s)=2

h(s)=1

h(s)=1

h(s)=2

h(s)=2Α Β

Cg(s)=1

h(s)=2

Move(C,Table,Β)

Heuristics for progression planning
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 Compute the successor states

Α Β C

Α

Β

C

Α

CΒ

Α

ΒC Α

Β

C

Α

C

Β

Move(Β,Table,C)

Move(Β,Table,Α)

Move(C,Table,Α)

g(s)=1 g(s)=1

g(s)=1

g(s)=1

h(s)=2 h(s)=1

h(s)=2

h(s)=2Α Β

Cg(s)=1

h(s)=2

Α

Β

C

Move(C,Table,Α)

g(s)=2

h(s)=1

Move(C,Table,Β)

Move(Α,Table,C)

Heuristics for progression planning
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 Compute the successor states

Α Β C

Α

Β

C

Α

CΒ

Α

ΒC Α

Β

C

Α

C

Β

Move(Β,Table,C)

Move(Β,Table,Α)

Move(C,Table,Α)

g(s)=1 g(s)=1

g(s)=1

g(s)=1

h(s)=2 h(s)=1

h(s)=2

h(s)=2Α Β

Cg(s)=1

h(s)=2

Α

Β

C

g(s)=2

h(s)=1

Move(C,Table,Β)

Move(Α,Table,C)

Move(C,Table,Α)

Heuristics for progression planning



39

 Pick the most promising successor state wrt f(s) 

Α Β C

Α

Β

C

Α

CΒ

Α

ΒC Α

Β

C

Α

C

Β

Move(Β,Table,C)

Move(Β,Table,Α)

Move(C,Table,Α)

g(s)=1 g(s)=1

g(s)=1

g(s)=1

h(s)=2 h(s)=1

h(s)=2

h(s)=2Α Β

Cg(s)=1

h(s)=2

Α

Β

C

g(s)=2

h(s)=1

Move(C,Table,Β)

Move(Α,Table,C)

Move(C,Table,Α)

Heuristics for progression planning
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 Compute the successor states

Α Β C

Α

Β

C

Α

CΒ

Α

ΒC Α

Β

C

Α

C

Β

Move(Β,Table,Α)

Move(C,Table,Α)

g(s)=1

g(s)=1

g(s)=1

h(s)=2

h(s)=2

h(s)=2Α Β

Cg(s)=1

h(s)=2

Α

Β

C

g(s)=2

h(s)=1

Α

Β

C

g(s)=2

h(s)=0

Move(C,Table,Β)

Move(Α,Table,C)

Move(C,Table,Α)

Move(Α,Table,Β)

Heuristics for progression planning
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 Compute the successor states

Α Β C

Α

Β

C

Α

CΒ

Α

ΒC Α

Β

C

Α

C

Β

Move(Β,Table,Α)

Move(C,Table,Α)

g(s)=1

g(s)=1

g(s)=1

h(s)=2

h(s)=2

h(s)=2Α Β

Cg(s)=1

h(s)=2

Α

Β

C

g(s)=2

h(s)=1

Α

Β

C

Move(Α,Table,Β)

g(s)=2

h(s)=0

Move(C,Table,Β)

Move(Α,Table,C)

Move(C,Table,Α)

Heuristics for progression planning
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 Pick the most promising successor state wrt f(s) 

Α Β C

Α

Β

C

Α

CΒ

Α

ΒC Α

Β

C

Α

C

Β

Move(Β,Table,Α)

Move(C,Table,Α)

g(s)=1

g(s)=1

g(s)=1

h(s)=2

h(s)=2

h(s)=2Α Β

Cg(s)=1

h(s)=2

Α

Β

C

g(s)=2

h(s)=1

Α

Β

C

Move(C,Table,Β)

Move(Α,Table,C)

Move(C,Table,Α)

Heuristics for progression planning
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 Start from the goal as current goal

 Check if the initial state satisfies the 

current goal

 Compute the relevant and consistent

actions for the current goal

 Compute the predecessor states

 Pick one of the predecessor states as 

the current goal

 Repeat until a solution is found or the 

state space is exhausted

Regression planning
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 Planning Domain Definition Language (PDDL)

 Formal language for specifying planning problems

 Formal syntax similar to a programming language

 Includes STRIPS and ADL, and many more features

 Provides the ground for performing a direct comparison 

between planning techniques and evaluating against 

classes of problems
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 Planning Domain Definition Language (PDDL)

 International Planning Competition 1998 – today

 SAT Plan

 TL Plan

 FF

 BlackBox

 SHOP2

 TALPlanner

…

Planning problems in 

PDDL, e.g., Blocks 

world, Storage, Trucks, 

…

Direct comparison between 

planning techniques! E.g., 

evaluation of heuristics, …



Research in STRIPS planning
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 Planning Domain Definition Language (PDDL)

We will see more of PDDL and off-the-shelve planners 

in Lecture 3
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 Lecture 1: Game-inspired competitions for AI research,

AI decision making for non-player characters in games

 Lecture 2: STRIPS planning, state-space search

 Lecture 3: Planning Domain Definition Language (PDDL), 

using an award winning planner to solve Sokoban

 Lecture 4: Planning graphs, domain independent 

heuristics for STRIPS planning

 Lecture 5: Employing STRIPS planning in games: 

SimpleFPS, iThinkUnity3D, SmartWorkersRTS

 Lecture 6: Planning beyond STRIPS

Next lecture
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