Stavros Vassos, University of Athens, Greece stavrosv@di.uoa.gr May 2012

INTRODUCTION TO Al
STRIPS PLANNING

Course overview

Lecture 1: Game-inspired competitions for Al research,
Al decision making for non-player characters in games

Lecture 2: STRIPS planning, state-space search

Lecture 3: Planning Domain Definition Language (PDDL),
using an award winning planner to solve Sokoban

Lecture 4: Planning graphs, domain independent
heuristics for STRIPS planning

Lecture 5: Employing STRIPS planning in games:
SimpleFPS, iThinkUnity3D, SmartWorkersRTS

Lecture 6: Planning beyond STRIPS

STRIPS planning

What we have seen so far
The STRIPS formalism for specifying planning problems
Solving planning problems using state-based search
Progression planning

Simple heuristics for progression planning

Can we take advantage of the information that
action schemas hold to do better?

Planning graphs

Action schemas provide useful information about the
interaction between actions

E.g., action A cannot take place right after B
because A cancels a precondition of B

There are many more (and more complex)
conditions that would be valuable to identify!

Course overview

Lecture 1: Game-inspired competitions for Al research,
Al decision making for non-player characters in games

Lecture 2: STRIPS planning, state-space search

Lecture 3: Planning Domain Definition Language (PDDL),
using an award winning planner to solve Sokoban

Lecture 4: Planning graphs, domain independent
heuristics for STRIPS planning

Lecture 5: Employing STRIPS planning in games:
SimpleFPS, iThinkUnity3D, SmartWorkersRTS

Lecture 6: Planning beyond STRIPS

Planning graphs

Planning graph
Special data structure
Consists of a sequence of levels

Stores the effects of all applicable actions at every
level as if they were all happening concurrently

Stores some basic mutual exclusion constraints
between actions and literals

Planning graphs

\l

On(A,Table)

On(B,Table)

On(C,Table)
Clear(A)
Clear(B)
Clear(C)

~

)

Move(B,Table,C)

\8

~

po

~

\

N

On(A,Table)
On(B,C)
On(C,Table)
Clear(A)
Clear(B)

Clear(Table)

)

~

\

On(A,B)
On(B,C)
On(C,Table)
Clear(A)
Clear(Table)

N

)

Move(A,Table,B)

Planning graphs

8
C I C) C
?7?? ?7??
jrleich g))

On(A,Table) [\ [\

On(B,Table)

On(C,Table) 399 399
Clear(A) HEHH HEHH
Clear(B)

Clear(C
N l Y l Y

Planning graphs

\l

On(A,Table)

On(B,Table)

On(C,Table)
Clear(A)
Clear(B)
Clear(C)

Move(B,Table,C)

-~

&

o

>

b/
On(A,Table) \
On(B,Table)
On(C,Table)
Clear(A)
Clear(B)
Clear(C)
On(B,C)

—On(B,Table)

k —Clear(C) /

- D
?7?7?

N J
4)
?7??

S /

Planning graphs

\l

On(A,Table)

On(B,Table)

On(C,Table)
Clear(A)
Clear(B)
Clear(C)

Move(A,Table,C)

Aq

4)

A
me-ich

b/
/ On(A,Table) \

On(B,Table)
On(C,Table)
Clear(A)
Clear(B)
Clear(C)
On(A,Q)

—On(A,Table)

k —Clear(C) /

- D
?7?7?

N J
4)
?7??

S /

Planning graphs

11
f A (m (
oo i
/ On(A,Table) \\ / \
On(A,Table) v On(B,Table)
On(B,Table) Move(B,Table,C) On(C,Table)
On(C,Table) Clear(A)
Clear(A) Move(A,Table,C) Clear(B) ???
Clear(B) Clear(C)
Clear(C
Nk N y

Aq

94 W

Planning graphs

\l

On(A,Table)

On(B,Table)

On(C,Table)
Clear(A)
Clear(B)
Clear(C)

Move(B,Table,C)

-

Move(A,Table,C)

Aq

On(A,Table)
On(B,Table)
On(C,Table)
Clear(A)
Clear(B)
Clear(C)
On(B,C)
—On(B,Table)
On(A,C)
On(A,Table)
—Clear(C)

\

- D
?7?7?

N J
4)
?7??

S /

Planning graphs

13|
4) 7 == 4
\ 2??
m Move(A,Table,B)
& D/ \ /
Move(C,Table,B)
&)
On(A,Table) Move(B,Table,C) \
On(B,Table)
On(C,Table)
Clear(A) Move(A,Table,C) ???
Clear(B) ()
Clear(C) Move(B,Table,A
- Move(C,Table,A) | A /
AO

Planning graphs

Planning graph
Special data structure
Consists of a sequence of levels

Stores the effects of all applicable actions at every
level as if they were all happening concurrently

Stores some basic mutual exclusion constraints
between actions and literals

Artificial Intelligence "
A Modern Approach

.. Let’s see an (even) simpler example!

Planning graphs

Init(Have(Cake))
Goal(Have(Cake) A Eaten(Cake))

Action(Eat(Cake)
PRECONDITIONS: Have(Cake)

EFFECTS: —Have(Cake) A Eaten(Cake))

Action(Bake(Cake),
PRECONDITIONS: —Have(Cake)

EFFECTS: Have(Cake))

Planning graphs

Planning graph

Consists of a sequence of levels that specify how the initial
state is transformed under the effects of actions

At each level i we specify
A list of literals S,
A list of actions A,

4 kinds of constraints or mutual exclusion links between literals
in S; and actions in A,

Planning graphs

1 Level O
S,: the positive literals of the initial state as well as the
negative literals implied by the closed world assumption
& Have(C) A
_I Eaten(C) J

Planning graphs
B

1 Level O

o We will see now how to specify Ay and S,

4)
Have(C)

" Eaten(C) Y,

>
o
>

ﬂ

[N
ﬂ
N

Planning graphs

19
o1 Level O
o A, the applicable actions in the initial state
4) 4)
Have(C)
E(C)
" Eaten(C)) _) _)
A, A,

Planning graphs
I

1 Level O

0 S;: the effects of actions that appear in A,

4) 4)
Have(C)
| — H C
dve()
| Eaten(C)
" Eaten(C)) _) _)
AO Al

Sz

Planning graphs
N

1 Level O

1 We’'re not done yet!

4) 4)
Have(C)
| = Have(C)
| Eaten(C)
" Eaten(C)) _) _)
A, A,

"sy Sz

Planning graphs
T

o1 Level O
o1 We’'re not done yet!

01 Also add persistence actions that denote “inaction”

Have(C) S (Have(C) g h
| = Have(C)
| Eaten(C)
" Eaten(C) J——-|:|_C Eaten(C)) _)
AO Al

Planning graphs

1 Level O

01 A persistent action specifies that a literal does not
change truth value between levels, e.g., here — Eaten(C)

Have(C) S (Have(C) b 4 h
| = Have(C)
| Eaten(C)
" Eaten(C) J——-|:|_C Eaten(C) Y, N Y,

S

Planning graphs
N
11 Level O

o1 We’'re not done yet!

1 Mutual exclusion links

Have(C) S (Have(C) A é A
| = Have(C)
| Eaten(C)
" Eaten(C) rd:h—c Eaten(C)) _)

A, A,

Planning graphs

Mutual exclusion links (mutex)
Inconsistent effects
Interference
Inconsistent support

Competing needs

Planning graphs
N

1 Two actions have inconsistent effects when:

1 One action cancels the effect of the other action

Have(C)

)
| EEEEI

| Eaten(C)

" Eaten(C) J——-|:|_C Eaten(C))

m E.g., action E(C) and the persistent action for Have(Cake) have
inconsistent effects

-

o

Planning graphs

c27 |
1 Two actions have inconsistent effects when:

1 One action cancels the effect of the other action

m Same for action E(C) and the persistent action for mEaten(C)

4)

Have(C) (Have(C)

| = Have(C)

Eaten(C)

_I

Planning graphs

28 f
1 Two actions have an interference when:

o1 One effect of one action is the negation of a precondition
for the other action

m E.g., action E(C) and the persistent action for Have(C)

((Have(C) e b
| Eaten(C)
" Eaten(C) C Eaten(C)) _)

Planning graphs
I

o Two literals have inconsistent support when:

o1 One literal is the negation of the other literal
w E.g., mHave(C) and Have(C)

p

Have(C)

Eaten(C)

Eaten(C)

C Eaten(C)

_I

Planning graphs
o

o Two literals have inconsistent support when:

o1 Every possible pair of action that have these literals as
effects are marked as mutually exclusive

4)
Have(C)

Eaten(C)

_I

Planning graphs
I

1 Two actions have competing needs when:

A precondition of one action is mutually exclusive with a
precondition of the other action

m Does not arise in this domain

Have(C) Have(C)
| = Have(C)
Eaten(C)
" Eaten(C) t- Eaten(C) N

Planning graphs

32
71 Level O
1 We are (finally) done!

4)

Have(C) Have(C)

| = Have(C)

Eaten(C)
" Eaten(C) C Eaten(C) _)

"sy Sz

Planning graphs
T

7 What kind of information does the graph provide so
fare

C I
Have(C) Have(C)
| = Have(C)
Eaten(C)
& Eaten(C) O Eaten(C) _)

Planning graphs
=

o1 A pair of mutually exclusive literals cannot be realized
from the actions of Level O!

o1 E.g., the goal cannot be achieved with these actions

4)
Have(C)

Eaten(C)

_I

Planning graphs

>

&
N

35
0 Level 1

o We will specify A; and S,
I I
I I
[4 l

Have(C) Have(C)
| = Have(C) : :
I I
Eaten(C) I l
" Eaten(C) C Eaten(C) [N Y, [
I I
I
I

Planning graphs

36
0 Level 1
o A;: the applicable actions in S; (at least those in A,)
0 S,: the effects of actions in A, (at least those in ;)
~
Have(C) Have(C) Have(C)
| = Have(C) — Have(C)
Eaten(C) Eaten(C)
" Eaten(C) C Eaten(C) — Eaten(C))

S

Planning graphs

0 Level 1
o A;: the applicable actions in S, (and more!)
0 S,: the effects of actions in A,
o
Have(C) Have(C) Have(C)
| = Have(C) — Have(C)
Eaten(C) Eaten(C)
" Eaten(C) C Eaten(C) — Eaten(C))

Planning graphs

_ 38|
0 Level 1
o A;: the applicable actions in S, (and more!)
0 S,: the effects of actions in A,
o
Have(C) Have(C) Have(C)
| = Have(C) — Have(C)
Eaten(C) Eaten(C)
" Eaten(C) C Eaten(C) — Eaten(C))

Planning graphs

39
o Level 1
= Mutual exclusive links

DY

Have(C) Have(C) Have(C)

| = Have(C) — Have(C)

Eaten(C) Eaten(C)
" Eaten(C) C Eaten(C) — Eaten(C))

Sz

Planning graphs

40 |
0 Level 1
= Mutual exclusive links

o1 Inconsistent effects between persistence actions
\
Have(C) Have(C) _
—HovelC Havel©)

Eaten(C) Eaten(C)

" Eaten(C) C Eaten(C) — Eaten(C))

Sz

Planning graphs

41
0 Level 1
o1 Mutual exclusive links

o Inconsistent effects between B(C), E(C) and persistence actions
>
Have(C) Have(C) | Have(©) |
ol Heveld)

Eaten(C) Eaten(C)

" Eaten(C) C Eaten(C) — Eaten(C))

Planning graphs

42
0 Level 1
o1 Mutual exclusive links
o Inconsistent effects between B(C), E(C) and persistence actions
>
Have(C) Have(C) | Have(©) |
ol Heveld)
Eaten(C) Eaten(C)
" Eaten(C) C Eaten(C) — Eaten(C))

Al

Planning graphs

43
0 Level 1
= Mutual exclusive links
o Competing needs between persistence actions!
\
Have(C) Have(C)
— Have(C)
Eaten(C)
" Eaten(C) — Eaten(C) Y,

Planning graphs

44
1 Level 1
=1 Mutual exclusive links
=1 No more mutexes between actions
\
Have(C) Have(C) Have(C)
| = Have(C) — Have(C)
Eaten(C) Eaten(C)
" Eaten(C) C Eaten(C) — Eaten(C))

Al

Planning graphs

45
0 Level 1
= Mutual exclusive links
o There are mutexes between literals in S, though
Have(C) Have(C) Have(C)
| = Have(C) — Have(C)
Eaten(C) Eaten(C)
" Eaten(C) C Eaten(C) — Eaten(C)

Al

Planning graphs

46
0 Level 1
1 Mutual exclusive links
o Between literals —Have(C) and —Eaten(C) in S,
Have(C) Have(C) Have(C)
| = Have(C)
Eaten(C) Eaten(C)
" Eaten(C) C Eaten(C)

Al

Planning graphs

0 Level 1
1 Mutual exclusive links
o Between literals —Have(C) and —Eaten(C) in S,
Have(C) Have(C) Have(C)
| = Have(C)
Eaten(C) Eaten(C)
" Eaten(C) C Eaten(C)

Al

Planning graphs

48
0 Level 1
1 Mutual exclusive links
o Between literals —Have(C) and —Eaten(C) in S,
Have(C) Have(C) Have(C)
| = Have(C)
Eaten(C) Eaten(C)
" Eaten(C) C Eaten(C)

Planning graphs

49
0 Level 1
1 We are (finally) done!
Have(C) Have(C) Have(C)
| = Have(C) — Have(C)
Eaten(C) Eaten(C)
" Eaten(C) C Eaten(C) — Eaten(C)

Al

Planning graphs

7 What information can we get from the graph now?

_I

Have(C)

Eaten(C)

Have(C)

| = Have(C)

Eaten(C)

C Eaten(C)

Have(C)

— Have(C)

Eaten(C)

— Eaten(C)

Planning graphs
s

7 What information can we get from the graph now?

o1 Note that literals Have(C) and Eaten(C) are not mutually
exclusive in S, !l

Have(C) Have(C)
| = Have(C) %5 = — Have(C)
Eaten(C)
" Eaten(C) C Eaten(C) ' — Eaten(C)

Planning graphs
s

7 What information can we get from the graph now?

o Note that literals Have(C) and Eaten(C) can be realized in A;
by the actions {B(C), persistence of Eaten(C)}

Have(C) Have(C)
| = Have(C) — Have(C)
Eaten(C)
" Eaten(C) C Eaten(C)

Al
S

Planning graphs
s

7 What information can we get from the graph now?

1 In turn actions {B(C), persistence of Eaten(C)} require that
— Have(C) and Eaten(C) hold in S,

Have(C)

— Have(C)

Eaten(C)

_I

Planning graphs
=

7 What information can we get from the graph now?

o Note that literals Have(C) and Eaten(C) can be realized in A,
by the action E(C)

Have(C)

— Have(C)

Eaten(C)

_I

Planning graphs
s

7 What information can we get from the graph now?
o In turn E(C) requires that Have(C) holds in S which is true!

p
| HavelQ)

— Have(C)

Eaten(C)

A A
: 1

_I

Planning graphs
s

7 What information can we get from the graph now?

01 So, actions {E(C)} and {B(C), persistence of Eaten(C)}
can actually achieve the goal!

Have(C) Have(C) Have(C)

| = Have(C) — Have(C)

Eaten(C) Eaten(C)

" Eaten(C) C Eaten(C) — Eaten(C)

Aq

Al
S

Planning graphs

A ...,
o1 Planning graph

Planning graphs

Planning graph

When do we stop calculating levels?

When two consecutive levels are identical *

How do we know this will happen at some point?

Literals and actions increase monotonically, while
mutexes decrease monotonically (why is this so?)

Planning graphs

Planning graph

Special data structure

Easy to compute: polynomial complexity!

Can be used by the GRAPHPLAN algorithm to search

for a solution (following similar reasoning as in the
example)

Can be used as a guideline for heuristic functions for
progressive planning that are more accurate than the
ones we sketched in Lecture 2

Bibliography

1 Material

m Artificial Intelligence: A Modern Approach 2nd Ed. Stuart Russell,
Peter Norvig. Prentice Hall, 2003 Section 11.4

