
INTRODUCTION TO AI

STRIPS PLANNING

.. and Applications to Video-games!

May 2012Stavros Vassos, University of Athens, Greece stavrosv@di.uoa.gr

2

 Lecture 1: Game-inspired competitions for AI research,

AI decision making for non-player characters in games

 Lecture 2: STRIPS planning, state-space search

 Lecture 3: Planning Domain Definition Language (PDDL),

using an award winning planner to solve Sokoban

 Lecture 4: Planning graphs, domain independent

heuristics for STRIPS planning

 Lecture 5: Employing STRIPS planning in games:

SimpleFPS, iThinkUnity3D, SmartWorkersRTS

 Lecture 6: Planning beyond STRIPS

Course overview

STRIPS planning
3

 STRIPS! So why do we like this formalism?

STRIPS planning
4

 STRIPS! So why do we like this formalism?

 Simple formalism for representing planning problems

 Easy to compute applicable actions

 Check whether the list of preconditions is a subset of the

state description: PRECONDITIONS S

 Easy to compute the successor states

 Add the list of positive effects to the state description and

remove the list of negative effects:
S’ = (S / NEGATIVE-EFFECTS) POSITIVE-EFFECTS

 Easy to check if the goal is satisfied

 Check whether the goal is a subset of the state description:

G S

STRIPS planning
5

 STRIPS! So why do we like this formalism?

 It can already describe difficult and complex problems

(in more challenging domains than the example we saw)

…let’s see how we can solve this kind of problems

STRIPS planning: state-based search
6

 Finding a solution to the planning problem following

a state-based search

Init(On(Α,Table) On(Β,Table) …)

Goal(On(Α,Β) …)

Action(Move(b,x,y),

PRECONDITIONS: On(b,x) …

EFFECTS: On(b,y) …)

Action(MoveToTable(b,x),

PRECONDITIONS: On(b,x) …

EFFECTS: On(b,Table) …)

STRIPS planning: state-based search
7

 Finding a solution to the planning problem following

a state-based search

Init(where to start from)

Goal(when to stop searching)

Action(how to generate

the “graph”)

 Progression planning: forward state-based search

 Regression planning: backward state-based search

88

 Start from the initial state

 Check if the current state satisfies the

goal

 Compute applicable actions to the

current state

 Compute the successor states

 Pick one of the successor states as the

current state

 Repeat until a solution is found or the

state space is exhausted

Progression planning

9

 Start from the initial state

Α Β C

On(Α,Table)
On(Β,Table)
On(C,Table)

Clear(Α)
Clear(Β)
Clear(C)

Progression planning

Progression planning
10

 Check if the current state satisfies the goal

 No

Α Β C

On(Α,Β)
On(Β,C)

On(Α,Table)
On(Β,Table)
On(C,Table)

Clear(Α)
Clear(Β)
Clear(C)

Progression planning
11

 Compute applicable actions to the current state

 Action(Move(b,x,y),

PRECONDITIONS: On(b,x) Clear(b) Clear(y))

 Action(MoveToTable(b,x),

PRECONDITIONS: On(b,x) Clear(b))

Α Β C

On(Α,Table)
On(Β,Table)
On(C,Table)

Clear(Α)
Clear(Β)
Clear(C)

Progression planning
12

 Compute applicable actions to the current state

 Action(Move(b,x,y),

PRECONDITIONS: On(b,x) Clear(b) Clear(y))

 Action(MoveToTable(b,x),

PRECONDITIONS: On(b,x) Clear(b))

Move(Β,Table,C)
Preconditions:

 On(Β,Table)

 Clear(Β)

 Clear(C)

 Applicable action!

Α Β C

On(Α,Table)
On(Β,Table)
On(C,Table)

Clear(Α)
Clear(Β)
Clear(C)

Progression planning
13

 Compute applicable actions to the current state

 Action(Move(b,x,y),

PRECONDITIONS: On(b,x) Clear(b) Clear(y))

 Action(MoveToTable(b,x),

PRECONDITIONS: On(b,x) Clear(b))

 Move(Α,Table,Β)

 Move(Α,Table,C)

 Move(Β,Table,Α)

 Move(Β,Table,C)

 Move(C,Table,Α)

 Move(C,Table,Β)

 All these are applicable actions!

Α Β C

On(Α,Table)
On(Β,Table)
On(C,Table)

Clear(Α)
Clear(Β)
Clear(C)

Progression planning
14

 Compute applicable actions to the current state

 Action(Move(b,x,y),

PRECONDITIONS: On(b,x) Clear(b) Clear(y))

 Action(MoveToTable(b,x),

PRECONDITIONS: On(b,x) Clear(b))

Move(Β,Table,Β)
Preconditions:

 On(Β,Table)

 Clear(Β)

 This is also an applicable action!

Α Β C

On(Α,Table)
On(Β,Table)
On(C,Table)

Clear(Α)
Clear(Β)
Clear(C)

Progression planning
15

 Compute applicable actions to the current state

 Action(Move(b,x,y),

PRECONDITIONS: On(b,x) Clear(b) Clear(y))

 Action(MoveToTable(b,x),

PRECONDITIONS: On(b,x) Clear(b))

MoveTT(Β,Table)
Preconditions:

 On(Β,Table)

 Clear(Β)

 This is also an applicable action!

Α Β C

On(Α,Table)
On(Β,Table)
On(C,Table)

Clear(Α)
Clear(Β)
Clear(C)

Progression planning
16

 Compute applicable actions to the current state

 Action(Move(b,x,y),

PRECONDITIONS: On(b,x) Clear(b) Clear(y))

 Action(MoveToTable(b,x),

PRECONDITIONS: On(b,x) Clear(b))

 Move(Α,Table,Α)

 Move(Β,Table,Β)

 Move(C,Table,C)

 MoveTT(Α,Table)

 MoveTT(Β,Table)

 MoveTT(C,Table)

 All these are applicable also actions!

Α Β C

On(Α,Table)
On(Β,Table)
On(C,Table)

Clear(Α)
Clear(Β)
Clear(C)

Progression planning
17

 Compute the successor states

 Action(Move(b,x,y),
EFFECTS: On(b,y)

Clear(x)

On(b,x)

Clear(y))

Move(Β,Table,C)
Effects:

 On(Β,C)

 Clear(Table)

 On(Β,Table)

 Clear(C)

Α Β C

Α

Β

C

On(Α,Table)
On(Β,Table)
On(C,Table)

Clear(Α)
Clear(Β)
Clear(C)

Progression planning
18

 Compute the successor states

Α Β C

Α

Β

C

Α

CΒ

Α Β

C

Α

ΒC Α

Β

C

Α

C

Β

Move(Α,Table,C)

Move(Α,Table,Β)

Move(C,Table,Β)

Move(Β,Table,C)

Move(Β,Table,Α)

Move(C,Table,Α)

Progression planning
19

 Pick one of the successor states as current..

Α Β C

Α

Β

C

Α

CΒ

Α Β

C

Α

ΒC Α

Β

C

Α

C

Β

Progression planning
20

 ..and repeat!

Α Β C

Α

Β

C

Α

CΒ

Α Β

C

Α

ΒC Α

Β

C

Α

C

Β

Α

Β

C

Progression planning
21

 Pick one of the successor states as current

Α Β C

Α

Β

C

Α

CΒ

Α Β

C

Α

ΒC Α

Β

C

Α

C

Β

Α

Β

C

Progression planning
22

 Is it guaranteed that progressive planning will find

a solution if one exists?

Progression planning
23

 Is it guaranteed that progressive planning will find

a solution if one exists?

Given that the state-space is finite (ground atoms, no

function symbols, finite number of constants)..

 ..Yes! As long as we visit each state only once..

Progression planning
24

 Pick one of the not-visited successor states as current

Α Β C

Α

Β

C

Α

CΒ

Α Β

C

Α

ΒC Α

Β

C

Α

C

Β

Α

Β

C

Progression planning
25

 Is it guaranteed that progressive planning will find

a solution if one exists?

Given that the state-space is finite (ground atoms, no

function symbols, finite number of constants)..

 ..Yes! As long as we visit each state only once..

 But it may have to explore the whole state-space

Progression planning
26

Α Β C

Α

Β

C

Α

Β

C

Α

C

Β

Α

CΒ

Α

Β

C

Α Β

C

Α

Β

C

Α

ΒC

26

Α

Β

C Α

Β

C

Α

C

Β

Α

C

Β

Progression planning
27

 Unlike this simple example, in many problems the state

space is actually huge.

 Even this simple example becomes challenging if we

consider 100 boxes and 1000s of applicable actions

of the form Move(b,x,y) in each state.

 Similar to search problems we can make use of

heuristics that help progression planning pick the most

promising states to investigate first.

28

 A* search

 Evaluation function f(s) = g(s) + h(s)

 g(s): the number of actions needed to reach state s from

the initial state (accurate)

 h(s): the number of actions needed to reach a goal state

from state s (estimated)

 Use f(s) to order the successor states and pick the

most promising one.

Heuristics for progression planning

29

 Consider a heuristic h(s) with the following behavior

Α Β C

Α

Β

C

Α

CΒ

Α Β

C

Α

ΒC Α

Β

C

Α

C

Β

Move(Α,Table,C)

Move(Α,Table,Β)

Move(C,Table,Β)

Move(Β,Table,C)

Move(Β,Table,Α)

Move(C,Table,Α)

g(s)=1

g(s)=1

g(s)=1

g(s)=1

g(s)=1

g(s)=1

h(s)=2

h(s)=1

h(s)=2

h(s)=1

h(s)=2

h(s)=2

Heuristics for progression planning

30

 So why is it different than the usual search problems?
 E.g., in grid-based problems we could define h(s) using a

“relaxed” distance metric such as Manhattan distance.

Heuristics for progression planning

31

 So why is it different than the usual search problems?
 E.g., in grid-based problems we could define h(s) using a

“relaxed” distance metric such as Manhattan distance.

 The action schemas provide valuable information that
can be used to specify domain independent heuristic
functions!

 Moreover they provide a logical specification of

the problem that allows approaches for finding a

solution that are different than search

Heuristics for progression planning

32

 Empty list of preconditions

 h(s) = number of actions needed to achieve the goal if

we assume that all actions are always applicable

 Empty list of negative effects

 h(s) = number of actions needed to achieve the goal if

we disregard the negative effects of actions

 Planning graphs

 Simple example: h(s) = number of literals in the

goal that are missing from s

Heuristics for progression planning

3333

 Start from the initial state

 Check if the current state satisfies the

goal

 Compute applicable actions to the

current state

 Compute the successor states

 Pick one the most promising of the

successor states as the current state

 Repeat until a solution is found or the

state space is exhausted

Heuristics for progression planning

34

 Compute the successor states

Α Β C

Α

Β

C

Α

CΒ

Α Β

C

Α

ΒC Α

Β

C

Α

C

Β

Move(Α,Table,C)

Move(Α,Table,Β)

Move(C,Table,Β)

Move(Β,Table,C)

Move(Β,Table,Α)

Move(C,Table,Α)

g(s)=1

g(s)=1

g(s)=1

g(s)=1

g(s)=1

g(s)=1

h(s)=2

h(s)=1

h(s)=2

h(s)=1

h(s)=2

h(s)=2

Heuristics for progression planning

35

 Compute the successor states

Α Β C

Α

Β

C

Α

CΒ

Α

ΒC Α

Β

C

Α

C

Β

Move(Α,Table,C)

Move(Α,Table,Β)

Move(Β,Table,C)

Move(Β,Table,Α)

Move(C,Table,Α)

g(s)=1

g(s)=1

g(s)=1

g(s)=1

g(s)=1

h(s)=2

h(s)=1

h(s)=1

h(s)=2

h(s)=2Α Β

Cg(s)=1

h(s)=2

Move(C,Table,Β)

Heuristics for progression planning

36

 Pick the most promising successor state wrt f(s)

Α Β C

Α

Β

C

Α

CΒ

Α

ΒC Α

Β

C

Α

C

Β

Move(Α,Table,C)

Move(Α,Table,Β)

Move(Β,Table,C)

Move(Β,Table,Α)

Move(C,Table,Α)

g(s)=1

g(s)=1

g(s)=1

g(s)=1

g(s)=1

h(s)=2

h(s)=1

h(s)=1

h(s)=2

h(s)=2Α Β

Cg(s)=1

h(s)=2

Move(C,Table,Β)

Heuristics for progression planning

37

 Compute the successor states

Α Β C

Α

Β

C

Α

CΒ

Α

ΒC Α

Β

C

Α

C

Β

Move(Β,Table,C)

Move(Β,Table,Α)

Move(C,Table,Α)

g(s)=1 g(s)=1

g(s)=1

g(s)=1

h(s)=2 h(s)=1

h(s)=2

h(s)=2Α Β

Cg(s)=1

h(s)=2

Α

Β

C

Move(C,Table,Α)

g(s)=2

h(s)=1

Move(C,Table,Β)

Move(Α,Table,C)

Heuristics for progression planning

38

 Compute the successor states

Α Β C

Α

Β

C

Α

CΒ

Α

ΒC Α

Β

C

Α

C

Β

Move(Β,Table,C)

Move(Β,Table,Α)

Move(C,Table,Α)

g(s)=1 g(s)=1

g(s)=1

g(s)=1

h(s)=2 h(s)=1

h(s)=2

h(s)=2Α Β

Cg(s)=1

h(s)=2

Α

Β

C

g(s)=2

h(s)=1

Move(C,Table,Β)

Move(Α,Table,C)

Move(C,Table,Α)

Heuristics for progression planning

39

 Pick the most promising successor state wrt f(s)

Α Β C

Α

Β

C

Α

CΒ

Α

ΒC Α

Β

C

Α

C

Β

Move(Β,Table,C)

Move(Β,Table,Α)

Move(C,Table,Α)

g(s)=1 g(s)=1

g(s)=1

g(s)=1

h(s)=2 h(s)=1

h(s)=2

h(s)=2Α Β

Cg(s)=1

h(s)=2

Α

Β

C

g(s)=2

h(s)=1

Move(C,Table,Β)

Move(Α,Table,C)

Move(C,Table,Α)

Heuristics for progression planning

40

 Compute the successor states

Α Β C

Α

Β

C

Α

CΒ

Α

ΒC Α

Β

C

Α

C

Β

Move(Β,Table,Α)

Move(C,Table,Α)

g(s)=1

g(s)=1

g(s)=1

h(s)=2

h(s)=2

h(s)=2Α Β

Cg(s)=1

h(s)=2

Α

Β

C

g(s)=2

h(s)=1

Α

Β

C

g(s)=2

h(s)=0

Move(C,Table,Β)

Move(Α,Table,C)

Move(C,Table,Α)

Move(Α,Table,Β)

Heuristics for progression planning

41

 Compute the successor states

Α Β C

Α

Β

C

Α

CΒ

Α

ΒC Α

Β

C

Α

C

Β

Move(Β,Table,Α)

Move(C,Table,Α)

g(s)=1

g(s)=1

g(s)=1

h(s)=2

h(s)=2

h(s)=2Α Β

Cg(s)=1

h(s)=2

Α

Β

C

g(s)=2

h(s)=1

Α

Β

C

Move(Α,Table,Β)

g(s)=2

h(s)=0

Move(C,Table,Β)

Move(Α,Table,C)

Move(C,Table,Α)

Heuristics for progression planning

42

 Pick the most promising successor state wrt f(s)

Α Β C

Α

Β

C

Α

CΒ

Α

ΒC Α

Β

C

Α

C

Β

Move(Β,Table,Α)

Move(C,Table,Α)

g(s)=1

g(s)=1

g(s)=1

h(s)=2

h(s)=2

h(s)=2Α Β

Cg(s)=1

h(s)=2

Α

Β

C

g(s)=2

h(s)=1

Α

Β

C

Move(C,Table,Β)

Move(Α,Table,C)

Move(C,Table,Α)

Heuristics for progression planning

43

 Start from the goal as current goal

 Check if the initial state satisfies the

current goal

 Compute the relevant and consistent

actions for the current goal

 Compute the predecessor states

 Pick one of the predecessor states as

the current goal

 Repeat until a solution is found or the

state space is exhausted

Regression planning

Research in STRIPS planning
44

 Planning Domain Definition Language (PDDL)

 Formal language for specifying planning problems

 Formal syntax similar to a programming language

 Includes STRIPS and ADL, and many more features

 Provides the ground for performing a direct comparison

between planning techniques and evaluating against

classes of problems

Research in STRIPS planning
45

 Planning Domain Definition Language (PDDL)

 International Planning Competition 1998 – today

 SAT Plan

 TL Plan

 FF

 BlackBox

 SHOP2

 TALPlanner

…

Planning problems in

PDDL, e.g., Blocks

world, Storage, Trucks,

…

Direct comparison between

planning techniques! E.g.,

evaluation of heuristics, …

Research in STRIPS planning
46

 Planning Domain Definition Language (PDDL)

We will see more of PDDL and off-the-shelve planners

in Lecture 3

47

 Lecture 1: Game-inspired competitions for AI research,

AI decision making for non-player characters in games

 Lecture 2: STRIPS planning, state-space search

 Lecture 3: Planning Domain Definition Language (PDDL),

using an award winning planner to solve Sokoban

 Lecture 4: Planning graphs, domain independent

heuristics for STRIPS planning

 Lecture 5: Employing STRIPS planning in games:

SimpleFPS, iThinkUnity3D, SmartWorkersRTS

 Lecture 6: Planning beyond STRIPS

Next lecture

Bibliography
48

Material

 Artificial Intelligence: A Modern Approach 2nd Ed. Stuart Russell,

Peter Norvig. Prentice Hall, 2003 Section 11.2

 References

 PDDL - The Planning Domain Definition Language. Drew

McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin

Ram, Manuela Veloso, Daniel Weld, David Wilkins. Technical

report, Yale Center for Computational Vision and Control, TR-98-

003, 1998.

