
INTRODUCTION TO AI

STRIPS PLANNING

.. and Applications to Video-games!

May 2012Stavros Vassos, University of Athens, Greece stavrosv@di.uoa.gr

2

 Lecture 1: Game-inspired competitions for AI research,

AI decision making for non-player characters in games

 Lecture 2: STRIPS planning, state-space search

 Lecture 3: Planning Domain Definition Language (PDDL),

using an award winning planner to solve Sokoban

 Lecture 4: Planning graphs, domain independent

heuristics for STRIPS planning

 Lecture 5: Employing STRIPS planning in games:

SimpleFPS, iThinkUnity3D, SmartWorkersRTS

 Lecture 6: Planning beyond STRIPS

Course overview

Planning graphs
3

Α0
s0 s1 s2

Α1

Have(C)

E(C)
 Have(C)

Eaten(C)

 Eaten(C)  Eaten(C)

Have(C)

E(C)

Have(C)

 Have(C)

 Eaten(C)

Eaten(C)

Β(C)

 Planning graph

Planning graphs

 Planning graph

 Special data structure

 Easy to compute: polynomial complexity!

 Can be used by the GRAPHPLAN algorithm to search

for a solution (following similar reasoning as in the

example)

 Can be used as a guideline for heuristic functions for

progressive planning that are more accurate than the

ones we sketched in Lecture 1

4

Planning graphs

 Planning graph

 Special data structure

 Easy to compute: polynomial complexity!

 Can be used by the GRAPHPLAN algorithm to search

for a solution (following similar reasoning as in the

example)

 Can be used as a guideline for heuristic functions for

progressive planning that are more accurate than the

ones we sketched in Lecture 1

5

Planning graphs

 Planning graph

 Computing the graph

has polynomial

complexity

 STRIPS planning

 Finding a solution is

PSPACE-complete

 Where’s the

complexity hiding?

6

Planning graphs

 Planning graph

 Computing the graph

has polynomial

complexity

 Finding a solution

using the graph is

NP-complete, while

we may also need to

extend the graph a

finite number of

times…  PSPACE

7

Planning graphs

 Planning graph

 Special data structure

 Easy to compute: polynomial complexity!

 Can be used by the GRAPHPLAN algorithm to search

for a solution (following similar reasoning as in the

example)

 Can be used as a guideline for heuristic functions for

progressive planning that are more accurate than the

ones we sketched in Lecture 2

8

99

 Start from the initial state

 Check if the current state satisfies the

goal

 Compute applicable actions to the

current state

 Compute the successor states

 Pick one the most promising of the

successor states as the current state

 Repeat until a solution is found or the

state space is exhausted

Planning graphs

1010

 Start from the initial state

 Check if the current state satisfies the

goal

 Compute applicable actions to the

current state

 Compute the successor states

 Pick one the most promising of the

successor states as the current state

 Repeat until a solution is found or the

state space is exhausted

Planning graphs

PG1 PG2 PG3 PG4

Compute a planning graph for each

successor state to estimate goal distance

Planning graphs

 Heuristic functions based on planning graphs

 Level cost: the level where a literal appears in the

graph for the first time

 Note: A literal that does not appear in the final level of the

graph cannot be achieved by any plan!

Max-level: the max of the level cost for each sub-goal

 Sum-level: the sum of the level cost for each sub-goal

 Set-level: the first level that all sub-goals appear

together without mutexes

11

1212

 Start from the initial state

 Check if the current state satisfies the

goal

 Compute applicable actions to the

current state

 Compute the successor states

 Pick one the most promising of the

successor states as the current state

 Repeat until a solution is found or the

state space is exhausted

Planning graphs

PG0

As an example let’s see the heuristics for

the planning graph from the initial state

Planning graphs
13

Α0
s0 s1 s2

Α1

Have(C)

E(C)
 Have(C)

Eaten(C)

 Eaten(C)  Eaten(C)

Have(C)

E(C)

Have(C)

 Have(C)

 Eaten(C)

Eaten(C)

Β(C)

 Level cost for sub-goal Have(C) = 0

 Level cost for sub-goal Eaten(C) = 1

 Sum/Max-level heuristic = 1

Planning graphs
14

Α0
s0 s1 s2

Α1

Have(C)

E(C)
 Have(C)

Eaten(C)

 Eaten(C)  Eaten(C)

Have(C)

E(C)

Have(C)

 Have(C)

 Eaten(C)

Eaten(C)

Β(C)

 Level cost for sub-goal Have(C) = 0

 Level cost for sub-goal Eaten(C) = 1

 Set-level heuristic = 2

Planning graphs

 Heuristic functions based on planning graphs

 As building the planning graph is relatively cheap

(polynomial) we can build one for every state we want

to evaluate and use Sum/Max/Set-level to estimate the

distance to the goal

 As long as the heuristic provides good estimates, the

time spent to calculate the planning graphs pays off

because it helps us bypass big parts of the search

space

15

1616

 Start from the initial state

 Check if the current state satisfies the

goal

 Compute applicable actions to the

current state

 Compute the successor states

 Pick one the most promising of the

successor states as the current state

 Repeat until a solution is found or the

state space is exhausted

Planning graphs

PG1 PG2 PG3 PG4

PG5 PG6 PG7

PG8 PG9

1717

 Start from the initial state

 Check if the current state satisfies the

goal

 Compute applicable actions to the

current state

 Compute the successor states

 Pick one the most promising of the

successor states as the current state

 Repeat until a solution is found or the

state space is exhausted

Planning graphs

PG1 PG2 PG3 PG4

PG5 PG6 PG7

PG8 PG9

Here: computing 9 PGs may have helped

search a state-space of 1000s of nodes

Relaxed planning task

 Let’s look closer now to one idea we discussed briefly

in Lecture 2

 Same as we did with planning graphs, but instead

solve a relaxed (i.e., simpler) planning task in

order to estimate the goal distance

 Relaxation: Assume an empty list of preconditions

18

1919

 Start from the initial state

 Check if the current state satisfies the

goal

 Compute applicable actions to the

current state

 Compute the successor states

 Pick one the most promising of the

successor states as the current state

 Repeat until a solution is found or the

state space is exhausted

Relaxed planning task

RP1 RP2 RP3 RP4

Relaxed planning task

 Planning graph

 Computing the graph
has polynomial
complexity

 Empty list of
preconditions

 Finding a solution to
the relaxed planning
task is polynomial

OK, but not very
informative

20

21

 Empty list of preconditions

 Initial state

Goal

Without preconditions you can move each block to the

desired position in one step: push(block, from, to, dir)

 From every state the goal is at most three actions away

Relaxed planning task

Relaxed planning task

 Let’s look closer now to one idea we discussed briefly

in Lecture 1

 Same as we did with planning graphs, but instead

solve a relaxed (i.e., simpler) planning task in

order to estimate the goal distance

 Relaxation: Assume an empty list of negative effects

22

2323

 Start from the initial state

 Check if the current state satisfies the

goal

 Compute applicable actions to the

current state

 Compute the successor states

 Pick one the most promising of the

successor states as the current state

 Repeat until a solution is found or the

state space is exhausted

Relaxed planning task

RP1 RP2 RP3 RP4

Relaxed planning task

 Planning graph

 Computing the graph

has polynomial

complexity

 Empty list of

negative effects

 Finding a solution to

the relaxed planning

task is NP-complete

 It’s not helping…

24

Relaxed planning task

 Planning graph

 Computing the graph

has polynomial

complexity

 Empty list of

negative effects

 Finding a solution to

the relaxed planning

task is NP-complete

 We can estimate it!

25

Relaxed planning task: hadd, hmax
26

 Build a graph that approximates the cost of achieving
literal p from state s [Bonet, Geffner 2001]

 Initialize the graph with literals in s having cost 0

 For every action a such that p is a positive effect, add p
and set the cost of p by combining the cost of achieving
the preconditions of a

 Build the graph iteratively keeping the minimum cost when
a literal p re-appears

 The way the cost is combined for two literals defines the
heuristic: hadd, hmax

Relaxed planning task: hadd, hmax
27

 Initialize the graph with literals in s having cost 0

P1: 0

P2: 0

P3: 0

P4: 0

s0

Relaxed planning task: hadd, hmax
28

 For every action a such that p is a positive effect,

add p and set the cost of p by combining the cost of

achieving the preconditions of a

P1: 0

P2: 0

P3: 0

P4: 0

s0

A2 P6:

A1 P5:

Relaxed planning task: hadd, hmax
29

 For every action a such that p is a positive effect,

add p and set the cost of p by combining the cost of

achieving the preconditions of a

P1: 0

P2: 0

P3: 0

P4: 0

s0

Additive heuristic hadd: sum

the cost of preconditions +1

A2 P6: (0+0)+1=1

A1 P5: (0+0)+1=1

Relaxed planning task: hadd, hmax
30

 For every action a such that p is a positive effect,

add p and set the cost of p by combining the cost of

achieving the preconditions of a

P1: 0

P2: 0

P3: 0

P4: 0

s0

Additive heuristic hadd: sum

the cost of preconditions +1

A3
A2 P6: (0+0)+1=1

A1 P5: (0+0)+1=1

P7: (1+1)+1=3

Relaxed planning task: hadd, hmax
31

 Build the graph iteratively keeping the minimum cost

when a literal p re-appears

 (similar to planning graphs, stop when no changes arise)

P1: 0

P2: 0

P3: 0

P4: 0

s0

Additive heuristic hadd: sum

the cost of preconditions +1

A2 P6: (0+0)+1=1

A1 P5: (0+0)+1=1

A3 P7: (1+1)+1=3

Relaxed planning task: hadd, hmax
32

 Build the graph iteratively keeping the minimum cost

when a literal p re-appears

P1: 0

P2: 0

P3: 0

P4: 0

s0

A2 P6: (0+0)+1=1

A1 P5: (0+0)+1=1

Additive heuristic hadd: sum

the cost of preconditions +1

A3 P7: (1+1)+1=3

Max heuristic hmax:

max cost of precond +1

P7: (1)+1 =2

Relaxed planning task: hadd, hmax

 Planning graph

 Computing the graph

has polynomial

complexity

 Empty list of

negative effects

 Finding a solution to

the relaxed planning

task is NP-complete

 We can estimate it!

33

Relaxed planning task: hadd, hmax
34

 Additive heuristic hadd: sum the cost of preconditions

 Max heuristic hmax: max cost of preconditions

 Observation 1: These heuristics assume goal

independence, therefore miss useful information

Relaxed planning task: hadd, hmax
35

 Note: literals appear at most once in this graph; the

iteration in which they appear is a lower-bound of

the estimated cost

P1: 0

P2: 0

P3: 0

P4: 0

s0

A2 P6: (0+0)+1=1

A1 P5: (0+0)+1=1

Additive heuristic hadd: sum

the cost of preconditions +1

A3 P7: (1+1)+1=3

Max heuristic hmax:

max cost of precond +1

P7: (1)+1 =2

Relaxed planning task: hadd, hmax
36

 Additive heuristic hadd: sum the cost of preconditions

 Max heuristic hmax: max cost of preconditions

 Observation 1: These heuristics assume goal

independence, therefore miss useful information

 Observation 2: Planning graphs keep track of how

actions interact, and look like the graphs we examined

Planning graphs
37

Α0
s0 s1 s2

Α1

Have(C)

E(C)
 Have(C)

Eaten(C)

 Eaten(C)  Eaten(C)

Have(C)

E(C)

Have(C)

 Have(C)

 Eaten(C)

Eaten(C)

Β(C)

 Note: literals are structured in increasingly larger

layers which also keep track of how actions interact

Relaxed planning task: hadd, hmax
38

 Additive heuristic hadd: sum the cost of preconditions

 Max heuristic hmax: max cost of preconditions

 Observation 1: These heuristics assume goal
independence, therefore miss useful information

 Observation 2: Planning graphs keep track of how
actions interact, and look like the graphs we examined

 FF Heuristic: Let’s apply the empty delete list
relaxation to planning graphs!

[Hoffmann, Nebel 2001]

Relaxed planning task: FF
39

Α0
s0 s1 s2

Α1

Have(C)

E(C)
 Have(C)

Eaten(C)

 Eaten(C)  Eaten(C)

Have(C)

E(C)

Have(C)

 Have(C)

 Eaten(C)

Eaten(C)

Β(C)

 Assume an empty list of negative effects

Relaxed planning task: FF
40

Α0
s0 s1 s2

Α1

Have(C)

E(C)

Eaten(C)

Have(C)

E(C)

Have(C)

Eaten(C)

Β(C)

 Assume an empty list of negative effects

 No negative literals

Relaxed planning task: FF
41

Α0
s0 s1 s2

Α1

Have(C)

E(C)

Eaten(C)

Have(C)

E(C)

Have(C)

Eaten(C)

Β(C)

 Assume an empty list of negative effects

 No negative literals  No mutual constraints

Relaxed planning task: FF
42

Α0
s0 s1 s2

Α1

Have(C)

E(C)

Eaten(C)

Have(C)

E(C)

Have(C)

Eaten(C)

Β(C)

 Extracting a solution has polynomial complexity:

pick actions for each sub-goal in a single sweep

Note: this is actually not a very good example because we

have used negative preconditions (did anybody notice? :-)

NotHave(C)

Relaxed planning task: FF
43

Α0
s0 s1

Have(C)

E(C)

Eaten(C)

Have(C)

 Extracting a solution has polynomial complexity:

pick actions for each sub-goal in a single sweep

In any case, here

we would have

stopped at s1

where we first

reach the goal

Relaxed planning task: hadd, hmax, FF, h2

44

Still one of the

best heuristics!

 Additive heuristic hadd:
sum the cost of preconditions

 Max heuristic hmax:
max cost of preconditions

 FF heuristic:
exploit positive interaction

 h2 heuristic:
same idea like hmax but keep track
of pairs of literals

Relaxed planning task: hadd, hmax, FF, h2

45

Admissible

Admissible

Not admissible
 Additive heuristic hadd:

sum the cost of preconditions +1

 Max heuristic hmax:
max cost of preconditions +1

 FF heuristic:
exploit positive interaction

 h2 heuristic:
same idea like hmax but keep track
of pairs of literals

Not admissible

Relaxed planning task: hadd, hmax, FF, h2

46

 Let’s see again the performance of the Fast-

downward planner in the Sokoban planning

problem we examined in Lecture 3

Using PDDL planners: Sokoban
47

 search/downward --search "astar(blind())" <output

Using PDDL planners: Sokoban
48

 search/downward --search "astar(goalcount())"

Using PDDL planners: Sokoban
49

 search/downward --search "astar(hmax())" <output

Using PDDL planners: Sokoban
50

 search/downward --search "astar(add())" <output

Using PDDL planners: Sokoban
51

 search/downward --search "lazy_greedy(ff())" <output

52

 Lecture 1: Game-inspired competitions for AI research,

AI decision making for non-player characters in games

 Lecture 2: STRIPS planning, state-space search

 Lecture 3: Planning Domain Definition Language (PDDL),

using an award winning planner to solve Sokoban

 Lecture 4: Planning graphs, domain independent

heuristics for STRIPS planning

 Lecture 5: Employing STRIPS planning in games:

SimpleFPS, iThinkUnity3D, SmartWorkersRTS

 Lecture 6: Planning beyond STRIPS

Next lecture

Bibliography
53

 References

 The Computational Complexity of Propositional STRIPS Planning.

Tom Bylander. Artificial Intelligence, Vol. 69, 1994

 Planning as Heuristic Search. Blai Bonet, Héctor Geffner. Artificial

Intelligence, Vol. 129, 2001

 Admissible Heuristics for Optimal Planning. P. Haslum, H. Geffner.

In Proceedings of the International Conference on AI Planning

Systems (AIPS), 2000

 The FF planning system: Fast plan generation through heuristic

search. Jörg Hoffmann, Bernhard Nebel. Artificial Intelligence

Research, Vol. 14, 2001

