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 Lecture 1: Game-inspired competitions for AI research,

AI decision making for non-player characters in games

 Lecture 2: STRIPS planning, state-space search

 Lecture 3: Planning Domain Definition Language (PDDL), 

using an award winning planner to solve Sokoban

 Lecture 4: Planning graphs, domain independent 

heuristics for STRIPS planning

 Lecture 5: Employing STRIPS planning in games: 

SimpleFPS, iThinkUnity3D, SmartWorkersRTS

 Lecture 6: Planning beyond STRIPS

Course overview



Planning graphs
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Α0
s0 s1 s2

Α1

Have(C)

E(C)
 Have(C)

Eaten(C)

 Eaten(C)  Eaten(C)

Have(C)

E(C)

Have(C)

 Have(C)

 Eaten(C)

Eaten(C)

Β(C)

 Planning graph



Planning graphs

 Planning graph

 Special data structure

 Easy to compute: polynomial complexity!

 Can be used by the GRAPHPLAN algorithm to search 

for a solution (following similar reasoning as in the 

example)

 Can be used as a guideline for heuristic functions for 

progressive planning that are more accurate than the 

ones we sketched in Lecture 1
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Planning graphs

 Planning graph

 Special data structure

 Easy to compute: polynomial complexity!

 Can be used by the GRAPHPLAN algorithm to search 

for a solution (following similar reasoning as in the 

example)

 Can be used as a guideline for heuristic functions for 

progressive planning that are more accurate than the 

ones we sketched in Lecture 1
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Planning graphs

 Planning graph

 Computing the graph 

has polynomial 

complexity

 STRIPS planning

 Finding a solution is 

PSPACE-complete

 Where’s the 

complexity hiding?
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Planning graphs

 Planning graph

 Computing the graph 

has polynomial 

complexity

 Finding a solution 

using the graph is 

NP-complete, while 

we may also need to 

extend the graph a 

finite number of 

times…  PSPACE
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Planning graphs

 Planning graph

 Special data structure

 Easy to compute: polynomial complexity!

 Can be used by the GRAPHPLAN algorithm to search 

for a solution (following similar reasoning as in the 

example)

 Can be used as a guideline for heuristic functions for 

progressive planning that are more accurate than the 

ones we sketched in Lecture 2
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99

 Start from the initial state

 Check if the current state satisfies the 

goal

 Compute applicable actions to the 

current state

 Compute the successor states

 Pick one the most promising of the 

successor states as the current state

 Repeat until a solution is found or the 

state space is exhausted

Planning graphs
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 Start from the initial state

 Check if the current state satisfies the 

goal

 Compute applicable actions to the 

current state

 Compute the successor states

 Pick one the most promising of the 

successor states as the current state

 Repeat until a solution is found or the 

state space is exhausted

Planning graphs

PG1 PG2 PG3 PG4

Compute a planning graph for each 

successor state to estimate goal distance



Planning graphs

 Heuristic functions based on planning graphs

 Level cost: the level where a literal appears in the 

graph for the first time

 Note: A literal that does not appear in the final level of the 

graph cannot be achieved by any plan!

Max-level: the max of the level cost for each sub-goal

 Sum-level: the sum of the level cost for each sub-goal

 Set-level: the first level that all sub-goals appear 

together without mutexes

11
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 Start from the initial state

 Check if the current state satisfies the 

goal

 Compute applicable actions to the 

current state

 Compute the successor states

 Pick one the most promising of the 

successor states as the current state

 Repeat until a solution is found or the 

state space is exhausted

Planning graphs

PG0

As an example let’s see the heuristics for 

the planning graph from the initial state



Planning graphs
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Α0
s0 s1 s2

Α1

Have(C)

E(C)
 Have(C)

Eaten(C)

 Eaten(C)  Eaten(C)

Have(C)

E(C)

Have(C)

 Have(C)

 Eaten(C)

Eaten(C)

Β(C)

 Level cost for sub-goal Have(C) = 0

 Level cost for sub-goal Eaten(C) = 1

 Sum/Max-level heuristic = 1



Planning graphs
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Α0
s0 s1 s2

Α1

Have(C)

E(C)
 Have(C)

Eaten(C)

 Eaten(C)  Eaten(C)

Have(C)

E(C)

Have(C)

 Have(C)

 Eaten(C)

Eaten(C)

Β(C)

 Level cost for sub-goal Have(C) = 0

 Level cost for sub-goal Eaten(C) = 1

 Set-level heuristic = 2



Planning graphs

 Heuristic functions based on planning graphs

 As building the planning graph is relatively cheap 

(polynomial) we can build one for every state we want 

to evaluate and use Sum/Max/Set-level to estimate the 

distance to the goal

 As long as the heuristic provides good estimates, the 

time spent to calculate the planning graphs pays off 

because it helps us bypass big parts of the search 

space

15
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 Start from the initial state

 Check if the current state satisfies the 

goal

 Compute applicable actions to the 

current state

 Compute the successor states

 Pick one the most promising of the 

successor states as the current state

 Repeat until a solution is found or the 

state space is exhausted

Planning graphs

PG1 PG2 PG3 PG4

PG5 PG6 PG7

PG8 PG9



1717

 Start from the initial state

 Check if the current state satisfies the 

goal

 Compute applicable actions to the 

current state

 Compute the successor states

 Pick one the most promising of the 

successor states as the current state

 Repeat until a solution is found or the 

state space is exhausted

Planning graphs

PG1 PG2 PG3 PG4

PG5 PG6 PG7

PG8 PG9

Here: computing 9 PGs may have helped 

search a state-space of 1000s of nodes



Relaxed planning task

 Let’s look closer now to one idea we discussed briefly 

in Lecture 2

 Same as we did with planning graphs, but instead 

solve a relaxed (i.e., simpler) planning task in 

order to estimate the goal distance

 Relaxation: Assume an empty list of preconditions

18
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 Start from the initial state

 Check if the current state satisfies the 

goal

 Compute applicable actions to the 

current state

 Compute the successor states

 Pick one the most promising of the 

successor states as the current state

 Repeat until a solution is found or the 

state space is exhausted

Relaxed planning task

RP1 RP2 RP3 RP4



Relaxed planning task

 Planning graph

 Computing the graph 
has polynomial 
complexity

 Empty list of 
preconditions

 Finding a solution to 
the relaxed planning 
task is polynomial

OK, but not very 
informative

20
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 Empty list of preconditions

 Initial state

Goal

Without preconditions you can move each block to the 

desired position in one step: push(block, from, to, dir)

 From every state the goal is at most three actions away

Relaxed planning task



Relaxed planning task

 Let’s look closer now to one idea we discussed briefly 

in Lecture 1

 Same as we did with planning graphs, but instead 

solve a relaxed (i.e., simpler) planning task in 

order to estimate the goal distance

 Relaxation: Assume an empty list of negative effects
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 Start from the initial state

 Check if the current state satisfies the 

goal

 Compute applicable actions to the 

current state

 Compute the successor states

 Pick one the most promising of the 

successor states as the current state

 Repeat until a solution is found or the 

state space is exhausted

Relaxed planning task

RP1 RP2 RP3 RP4



Relaxed planning task

 Planning graph

 Computing the graph 

has polynomial 

complexity

 Empty list of 

negative effects 

 Finding a solution to 

the relaxed planning 

task is NP-complete

 It’s not helping…
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Relaxed planning task

 Planning graph

 Computing the graph 

has polynomial 

complexity

 Empty list of 

negative effects 

 Finding a solution to 

the relaxed planning 

task is NP-complete

 We can estimate it!
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Relaxed planning task: hadd, hmax
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 Build a graph that approximates the cost of achieving 
literal p from state s  [Bonet, Geffner 2001]

 Initialize the graph with literals in s having cost 0

 For every action a such that p is a positive effect, add p
and set the cost of p by combining the cost of achieving 
the preconditions of a

 Build the graph iteratively keeping the minimum cost when 
a literal p re-appears

 The way the cost is combined for two literals defines the 
heuristic: hadd, hmax



Relaxed planning task: hadd, hmax
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 Initialize the graph with literals in s having cost 0

P1: 0

P2: 0

P3: 0

P4: 0

s0



Relaxed planning task: hadd, hmax
28

 For every action a such that p is a positive effect, 

add p and set the cost of p by combining the cost of 

achieving the preconditions of a

P1: 0

P2: 0

P3: 0

P4: 0

s0

A2 P6:

A1 P5:



Relaxed planning task: hadd, hmax
29

 For every action a such that p is a positive effect, 

add p and set the cost of p by combining the cost of 

achieving the preconditions of a

P1: 0

P2: 0

P3: 0

P4: 0

s0

Additive heuristic hadd: sum 

the cost of preconditions +1

A2 P6: (0+0)+1=1

A1 P5: (0+0)+1=1



Relaxed planning task: hadd, hmax
30

 For every action a such that p is a positive effect, 

add p and set the cost of p by combining the cost of 

achieving the preconditions of a

P1: 0

P2: 0

P3: 0

P4: 0

s0

Additive heuristic hadd: sum 

the cost of preconditions +1

A3
A2 P6: (0+0)+1=1

A1 P5: (0+0)+1=1

P7: (1+1)+1=3



Relaxed planning task: hadd, hmax
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 Build the graph iteratively keeping the minimum cost 

when a literal p re-appears 

 (similar to planning graphs, stop when no changes arise)

P1: 0

P2: 0

P3: 0

P4: 0

s0

Additive heuristic hadd: sum 

the cost of preconditions +1

A2 P6: (0+0)+1=1

A1 P5: (0+0)+1=1

A3 P7: (1+1)+1=3



Relaxed planning task: hadd, hmax
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 Build the graph iteratively keeping the minimum cost 

when a literal p re-appears 

P1: 0

P2: 0

P3: 0

P4: 0

s0

A2 P6: (0+0)+1=1

A1 P5: (0+0)+1=1

Additive heuristic hadd: sum 

the cost of preconditions +1

A3 P7: (1+1)+1=3

Max heuristic hmax: 

max cost of precond +1

P7: (1)+1     =2



Relaxed planning task: hadd, hmax

 Planning graph

 Computing the graph 

has polynomial 

complexity

 Empty list of 

negative effects 

 Finding a solution to 

the relaxed planning 

task is NP-complete

 We can estimate it!
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Relaxed planning task: hadd, hmax
34

 Additive heuristic hadd: sum the cost of preconditions

 Max heuristic hmax: max cost of preconditions

 Observation 1: These heuristics assume goal 

independence, therefore miss useful information



Relaxed planning task: hadd, hmax
35

 Note: literals appear at most once in this graph; the 

iteration in which they appear is a lower-bound of 

the estimated cost

P1: 0

P2: 0

P3: 0

P4: 0

s0

A2 P6: (0+0)+1=1

A1 P5: (0+0)+1=1

Additive heuristic hadd: sum 

the cost of preconditions +1

A3 P7: (1+1)+1=3

Max heuristic hmax: 

max cost of precond +1

P7: (1)+1     =2



Relaxed planning task: hadd, hmax
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 Additive heuristic hadd: sum the cost of preconditions

 Max heuristic hmax: max cost of preconditions

 Observation 1: These heuristics assume goal 

independence, therefore miss useful information

 Observation 2: Planning graphs keep track of how 

actions interact, and look like the graphs we examined



Planning graphs
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Α0
s0 s1 s2

Α1

Have(C)

E(C)
 Have(C)

Eaten(C)

 Eaten(C)  Eaten(C)

Have(C)

E(C)

Have(C)

 Have(C)

 Eaten(C)

Eaten(C)

Β(C)

 Note: literals are structured in increasingly larger 

layers which also keep track of how actions interact



Relaxed planning task: hadd, hmax
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 Additive heuristic hadd: sum the cost of preconditions

 Max heuristic hmax: max cost of preconditions

 Observation 1: These heuristics assume goal 
independence, therefore miss useful information

 Observation 2: Planning graphs keep track of how 
actions interact, and look like the graphs we examined

 FF Heuristic: Let’s apply the empty delete list 
relaxation to planning graphs! 

[Hoffmann, Nebel 2001]



Relaxed planning task: FF
39

Α0
s0 s1 s2

Α1

Have(C)

E(C)
 Have(C)

Eaten(C)

 Eaten(C)  Eaten(C)

Have(C)

E(C)

Have(C)

 Have(C)

 Eaten(C)

Eaten(C)

Β(C)

 Assume an empty list of negative effects



Relaxed planning task: FF
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Α0
s0 s1 s2

Α1

Have(C)

E(C)

Eaten(C)

Have(C)

E(C)

Have(C)

Eaten(C)

Β(C)

 Assume an empty list of negative effects

 No negative literals



Relaxed planning task: FF
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Α0
s0 s1 s2

Α1

Have(C)

E(C)

Eaten(C)

Have(C)

E(C)

Have(C)

Eaten(C)

Β(C)

 Assume an empty list of negative effects

 No negative literals  No mutual constraints



Relaxed planning task: FF
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Α0
s0 s1 s2

Α1

Have(C)

E(C)

Eaten(C)

Have(C)

E(C)

Have(C)

Eaten(C)

Β(C)

 Extracting a solution has polynomial complexity: 

pick actions for each sub-goal in a single sweep

Note: this is actually not a very good example because we 

have used negative preconditions (did anybody notice? :-)

NotHave(C)



Relaxed planning task: FF
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Α0
s0 s1

Have(C)

E(C)

Eaten(C)

Have(C)

 Extracting a solution has polynomial complexity: 

pick actions for each sub-goal in a single sweep

In any case, here 

we would have 

stopped at s1

where we first 

reach the goal



Relaxed planning task: hadd, hmax, FF, h2
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Still one of the 

best heuristics!

 Additive heuristic hadd: 
sum the cost of preconditions

 Max heuristic hmax: 
max cost of preconditions

 FF heuristic: 
exploit positive interaction

 h2 heuristic: 
same idea like hmax but keep track 
of pairs of literals



Relaxed planning task: hadd, hmax, FF, h2
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Admissible

Admissible

Not admissible
 Additive heuristic hadd: 

sum the cost of preconditions +1

 Max heuristic hmax: 
max cost of preconditions +1

 FF heuristic: 
exploit positive interaction

 h2 heuristic: 
same idea like hmax but keep track 
of pairs of literals

Not admissible



Relaxed planning task: hadd, hmax, FF, h2
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 Let’s see again the performance of the Fast-

downward planner in the Sokoban planning 

problem we examined in Lecture 3



Using PDDL planners: Sokoban
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 search/downward --search "astar(blind())" <output



Using PDDL planners: Sokoban
48

 search/downward --search "astar(goalcount())"



Using PDDL planners: Sokoban
49

 search/downward --search "astar(hmax())" <output



Using PDDL planners: Sokoban
50

 search/downward --search "astar(add())" <output



Using PDDL planners: Sokoban
51

 search/downward --search "lazy_greedy(ff())" <output
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 Lecture 1: Game-inspired competitions for AI research,

AI decision making for non-player characters in games

 Lecture 2: STRIPS planning, state-space search

 Lecture 3: Planning Domain Definition Language (PDDL), 

using an award winning planner to solve Sokoban

 Lecture 4: Planning graphs, domain independent 

heuristics for STRIPS planning

 Lecture 5: Employing STRIPS planning in games: 

SimpleFPS, iThinkUnity3D, SmartWorkersRTS

 Lecture 6: Planning beyond STRIPS

Next lecture
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